

Lecture Notes in Computer Science 5015
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Laurent Perron Michael A. Trick (Eds.)

Integration
of AI and OR Techniques
in Constraint Programming
for Combinatorial
Optimization Problems

5th International Conference, CPAIOR 2008
Paris, France, May 20-23, 2008
Proceedings

13

Volume Editors

Laurent Perron
ILOG
9, rue de Verdun
94253 Gentilly Cedex, France
E-mail: lperron@ilog.fr

Michael A. Trick
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA,15213, USA
E-mail: trick@cmu.edu

Library of Congress Control Number: 2008926947

CR Subject Classification (1998): G.1.6, G.1, G.2.1, F.2.2, I.2, J.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-68154-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68154-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12270859 06/3180 5 4 3 2 1 0

Preface

The 5th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2008) was held in Paris, France May 20–23, 2008.

The purpose of this conference series is to bring together researchers in the
fields of constraint programming, artificial intelligence, and operations research
to explore ways of solving large-scale, practical optimization problems through
integration and hybridization of the fields’ different techniques. Through the
years, this research community is discovering that the fields have much in com-
mon, and there has been tremendous richness in the resulting cross-fertilization
of fields.

This year, we allowed submissions of both long (15 page) and short (5 page)
papers, with short papers either being original work, a reduced version of a long
paper, or an extended abstract of work published elsewhere. We were not sur-
prised by the 69 submissions in the long paper category: this is an active field
with many researchers. We were surprised by the 61 short paper submissions.
This was far more than predicted. With 130 high-quality submissions, competi-
tion for acceptance in this year’s program was particularly fierce. In the end, we
accepted 18 long papers and 22 short papers for presentation and publication in
this volume.

In addition to the selected papers, there were three invited talks. Those speak-
ers were Cindy Barnhart, Professor of Civil and Environmental Engineering at
the Massachusetts Institute of Technology, Pascal Van Hentenryck, Professor of
Computer Science at Brown University, and François Laburthe, Director of Op-
erations Research and Innovation at Amadeus, a leading information technology
firm in the travel industry.

On May 20, a Master Class was held, organized by Cindy Barnhart and
Laurent Michel, Assistant Professor of Computer Science and Engineering at
the University of Connecticut. The theme of the Master Class was “Modeling
Practical Problems: The OR/CP Interface.” The Master Class is intended for
PhD students, researchers and practitioners.

Thursday afternoon was given over to three workshops: Open-Source Soft-
ware for Integer and Constraint Programming, organized by Robin Lougee-
Heimer of IBM Research and Ionut Aron, formerly of IBM Research, Bin Packing
and Placement Constraints, organized by a group led by Nicolas Beldiceanu of
EMN Nantes, and Constraint-Based Methods for Bioinformatics, organized by
Agostino Dovier of the University of Udine.

This year, the conference organization was divided. While we handled the pro-
gram, François Fages, Senior Research Scientist INRIA, joined Laurent in the
conference organization. François and Laurent, with the help of the colloquium
office at INRIA, were responsible for organizing the venue, finding sponsorship

VI Preface

funds, and the million other details that go into running a successful confer-
ence. François was also particularly helpful in assisting us with program policy
decisions, and we are grateful for his thoughts and experience.

We would particularly like to thank the Program Committee for their efforts.
No one expected 130 submissions, and they did a tremendous job of reading,
reviewing, and commenting on papers in a timely and insightful fashion.

Finally, we would like to thank the sponsors who make this possible. These in-
clude the Association for Constraint Programming, INRIA, Microsoft Research/
INRIA JointCenter, National ICT Australia, ILOG, COSYTEC, Intelligent Infor-
mation Systems Institute at Cornell, KLS OPTIM, Jeppesen Technology Services
and the energy company Total.

May 2008 Laurent Perron
Michael Trick

Organization

Conference Chairs

François Fages, INRIA, France
Laurent Perron, ILOG, France

Program Chairs

Laurent Perron, ILOG, France
Michael Trick, Carnegie Mellon, USA

Master Class Chairs

Cynthia Barnhart, MIT, USA
Laurent Michel, University of Connecticut, USA

Program Committee

Ionut Aron, IBM Research, USA
Philippe Baptiste, École Polytechnique, France
Chris Beck, University of Toronto, Canada
Frédéric Benhamou, University of Nantes, France
Bob Bosch, Oberlin College, USA
Edmund Burke, University of Nottingham, UK
Amedeo Cesta, ISTC-CNR Rome, Italy
John Chinneck, Carleton University, Canada
Emilie Danna, ILOG, USA
Andrew Davenport, IBM, USA
Yves Deville, UCLouvain, Belgium
Hani El Sakkout, Cisco, USA
François Fages, INRIA, France
Bernard Gendron, University of Montreal, Canada
Carla Gomes, Cornell University, USA
Youssef Hamadi, Microsoft Research Cambridge, UK
John Hooker, Carnegie Mellon, USA
Kazuyoshi Inoue, NS Solutions, Japan
Narendra Jussien, École des Mines de Nantes, France
Thorsten Koch, ZIB, Germany
François Laburthe, Amadeus, France
Claude Le Pape, Schneider Electric, France
Janny Leung, Chinese University of Hong Kong, Hong Kong

VIII Organization

Andrea Lodi, University of Bologna, Italy
Robin Lougee-Heimer, IBM Research, USA
Anuj Mehrotra, University of Miami, USA
Laurent Michel, University of Connecticut, USA
Michela Milano, University of Bologna, Italy
Yehuda Naveh, IBM Research, Israel
Barry O’Sullivan, University College Cork, Ireland
Gilles Pesant, Polytechnique Montreal, Canada
Jean-François Puget, ILOG, France
Jean-Charles Régin, ILOG, France
Louis-Martin Rousseau, Polytechnique Montreal, Canada
Michel Rueher, University of Nice, France
David Ryan, University of Auckland, New Zealand
Meinolf Sellmann, Brown University, USA
Helmut Simonis, University College Cork, Ireland
Stephen Smith, Carnegie Mellon, USA
Barbara Smith, University of Leeds, UK
Pascal Van Hentenryck, Brown University, USA
Willem-Jan Van Hoeve, Carnegie Mellon, USA
Alkis Vazacopoulos, Fair Isaac, USA
Mark Wallace, Monash University, Australia
Laurence Wolsey, UCLouvain, Belgium
Tallys Yunes, University of Miami, USA

External Reviewers

Tobias Achterberg
Timo Berthold
Simon Boivin
Lucas Bordeaux
Hélène Collavizza
Sophie Demassey
Bistra Dilkina
Ari Freund
Oded Fuhrmann
Jonathan Gaudreault
Carmen Gervet
Frédéric Goualard
Stefan Heinz
Dejan Jovanović
Arnaud Lallouet

Yahia Lebbah
Michele Lombardi
Xavier Lorca
Julien Martin
Jean-Noël Monette
Angelo Oddi
Claude-Guy Quimper
Yossi Richter
Aurélien Rizk
Frederic Saubion
Pierre Schaus
Andrew See
Gil Shurek
Peter Stuckey
Oliver Weide
Alessandro Zanarini

Table of Contents

Invited Talks

Airline Scheduling: Accomplishments, Opportunities and Challenges 1
Cynthia Barnhart

Selected Challenges from Distribution and Commerce in the Airline
and Travel Industry . 2

François Laburthe

30 Years of Constraint Programming (Abstract) . 5
Pascal Van Hentenryck

Long Papers

Constraint Integer Programming: A New Approach to Integrate CP
and MIP . 6

Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter

New Filtering for the cumulative Constraint in the Context of
Non-Overlapping Rectangles . 21

Nicolas Beldiceanu, Mats Carlsson, and Emmanuel Poder

Multi-stage Benders Decomposition for Optimizing Multicore
Architectures . 36

Luca Benini, Michele Lombardi, Marco Mantovani,
Michela Milano, and Martino Ruggiero

Fast and Scalable Domino Portrait Generation . 51
Hadrien Cambazard, John Horan, Eoin O’Mahony, and
Barry O’Sullivan

Gap Reduction Techniques for Online Stochastic Project Scheduling 66
Grégoire Dooms and Pascal Van Hentenryck

Integrating Symmetry, Dominance, and Bound-and-Bound in a
Multiple Knapsack Solver . 82

Alex S. Fukunaga

Cost Propagation – Numerical Propagation for Optimization
Problems . 97

Birgit Grohe and Dag Wedelin

Fitness-Distance Correlation and Solution-Guided Multi-point
Constructive Search for CSPs . 112

Ivan Heckman and J. Christopher Beck

X Table of Contents

Leveraging Belief Propagation, Backtrack Search, and Statistics for
Model Counting . 127

Lukas Kroc, Ashish Sabharwal, and Bart Selman

The Accuracy of Search Heuristics: An Empirical Study on Knapsack
Problems . 142

Daniel H. Leventhal and Meinolf Sellmann

A Novel Approach for Detecting Symmetries in CSP Models 158
Christopher Mears, Maria Garcia de la Banda, Mark Wallace, and
Bart Demoen

Amsaa: A Multistep Anticipatory Algorithm for Online Stochastic
Combinatorial Optimization . 173

Luc Mercier and Pascal Van Hentenryck

Optimal Deployment of Eventually-Serializable Data Services 188
Laurent Michel, Alexander Shvartsman, Elaine Sonderegger, and
Pascal Van Hentenryck

Counting Solutions of Knapsack Constraints . 203
Gilles Pesant and Claude-Guy Quimper

From High-Level Model to Branch-and-Price Solution in G12 218
Jakob Puchinger, Peter J. Stuckey, Mark Wallace, and
Sebastian Brand

Simpler and Incremental Consistency Checking and Arc Consistency
Filtering Algorithms for the Weighted Spanning Tree Constraint 233

Jean-Charles Régin

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 248
Tino Teige and Martin Fränzle

A Hybrid Constraint Programming / Local Search Approach to the
Job-Shop Scheduling Problem . 263

Jean-Paul Watson and J. Christopher Beck

Short Papers

Counting Solutions of Integer Programs Using Unrestricted Subtree
Detection . 278

Tobias Achterberg, Stefan Heinz, and Thorsten Koch

Rapidly Solving an Online Sequence of Maximum Flow Problems with
Extensions to Computing Robust Minimum Cuts . 283

Doug Altner and Özlem Ergun

Table of Contents XI

A Hybrid Approach for Solving Shift-Selection and Task-Sequencing
Problems . 288

Ada Barlatt, Amy M. Cohn, and Oleg Gusikhin

Solving a Log-Truck Scheduling Problem with Constraint
Programming . 293

Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau

Using Local Search to Speed Up Filtering Algorithms for Some
NP-Hard Constraints . 298

Philippe Galinier, Alain Hertz, Sandrine Paroz, and Gilles Pesant

Connections in Networks: A Hybrid Approach . 303
Carla P. Gomes, Willem-Jan van Hoeve, and Ashish Sabharwal

Efficient Haplotype Inference with Combined CP and OR Techniques . . . 308
Ana Graça, João Marques-Silva, Inês Lynce, and Arlindo L. Oliveira

Integration of CP and Compilation Techniques for Instruction Sequence
Test Generation . 313

Boris Gutkovich

Propagating Separable Equalities in an MDD Store 318
T. Hadzic, J.N. Hooker, and P. Tiedemann

The Weighted Cfg Constraint . 323
George Katsirelos, Nina Narodytska, and Toby Walsh

CP with ACO . 328
Madjid Khichane, Patrick Albert, and Christine Solnon

A Combinatorial Auction Framework for Solving Decentralized
Scheduling Problems (Extended Abstract) . 333

Hoong Chuin Lau, Kong Wei Lye, and Viet Bang Nguyen

Constraint Optimization and Abstraction for Embedded Intelligent
Systems . 338

Paul Maier and Martin Sachenbacher

A Parallel Macro Partitioning Framework for Solving Mixed Integer
Programs . 343

Mahdi Namazifar and Andrew J. Miller

Guiding Stochastic Search by Dynamic Learning of the Problem
Topography . 349

Yehuda Naveh

Hybrid Variants for Iterative Flattening Search . 355
Angelo Oddi, Amedeo Cesta, Nicola Policella, and Stephen F. Smith

XII Table of Contents

Global Propagation of Practicability Constraints . 361
Thierry Petit and Emmanuel Poder

The Polytope of Tree-Structured Binary Constraint Satisfaction
Problems . 367

Meinolf Sellmann

A Tabu Search Method for Interval Constraints . 372
Charlotte Truchet, Marc Christie, and Jean-Marie Normand

The Steel Mill Slab Design Problem Revisited . 377
Pascal Van Hentenryck and Laurent Michel

Filtering Atmost1 on Pairs of Set Variables . 382
Willem-Jan van Hoeve and Ashish Sabharwal

Extended Abstract

Mobility Allowance Shuttle Transit (MAST) Services: MIP Formulation
and Strengthening with Logic Constraints . 387

Luca Quadrifoglio, Maged M. Dessouky, and Fernando Ordóñez

Author Index . 393

Airline Scheduling: Accomplishments,

Opportunities and Challenges

Cynthia Barnhart

Massachusetts Institute of Technology

Airline scheduling is characterized by numerous complexities, including a net-
work of flights, different aircraft types, limited numbers of gates, air traffic
control restrictions, environmental regulations, strict safety requirements, a myr-
iad of crew work rules and complicated payment structures, and competitive,
dynamic environments in which passenger demands are uncertain and pricing
strategies are complex. This, layered with the airline industry’s endemic issues
of low profitability, contentious labor issues, and outdated and inadequate infras-
tructure, poses daunting challenges that have intrigued operations researchers
for at least a half-century, and have provided a fertile ground for the develop-
ment and application of models and algorithms. In this talk, we first briefly
summarize the optimization-based accomplishments in this area, highlighting
the significant successes and impacts. While impressive, the problem is far from
solved today. The focus of this talk, then, is on the many remaining opportunities
and challenges, namely:

a) Robust scheduling: A trend in airline scheduling is to generate schedules that
are “robust” to the disruptions that plague airline operations. Because airlines
have typically constructed schedules with the assumption that every flight de-
parts and arrives as planned, plans are frequently disrupted and airlines often
incur significant additional costs beyond those originally planned. A more ro-
bust plan can reduce the occurrence and impact of these disruptions.

b) Dynamic scheduling: Stochasticity of passenger demands is a major challenge
for the airlines in their quest to produce profit-maximizing schedules. Even
using sophisticated optimization tools, many flights upon departure have
empty seats, while others suffer a lack of seats to accommodate passengers
who desire to travel. One approach to this challenge is to implement dynamic
scheduling approaches that re-optimize elements of the flight schedule during
the passenger booking process, recognizing that demand forecast quality for
a particular date improves as the date approaches.

c) Recovery from irregular operations: We describe approaches designed for
use in near real-time mode to adjust operations in response to a variety of
disruptions. We present briefly some of the market-based mechanisms being
considered to address this problem, with a particular focus on minimizing
disruption and delay to passengers.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Selected Challenges from Distribution and

Commerce in the Airline and Travel Industry

François Laburthe

Operations Research & Innovation, Amadeus

Distribution for the travel industry is about connecting providers (airlines, train
companies, car rental companies, hoteliers . . . who all have tickets to sell) to
customers (business travelers & tourists). Such sales can be done directly or
through a travel agent, both offline (during a discussion with an agent) or on-
line (through a web site). Distribution for the travel industry has gone through
impressive changes in the past decades with the advent of Global Distribution
Systems in 80’s, the rise sophisticated pricing & revenue management policies
in the 90’s and the growth of Internet in the past decade.

Though massive flows of money go through the distribution chain, most actors
have small margins, and need efficient commercial policies to be profitable. As
reservations are immaterial goods, information is key to business optimization,
in order to match supply with demand, price products effectively, and support
innovative offerings. In this talk, we will present several challenges for operations
researchers & computer scientists related to commerce and distribution systems
for the airline industry.

1. Fare search. These are the tools that power the web sites of online travel
agencies and airlines websites, as well as travel agent desktops. They sup-
port the search for travel solutions between two cities at a given date. Such
tools return sequences of flights with applicable fares. Whilst one could imag-
ine that they are based on simple database requests, or on shortest paths
computation, fare search turns out to be an incredibly combinatorial prob-
lem because of the sophisticated business rules governing the validity of a
fare. The success of fare search products yields interesting challenges to the
operations researcher such as:
– How fast can one design a graph exploration method, where the pricing

rules involve quantified formulas with negation (stating that a fare is
applicable if there exists no other travel solution through another airport
such that . . .)?

– How can a search domain be partitioned into independent search domains
in order to process independent fare search sub-requests in parallel?

– If one uses a cache to store prices derived from fare rules, how can one
predict which are the prices needing to be recomputed after a change in
pricing rules?

– In the case of package search (where the traveler will book flights, ho-
tel stay, car rental & possibly others in a single transaction), how can
one index such combinations of products? How can they be efficiently
searched for?

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 2–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Selected Challenges from Distribution and Commerce 3

2. Inventory & availability management. Airlines are increasingly moving
towards complex commercial policies, with numerous fare classes potentially
available on a given flight and where the decision of the actual availability of
a fare depends on many characteristics of the request (end-to-end journey,
channel through which the request is arriving, membership to loyalty pro-
gram tier, . . .). This trend towards dynamic pricing does stress the inventory
management systems which now become solicited not only for performing ac-
tual bookings, but also for answering loads of availability requests from web-
site shoppers. The increased look-to-book ratio (with evermore fare search
transactions per actual booking) as well as the inability of legacy inventory
systems to cope with such transaction volumes calls for much smarter global
availability systems. Interesting challenges are:
– If one caches the availability traffic related to booking attempts (traffic

hitting the inventory system), can one reconstruct the availability logic
in order to accurately mimic its logic and therefore protect the inventory
from too heavy a traffic? In practice, how can one answer availability re-
quests for all availability traffic (including, say, trips from JFK to Rome’s
FCO airport, by knowing the precise availability information from only a
sample of the traffic, including JFK-CDG and LAX-FCO, but not JFK-
FCO). The commercial model of the airline is of course proprietary, but
the traffic can be sampled, and the availability model could be progres-
sively estimated.

– How can one predict, based on historical, the evolution of available fares?
Is it possible to evaluate a market situation and advise customers on
whether it is a good time to buy or not?

– How can one build a global model of market price for air trips?
3. Business management solutions for travel agents. Travel agents, both

off-line and on-line ones negotiate special fares & allotments with providers
airlines. They make a living both of service fees, and mark-ups (a share of
the price of the products they sell). They can optimize their revenues by
selling in case of products with similar benefits to the traveler, the product
that generates the most profit for them. Examples of challenges related to
that issue include:
– Forecasting the agency’s own revenue, based on historical data & the

current fee policy,
– Simulating how the revenue would evolve in case the rules for computing

service fees & mark-ups were to change,
– Deciding what are the proper reachable levels for all providers in order

to negotiate commissions based on volume targets
4. Revenue management solutions for airlines. The airline industry is

probably the industry that for which many of the revenue management con-
cepts have been introduced. Revenue management systems include a fore-
caster (estimating the future potential sales of tickets from now till the day
of departure) and an optimizer (defining the appropriate inventory controls
from the forecasted demand). Modern airline revenue management system in-
clude end-to-end availability logic (O&D logic) which states that an itinerary

4 F. Laburthe

should be available for sale if its yield to the airline is greater than the sum
of the opportunity costs on each segment of the trip. Moreover, this network
logic is often further tailored by means of fare modifiers which further re-
strict the availability in cases of hints that the request is originating from a
business traveler. Scientific challenges include:
– Understand the real impact of O&D logic in the revenue management.

What is the actual positive impact of O&D revenue management com-
pared to simpler tools? Currently, all such questions are answered by
simulation. Defining the appropriate simulation protocol to assess such
methods is a difficult task.

– Define robust forecasting methods.
– Define incremental optimization methods, ie: methods that evaluate ac-

curately and in real time the actual revenue impact of a ticket sale.

With such a research agenda, IT systems for the airline & travel industry, as
they embed more and more operation research components, will continue to offer
daunting challenges and tremedous opportunities and will inspire generations of
scientists to come.

30 Years of Constraint Programming

P. Van Hentenryck

Brown University, Box 1910, Providence, RI 02912

Abstract. This talk reviews 30 years of constraint programming. It sur-
veys computational and modeling progress, provides some historical per-
spectives on current research topics, explores some of the challenges faced
by constraint-programming technology, and contrasts its development
with mixed-integer programming. It also argues that the key strengths
of constraint programming will be ubiquitous future optimization sys-
tems and describes some of the significant engineering steps to be taken
for realizing this vision.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, p. 5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constraint Integer Programming: A New

Approach to Integrate CP and MIP

Tobias Achterberg1, Timo Berthold2, Thorsten Koch2, and Kati Wolter2

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany
tachterberg@ilog.de

2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
berthold,koch,wolter@zib.de

Abstract. This article introduces constraint integer programming
(CIP), which is a novel way to combine constraint programming (CP)
and mixed integer programming (MIP) methodologies. CIP is a general-
ization of MIP that supports the notion of general constraints as in CP.
This approach is supported by the CIP framework SCIP, which also in-
tegrates techniques from SAT solving. SCIP is available in source code
and free for non-commercial use.

We demonstrate the usefulness of CIP on two tasks. First, we ap-
ply the constraint integer programming approach to pure mixed integer
programs. Computational experiments show that SCIP is almost com-
petitive to current state-of-the-art commercial MIP solvers. Second, we
employ the CIP framework to solve chip design verification problems,
which involve some highly non-linear constraint types that are very hard
to handle by pure MIP solvers. The CIP approach is very effective here:
it can apply the full sophisticated MIP machinery to the linear part of
the problem, while dealing with the non-linear constraints by employing
constraint programming techniques.

1 Introduction

In the recent years, several authors showed that an integrated approach of con-
straint programming (CP) and mixed integer programming (MIP) can help to
solve optimization problems that were intractable with either of the two meth-
ods alone [15,25,40]. Different approaches to integrate CP and MIP into a single
framework have been proposed, [5,9,14,22,36,37] amongst others.

Most of the existing work follows the concept of augmenting a CP frame-
work with basic MIP techniques, namely LP relaxations and sometimes cutting
planes. In contrast, this paper introduces a way to incorporate CP specific solving
methods and its strong modeling capability into the sophisticated MIP solving
machinery. This is achieved by a low-level integration of the two concepts. The
constraints of a CP usually interact through the domains of the variables. Sim-
ilar to [9,14,36,37], the idea of constraint integer programming (CIP) is to offer
a second communication interface, namely the LP relaxation. Furthermore, the
definition of CIP restricts the generality of CP modeling as little as needed to
still gain the full power of all primal and dual MIP solving techniques.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 6–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constraint Integer Programming 7

Therefore, CIP is well suited for problems that contain a MIP core comple-
mented by some non-linear constraints. As an example for such a problem type,
the property checking problem is presented in Section 5.

The concept of constraint integer programming is realized in the branch-
and-cut framework SCIP. It combines solving techniques for CP, MIP, and
satisfiability problems (SAT) such that all involved algorithms operate on a single
search tree, which yields a very close interaction. A detailed description of the
concepts and the software can be found in [2].

The plugins that are provided with the standard distribution of SCIP suffice
to turn the CIP framework into a full-fledged MIP solver. In combination with
either SoPlex [42] or CLP [17] as LP solver, it is the fastest non-commercial
MIP solver that is currently available, see [32] and our results in Section 4. Using
Cplex [23] as LP solver, the performance of SCIP is even comparable to the
today’s best commercial codes.

As a library, SCIP can be used to develop branch-cut-and-price algorithms,
and it can be extended to support additional classes of non-linear constraints by
providing so-called constraint handler plugins. We present a solver for the chip
design verification problem as one example of this usage.

SCIP is freely available in source code for academic and non-commercial use
and can be downloaded from http://scip.zib.de. The current version 1.00—as
of this writing—has interfaces to five different LP solvers and consists of 223 178
lines of C code. The code is actively maintained and extended, and we hope to
be able to make further improvements.

The article is organized as follows: in Section 2, we introduce constraint in-
teger programs. Section 3 presents the building blocks of the constraint integer
programming framework SCIP. In Sections 4 and 5, we demonstrate the usage
of SCIP on two applications. First, we employ SCIP as a stand-alone MIP
solver, and second, we use SCIP as a branch-and-cut framework to solve chip
verification problems. Computational results are given in the Sections 4 and 5.4.

2 Constraint Integer Programs

Most solvers for CP, SAT, and MIP are based on dividing the problem into
smaller subproblems and implicitly enumerating all potential solutions. Because
MIP is a very specific case of CP, MIP solvers can apply sophisticated techniques
that operate on the subproblem as a whole, for example solving the linear pro-
gramming (LP) relaxation or generating cutting planes.

In contrast, due to the very general definition of CPs, CP solvers have to rely
on constraint propagators, each of them exploiting the structure of a single con-
straint class. Usually, the only communication between the individual constraints
takes place via the variables’ domains. An advantage of CP is, however, the pos-
sibility to model the problem more directly, using very expressive constraints,
which maintain the structure of the problem.

On the other hand, SAT is also a very specific case of CP with only one type
of constraints, namely Boolean clauses. Such a clause can easily be linearized,

http://scip.zib.de

8 T. Achterberg et al.

but the LP relaxation is rather useless, as it cannot detect the infeasibility of
subproblems earlier than domain propagation. Therefore, SAT solvers mainly
exploit the special problem structure to speed up the domain propagation algo-
rithm.

The hope of integrating CP, SAT, and MIP techniques is to combine their
advantages and to compensate for their individual weaknesses. We propose the
following slight restriction of a CP, which allows the application of MIP solving
techniques, to specify our integrated approach:

Definition. A constraint integer program CIP = (C, I, c) consists of solving

(CIP) c� = min{cT x | Ci(x) = 1 for all i = 1, . . . , m,

x ∈ �n, xj ∈ � for all j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : �n → {0, 1}, i = 1, . . . , m,
a subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function
vector c ∈ �n. A CIP has to fulfill the following additional condition:

∀x̂I ∈ �I ∃(A′, b′) : {xC ∈ �C | C(x̂I , xC)} = {xC ∈ �C | A′xC ≤ b′} (1)

with C := N \ I, A′ ∈ �k×C , and b′ ∈ �k for some k ∈ �≥0.

Restriction (1) ensures that the remaining subproblem after fixing all integer
variables is always a linear program. This means that in the case of finite do-
main integer variables, the problem can be—in principle—completely solved by
enumerating all values of the integer variables and then solving the correspond-
ing LPs.

Note, that this does not forbid quadratic or even more involved expressions.
Only the remaining part after fixing (and thus eliminating) the integer variables
must be linear in the continuous variables. Furthermore, the linearity restriction
of the objective function can be compensated by introducing an auxiliary objec-
tive variable z that is linked to the actual non-linear objective function with a
constraint z = f(x). Analogously, general variable domains can be represented
as additional constraints.

Therefore, every CP that meets Condition (1) can be represented as a CIP.
Especially, the following proposition holds.

Proposition. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming:
(a) Every CP with finite domains for all variables can be modeled as a CIP.
(b) Every MIP can be modeled as a CIP.

3 The SCIP Framework

SCIP is a framework for constraint integer programming. It is based on the
branch-and-bound procedure, which is a very general and widely used method
to solve optimization problems.

Constraint Integer Programming 9

The idea of branching is to successively divide the given problem instance into
smaller subproblems until the individual subproblems are easy to solve. The best
of all solutions found in the subproblems yields the global optimum. During the
course of the algorithm, a branching tree is created with each node representing
one of the subproblems.

The intention of bounding is to avoid a complete enumeration of all poten-
tial solutions of the initial problem, which are usually exponentially many. If a
subproblem’s lower (dual) bound is greater than or equal to the global upper
(primal) bound, the subproblem can be pruned. Lower bounds are calculated
with the help of a relaxation which should be easy to solve. Upper bounds are
found if the solution of the relaxation is also feasible for the corresponding sub-
problem.

Good lower and upper bounds must be available for the bounding to be effec-
tive. In order to improve a subproblem’s lower bound, one can tighten its relax-
ation, e.g., via domain propagation or by adding cutting planes (see Sections 3.2
and 3.4, respectively). Primal heuristics, which are described in Section 3.5, con-
tribute to the upper bound.

The selection of the next subproblem in the search tree and the branching
decision have a major impact on how early good primal solutions can be found
and how fast the lower bounds of the subproblems increase. More details on
branching and node selection are given in Section 3.6.

SCIP provides all necessary infrastructure to implement branch-and-bound
based algorithms for solving CIPs. It manages the branching tree along with all
subproblem data, automatically updates the LP relaxation, and handles all nec-
essary transformations due to presolving problem modifications, see Section 3.7.
Additionally, a cut pool, cut filtering, and a SAT-like conflict analysis mecha-
nism, see Section 3.3, are available. SCIP provides its own memory management
and plenty of statistical output.

Besides the infrastructure, all main algorithms of SCIP are implemented as
external plugins. In the remainder of this section, we will describe the most
important types of plugins and their role for solving CIPs.

3.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the constraint
handlers. Each constraint handler represents the semantics of a single class of
constraints and provides algorithms to handle constraints of the corresponding
type. The primary task of a constraint handler is to check a given solution for
feasibility with respect to all constraints of its type existing in the problem
instance. This feasibility test suffices to turn SCIP into an algorithm which
correctly solves CIPs with constraints of the supported types. To improve the
performance of the solving process, constraint handlers may provide additional
algorithms and information about their constraints to the framework, namely

– presolving methods to simplify the problem’s representation,
– propagation methods to tighten the variables’ domains,

10 T. Achterberg et al.

– a linear relaxation, which can be generated in advance or on the fly, that
strengthens the LP relaxation of the problem, and

– branching decisions to split the problem into smaller subproblems, using
structural knowledge of the constraints in order to generate a well-balanced
branching tree.

The distribution of SCIP includes the constraint handler for linear constraints
that is needed to solve MIPs. Additionally, some specializations of linear con-
straints like knapsack, set partitioning, or variable bound constraints are sup-
ported by constraint handlers, which can exploit the special structure of these
constraints in order to obtain more efficient data structures and algorithms.

3.2 Domain Propagation

Constraint propagation is an integral part of every CP solver [8]. The task is
to analyze the set of constraints of the current subproblem and the current
domains of the variables in order to infer additional valid constraints and domain
reductions, thereby restricting the search space. The special case where only the
domains of the variables are affected by the propagation process is called domain
propagation. If the propagation only tightens the lower and upper bounds of the
domains without introducing holes it is called bound propagation.

In mixed integer programming, the concept of bound propagation is well-
known under the term node preprocessing. Usually, MIP solvers apply a restricted
version of the preprocessing algorithm that is used before starting the branch-
and-bound process to simplify the problem instance (see, e.g., [38] or [20]).

Besides the integrality restrictions, there is only one type of constraints in a
MIP, namely the linear constraints. In contrast, CP models can include a large
variety of constraint classes with different semantics and structure. Thus, a CP
solver usually provides specialized constraint propagation algorithms for every
single constraint class.

Constraint based (primal) domain propagation is supported by the constraint
handler concept of SCIP. In addition, SCIP features two dual domain reduc-
tion methods that are driven by the objective function, namely the objective
propagation and the root reduced cost strengthening [33].

3.3 Conflict Analysis

Current state-of-the-art MIP solvers discard infeasible and bound-exceeding
subproblems without paying further attention to them. Modern SAT solvers,
in contrast, try to learn from infeasible subproblems, which is an idea due to
Marques-Silva and Sakallah [31]. The infeasibilities are analyzed in order to gen-
erate so-called conflict clauses. These are implied clauses that help to prune
the search tree. They also enable the solver to apply so-called non-chronological
backtracking. A similar idea in CP are no-goods, see e.g., [39].

SCIP generalizes conflict analysis to CIP and, as a special case, to MIP.
There are two main differences of CIP and SAT solving in the context of conflict
analysis. First, the variables of a CIP do not need to be of binary type. Therefore,

Constraint Integer Programming 11

we have to extend the concept of the conflict graph: it has to represent bound
changes instead of variable fixings, see [1] for details.

Furthermore, the infeasibility of a subproblem in the CIP search tree usually
has its reason in the LP relaxation of the subproblem. In this case, there is no
single conflict-detecting constraint as in SAT or CP solving. To cope with this
situation, we have to analyze the LP in order to identify a subset of the bound
changes that suffices to render the LP infeasible or bound-exceeding. Note that
it is an NP-hard problem to identify a subset of the local bounds of minimal
cardinality such that the LP stays infeasible if all other local bounds are removed.
Therefore, we use a greedy heuristic approach based on an unbounded ray of the
dual LP, see [1].

After having analyzed the LP, we proceed in the same fashion as SAT solvers:
we construct a conflict graph, choose a cut in this graph, and produce a conflict
constraint which consists of the bound changes along the frontier of this cut.

3.4 Cutting Plane Separators

Besides splitting the current subproblem Q into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order
to rule out the current solution x̌ and to obtain a different one. The LP relax-
ation can be tightened by introducing additional linear constraints aT x ≤ b that
are violated by the current LP solution x̌ but do not cut off feasible solutions
from Q. Thus, the current solution x̌ is separated from the convex hull of integer
solutions QI by the cutting plane aT x ≤ b, i.e., x̌ /∈ {x ∈ � | aT x ≤ b} ⊇ QI .

The theory of cutting planes is very well covered in the literature. For an
overview of computationally useful cutting plane techniques, see [20,30]. A recent
survey of cutting plane literature can be found in [27].

SCIP features separators for knapsack cover cuts [10], complemented mixed
integer rounding cuts [29], Gomory mixed integer cuts [21], strong Chvátal-
Gomory cuts [28], flow cover cuts [35], implied bound cuts [38], and clique
cuts [26,38]. Detailed descriptions of the cutting planes algorithms integrated
into SCIP and an extensive analysis of their computational impact can be found
in [41].

Almost as important as finding cutting planes is the selection of the cuts
that actually should enter the LP relaxation. Balas, Ceria, and Cornuéjols [11]
and Andreello, Caprara, and Fischetti [6] proposed to base the cut selection on
efficacy and orthogonality. The efficacy is the Euclidean distance of the cut hy-
perplane to the current LP solution, and an orthogonality bound makes sure that
the cuts added to the LP form an almost pairwise orthogonal set of hyperplanes.
SCIP follows these suggestions.

3.5 Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures in-
side a MIP solver: they help to find good feasible solutions early in the search
process, which helps to prune the search tree by bounding and allows to apply

12 T. Achterberg et al.

more reduced cost fixing and other dual reductions that can tighten the problem
formulation.

Overall, there are 23 heuristics integrated into SCIP. They can be roughly
subclassified into four categories:

– Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility for the constraints is maintained
or recovered by further roundings.

– Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search (see Section 3.6) in
the branch-and-bound tree.

– Objective diving heuristics are similar to diving heuristics, but instead of
fixing the variables by changing their bounds, they perform “soft fixings” by
modifying their objective coefficients.

– Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

Detailed descriptions of the primal heuristics implemented in SCIP and an in-
depth analysis of their computational impact can be found in [12], an overview
is given in [13].

3.6 Node Selection and Branching Rules

Two of the most important decisions in a branch-and-bound algorithm are the
selection of the next subproblem to process (node selection) and how to split the
current problem Q into smaller subproblems (branching rule).

The most popular branching strategy in MIP solving is to split the domain
of an integer variable xj , j ∈ I, with fractional LP value x̌j /∈ � into two parts,
thus creating two subproblems Q1 = Q∩{xj ≤
x̌j�} and Q2 = Q∩{xj ≥
x̌j�}.
Methods to select such a fractional variable for branching are discussed in [2,3].

SCIP implements most of the discussed branching rules, especially reliability
branching which is currently the most effective general branching rule for MIP.
Using SCIP, it is possible to implement arbitrary branching schemes such as
branchings that create more than two subproblems or branching on constraints.

SCIP offers several node selection strategies as default plugins. Depth first
search always chooses a child of the current node as the next subproblem to be
processed or backtracks to the most recent ancestor with an unprocessed child,
if the current node has been pruned. Depth first search is the preferred strat-
egy for pure feasibility problems like SAT. Additionally, it has the benefit that
successively solved subproblems are very similar, which reduces the subproblem
management overhead.

Best first search aims at improving the global dual bound as fast as possible
by always selecting a subproblem with the smallest dual bound of all remaining
leaves in the tree. Best first search leads to a minimal number of nodes that need
to be processed, given that the branching rule is fixed [1].

Constraint Integer Programming 13

Best Estimate search was suggested by Forrest et al. [19]. It estimates the
minimum value of a rounded solution in each subproblem and chooses a node
with minimal estimate. The aim is to quickly find good feasible solutions. How-
ever, this node selection strategy may perform very poor in improving the global
dual bound.

The default node selection strategy of SCIP is a combination of these three
strategies: it performs depth first search for a few consecutive subproblems after
which a node with best estimate is chosen. At a certain frequency, a node with
smallest dual bound is selected instead of a node with best estimate.

3.7 Presolving

Presolving is a way to transform the given problem instance into an equivalent
instance that is (hopefully) easier to solve. The most fundamental presolving
concepts for MIP are described in [38]. For additional information, see [20].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality
information, e.g., to tighten the bounds of the variables or to improve coefficients
in the constraints. Third, it extracts information such as implications or cliques
from the model which can later be used, for example for branching or cutting
plane separation. SCIP implements a full set of primal and dual presolving
reductions for MIP problems, see [1].

Restarts differ from the classical presolving methods in that they are not
applied before the branch-and-bound search commences, but abort a running
search process in order to reapply other presolving mechanisms and start the
search from scratch. They are a well-known ingredient of modern SAT solvers,
but have not been used so far for solving MIPs.

It is often the case that cutting planes, strong branching [7], and reduced cost
strengthening in the root node identify fixings of variables that have not been
detected during presolving. These fixings can trigger additional presolve reduc-
tions after a restart, thereby simplifying the problem instance and improving
its LP relaxation. The downside is that we have to solve the root LP relaxation
again, which can sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart
directly after the root node processing if a certain fraction of the integer variables
has been fixed during the processing of the root node. In our implementation, a
restart is performed if at least 5% of the integer variables have been fixed.

4 SCIP as a MIP Solver

With the default plugins that are included in the distribution, SCIP can be
used as a stand-alone MIP solver. Some of the plugins have been described in
Section 3. In this section we evaluate the performance of SCIP for solving MIPs.

We tested SCIP 1.00 running on a 3.00 GHz Intel Xenon with 8 GB RAM
and 4 MB cache, using Cplex 11.0 [23] as underlying LP solver. We set a time

14 T. Achterberg et al.

Table 1. Results of four MIP solvers on the Miplib 2003. If a solver hit one of the
limits, we report the primal-dual gap in percent instead of the solving time in seconds.

SCIP /Cplex Cplex SCIP /SoPlex CBC /CLP
Name Nodes Time Nodes Time Nodes Time Nodes Time

10teams 671 20.3 1 0.4 564 77.7 190 24.9
aflow30a 2353 13.5 3054 7.9 4293 35.6 30577 79.0
air04 334 98.9 263 8.2 159 189.7 565 172.1
air05 384 49.4 467 7.3 314 134.6 548 95.4
cap6000 3455 4.1 4227 0.7 2647 6.4 3390 7.1
disctom 1 85.4 1 6.0 1 64.4 1 4.2
fiber 24 1.1 60 0.2 12 1.3 40 2.2
fixnet6 26 1.6 71 0.6 10 2.8 114 3.4
gesa2-o 108 6.5 482 0.8 155 11.1 5695 32.6
gesa2 132 5.7 147 0.2 251 7.4 275 6.7
manna81 2 5.5 1 0.1 1 5.7 1 0.7
mas74 3275993 783.9 2673089 281.8 3036576 1582.8 4887385 2390.2
mas76 349635 73.4 398167 37.4 313718 118.0 687061 180.3
misc07 19719 15.2 25645 20.2 19831 27.7 29130 64.1
mod011 1751 76.8 54 20.7 2034 636.2 6318 132.4
modglob 21 0.9 183 0.1 3573 50.1 12664 26.3
nw04 457 92.7 283 29.2 49 369.5 22 12.5
p2756 45 2.6 11 0.2 109 3.3 37 1.4
pk1 219292 71.9 186390 81.7 226525 165.5 204094 81.8
pp08a 139 1.3 567 0.4 199 2.5 5087 31.3
pp08aCUTS 77 1.1 1102 1.1 109 2.6 5928 26.5
qiu 12653 76.9 7233 29.3 12973 337.5 31866 295.2
rout 11967 15.3 5260 8.8 10991 36.2 1011908 2219.9
vpm2 297 0.9 1619 0.4 1077 2.2 459 4.3

aflow40b 347845 2067.6 491380 2342.5 427125 2.2% 1321287 4.0%
danoint 1158489 4856.1 778939 4975.1 330296 3.5% 683171 2.0%
fast0507 1350 395.2 2941 555.0 1380 2407.0 7770 1.6%
glass4 7335667 79.6% 8939059 6595.8 322356 125.0 % 1729411 95.8%
harp2 22481616 <0.1% 316170 144.8 5732001 0.1% 2589310 3448.6
mzzv11 3376 547.6 498 90.8 1545 0.6% 2899 4.8%
mzzv42z 761 302.9 298 33.5 1369 5243.8 5500 3.9%
net12 5501 2139.0 2603 28.3% 1411 — 12191 22.3%
noswot 1510640 6110.8 8158083 4.7% 495596 238.4 5713896 2.8%
opt1217 3833790 16.3% 1 0.1 3558191 16.6% 20584953 17.7%
set1ch 27 1.4 330 0.2 8825 18.9 1317890 0.5%
tr12-30 909033 2600.7 212451 294.2 1259733 4433.7 506441 1.3%

Geom. Mean 4101 58.0 2455 11.3 4224 136.5 12609 183.8

Solved Instances 33 34 29 25
≥ 10% faster – 27 2 5
≥ 10% slower – 6 30 29

limit of 2 hours and a memory limit of 4 GB. As a comparison we applied the
same test with Cplex 11.0 as stand-alone MIP solver, with SCIP 1.00 using
SoPlex 1.3.2 [42] to solve the LPs, and CBC 2.0 with CLP 1.6 [17] as LP solver.
We used the provided default settings for all solvers. As test set we chose the 60
instances of the Miplib 2003 [4]. We left out the instances arki001, protfold,
and timtab1 for which at least one of the solvers returned a wrong answer or
reported an error.

Tables 1 and 2 compare the results of the four solvers. The first part of Table 1
lists the instances which were solved to optimality by all solvers, the second part
those which were solved by at least one solver, Table 2 those for which all solvers
reached a limit. For each instance listed in the “Name” column, the tables show

Constraint Integer Programming 15

Table 2. Results of four MIP solvers on the Miplib 2003 (continued). For the
markshare instances we report the upper bound instead of the primal-dual gap; the
lower bound is zero in all cases.

SCIP /Cplex Cplex SCIP /SoPlex CBC /CLP
Name Nodes Gap Nodes Gap Nodes Gap Nodes Gap

a1c1s1 426057 15.8% 491631 5.7% 115512 20.7% 143591 41.0%
atlanta-ip 11342 5.5% 4011 8.1% 10 — 350 —
dano3mip 9911 22.8% 5565 18.8% 123 24.1% 12898 30.5%
ds 4512 486.6% 5760 314.2% 310 511.3% 456 1482.5%
liu 3146152 135.4% 319976 102.1% 347383 159.3% 157480 206.4%
mkc 2396228 1.3% 140170 0.2% 1022181 0.9% 961565 2.5%
momentum1 6221 20.5% 23623 18.7% 1276 — 5158 20.2%
momentum2 6004 28.7% 6144 28.7% 1260 — 5529 152.4%
momentum3 11 — 140 466.5% 1 — 1 —
msc98-ip 10301 0.7% 1996 12.1% 67 — 324 —
nsrand-ipx 592996 6.5% 234970 1.1% 381553 8.8% 661104 2.0%
rd-rplusc-21 84288 >10 000% 35562 >10 000% 71 — 11795 —
roll3000 1180987 0.6% 1253352 0.4% 201728 1.2% 133378 3.8%
seymour 103485 2.2% 146297 1.9% 2829 11.5% 33374 5.9%
sp97ar 86939 3.4% 210446 0.8% 36063 4.6% 180426 2.5%
stp3d 8 — 20 — 3 — 1 —
swath 429024 19.1% 262088 19.3% 257953 26.8% 2352638 40.7%
t1717 2665 50.2% 64721 60.4% 898 37.0% 13016 76.9%
timtab2 3095502 78.4% 1736172 52.5% 2420114 63.1% 639547 102.8%

markshare1 46M 5 31M 4 52 M 6 42M 6
markshare2 42M 9 25M 12 40 M 9 48M 10

the number of nodes and the time in seconds needed to solve it with each of
the four solvers. For instances which could not be solved within the time and
memory limit, we report the primal-dual gap in percent instead of the solving
time. The primal-dual gap is defined as γ = (ĉ − č)/inf[č, ĉ] with ĉ being the
upper (primal) and č being the lower (dual) bound. The symbol “—” indicates
instances for which no feasible solution was obtained within the limits.

There were 36 instances, given in Table 1, for which at least one solver was
able to prove optimality within the time and memory limit. For these instances,
the results are summarized at the bottom of the table. The rows “≥ 10 % faster”
and “≥ 10 % slower” give the number of instances for which the solver was
at least 10 % faster and at least 10 % slower, respectively, than SCIP-Cplex.
Although SCIP supports the much more general concept of constraint integer
programming, it is still competitive to state-of-the-art MIP solvers. On this test
set, SCIP-Cplex can solve only one instance less than Cplex within the limits.

5 Using SCIP for Property Checking

One of the key technologies in the design of integrated circuits is the verification
of the correctness of the design [24]. One important aspect of this process is the
so-called property checking problem, which means to verify that certain expected
inherent properties of the chip design hold.

Today’s techniques validate these properties on the so-called gate level by
transforming the properties into Boolean clauses and hence the property checking

16 T. Achterberg et al.

problem into a SAT instance. However, complex arithmetic operations like mul-
tiplication lead to SAT instances with quite involved interrelationships between
the variables, which are hard to solve for current SAT solvers.

Our approach is to tackle the problem on a higher level, the register transfer
(RT) level. The property checking problem at RT level can be formulated as
CIP on bit vector variables � ∈ {0, . . . , 2w�−1} of width w�. The constraints
ri = Ci(xi, yi, zi) model the circuit operations.

For each bit vector variable �, we introduce single bit variables �b, b =
0, . . . , w� − 1, with �b ∈ {0, 1}, for which linking constraints

� =
w�−1∑

b=0

2b�b (2)

define their correlation. In addition, we consider the following circuit opera-
tions: add, and, concat, eq, ite, lt, minus, mult, not, or, read, shl,
shr, signext, slice, sub, uand, uor, uxor, write, xor, zeroext with the
semantics as defined in [16].

5.1 CP Techniques

For the bit linking constraints (2) and for each type of circuit operation we im-
plemented a specialized constraint handler which includes a domain propagation
algorithm that exploits the special structure of the constraint class. In addition
to considering the current domains of the bit vectors � and the bit variables �b,
we exploit knowledge about the global equality or inequality of bit vectors or
bits, which is obtained in the preprocessing stage of the algorithm.

Some of the domain propagation algorithms are very complex. For example,
the domain propagation of the mult constraint uses term algebra techniques to
recognize certain deductions inside its internal representation of a partial product
and overflow addition network. Others, like the algorithms for shl, slice, read,
and write, involve reasoning that mixes bit- and word-level information.

5.2 IP Techniques

Because property checking is a pure feasibility problem, there is no natural
objective function. However, the LP relaxation usually detects the infeasibility
of the local subproblem much earlier than domain propagation.

Table 3 shows the linearizations of the circuit operation constraints that are
used in addition to the bit linking constraints (2) to construct the LP relaxation
of the problem instance. Very large coefficients like 2wr in the add linearization
can lead to numerical difficulties in the LP relaxation. Therefore, we split the
bit vector variables into words of W = 16 bits and apply the linearization to
the individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the
right hand side of the next word’s linearization. The relaxation of the mult

Constraint Integer Programming 17

Table 3. LP relaxation of circuit operations. l� and u� are the lower and upper bounds
of a bit vector variable �.

Operation Linearization

r = and (x,y) rb ≤ xb, rb ≤ yb, rb ≥ xb + yb − 1
r = or (x,y) rb ≥ xb, rb ≥ yb, rb ≤ xb + yb

r = xor (x,y) xb − yb − rb ≤ 0, −xb + yb − rb ≤ 0,
−xb − yb + rb ≤ 0, xb + yb + rb ≤ 2

r = uand (x) r ≤ xb, r ≥
∑wx−1

b=0 xb − wx + 1

r = uor (x) r ≥ xb, r ≤
∑wx−1

b=0 xb

r = uxor (x) r +
∑wx−1

b=0 xb = 2s, s ∈ Z≥0

r = eq (x,y) x − y = s − t, p + q + r = 1, p ≤ s, s ≤ p(ux − ly),
q ≤ t, t ≤ q(uy − lx), s, t ∈ Z≥0, p, q ∈ {0, 1}

r = lt (x,y) x − y = s − t, p ≤ s, s ≤ p(ux − ly), r ≤ t,
t ≤ r(uy − lx), p + r ≤ 1, s, t ∈ Z≥0, p ∈ {0, 1}

r = ite (x,y,z) r − y ≤ (uz − ly)(1 − x), r − y ≥ (lz − uy)(1 − x)
r − z ≤ (uy − lz)x, r − z ≥ (ly − uz) x

r = add (x,y) r + 2wr o = x + y, o ∈ {0, 1}
r = mult (x,y) vbn ≤ uynxb, vbn ≤ yn, vbn ≥ yn − uyn(1 − xb), vbn ∈ Z≥0

on +
∑

i+j=n

∑L−1
l=0 2lviL+l,j = 2Lon+1 + rn, on ∈ Z≥0

constraint involves additional variables yn and rn which are “nibbles” of y and
r with L = W

2 bits.
No linearization is generated for the shl, slice, read, and write constraints.

Their linearizations are very complex and would dramatically increase the size
of the LP relaxation, thereby reducing the solvability of the LPs. For example,
a straight-forward linearization of the shl constraint on a 64-bit input vector x
that uses internal ite-blocks for the potential values of the shifting operand y
already requires 30 944 inequalities and 20 929 auxiliary variables.

5.3 SAT Techniques

Conflict Analysis is particular useful on feasibility problems like property check-
ing. By applying reverse propagation, one or more conflict constraints can be
extracted from the conflict graph of an infeasible subproblem. In our implemen-
tation, we use the 1-FUIP [43] rule for generating conflict constraints. In ad-
dition to the 1-FUIP conflict constraints we extract clauses from reconvergence
cuts [43] in the conflict graph to support non-chronological backtracking [31].

5.4 Computational Results

We examined the computational effectiveness of the described CIP techniques
on industrial benchmarks obtained from verification projects conducted together
with Infineon and OneSpin Solutions. The specific chip verification algo-
rithms were incorporated into SCIP 0.90i using Cplex 10.0.1 [23] as LP solver.
All calculations were performed on a 3.8 GHz Pentium-4 workstation with 2 GB

18 T. Achterberg et al.

Table 4. ALU properties (time in seconds)

register width
Prop Meth 5 10 15 20 25 30 35 40

muls SAT 0.5 — — — — — — —
CIP 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3

neg flag SAT 0.1 100.0 — — — — — —
CIP 0.8 3.6 11.6 36.3 81.8 136.6 218.4 383.5

zero flag SAT 0.0 0.0 0.1 0.1 0.2 0.4 0.5 0.6
CIP 2.3 0.6 1.6 4.0 6.2 10.7 15.6 379.7

Table 5. Biquad properties

variant
Property Meth A B C

g checkgpre SAT 22.2 57.6 29.1
CIP 14.2 12.3 15.3

g2 checkg2 SAT — — —
CIP 213.9 204.8 257.6

g25 checkg25 SAT 0.0 2.4 2.5
CIP 29.7 22.4 24.2

g3 negres SAT 0.0 0.0 0.0
CIP 0.7 0.0 0.0

gBIG checkreg1 SAT 287.2 157.3 159.6
CIP 170.0 7.0 8.6

Table 6. Multiplier properties (time in seconds)

register width
Layout Meth 6 7 8 9 10 11 12 13 14

booth SAT 0.4 3.3 21.0 135.4 935.1 — — — —
signed CIP 21.3 70.1 318.7 384.2 904.1 1756.2 2883.7 4995.9 3377.9

booth SAT 0.5 2.5 17.9 102.9 879.0 4360.4 — — —
unsgnd CIP 15.7 51.7 269.1 911.3 1047.6 2117.7 2295.1 4403.4 7116.8

nonbth SAT 0.4 3.4 21.8 134.1 1344.1 — — — —
signed CIP 12.8 31.2 100.6 265.9 569.8 690.8 1873.0 1976.3 4308.9

nonbth SAT 0.3 1.8 16.5 83.1 909.6 5621.5 — — —
unsgnd CIP 3.6 22.4 111.2 214.0 335.4 1040.1 1507.5 2347.7 4500.2

RAM. In all runs, we used a time limit of 2 hours. For reasons of comparison,
we also solved the instances with SAT techniques on the gate level. We used
MiniSat 2.0 [18] to solve the SAT instances obtained after a preprocessing step.

The experiments were conducted on the valid properties included in the fol-
lowing sets of property checking instances: ALU (an arithmetical logical unit
which performs add, sub, shl, shr, and signed and unsigned mult operations),
Biquad (a DSP/IIR filter core obtained from [34] in different representations),
and Multiplier (gate level net lists for Booth and non-Booth encoded architec-
tures of signed and unsigned multipliers).

Tables 4–6 compare the results of MiniSat and our CIP approach on the
valid properties. For each property or layout and each input register width or
variant, the tables show the time in seconds of the two algorithms needed to
solve the instance. Results marked with ‘—’ could not be solved within the time
limit. The experiments show that our approach outperforms SAT techniques for
proving the validity of properties on circuits containing arithmetics. For invalid
properties, which are not shown in the tables, our algorithm is usually inferior
to SAT for finding counter-examples. This is due to the much more involved
procedures employed in the CIP approach.

Constraint Integer Programming 19

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Opti-
mization 4(1), 4–20 (2007) (Special issue: Mixed Integer Programming)

2. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin (2007), http://opus.kobv.de/tuberlin/volltexte/2007/1611/

3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Re-
search Letters 33, 42–54 (2005)

4. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Let-
ters 34(4), 1–12 (2006), http://miplib.zib.de

5. Althaus, E., Bockmayr, A., Elf, M., Jünger, M., Kasper, T., Mehlhorn, K.: SCIL
– symbolic constraints in integer linear programming. In: Möhring, R.H., Raman,
R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 75–87. Springer, Heidelberg (2002)

6. Andreello, G., Caprara, A., Fischetti, M.: Embedding {0, 1
2}-cuts in a branch-and-

cut framework: A computational study. INFORMS Journal on Computing 19(2),
229–238 (2007)

7. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem. Princeton University Press, Princeton (2006)

8. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

9. Aron, I.D., Hooker, J.N., Yunes, T.H.: SIMPL: A system for integrating optimiza-
tion techniques. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011,
pp. 21–36. Springer, Heidelberg (2004)

10. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146–164
(1975)

11. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project in
a branch-and-cut framework. Management Science 42, 1229–1246 (1996)

12. Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Tech-
nische Universität Berlin (2006)

13. Berthold, T.: Heuristics of the branch-cut-and-price-framework SCIP. ZIB-Report
07-30, Zuse Institute Berlin, Operations Research 2007 (to appear, 2007)

14. Bockmayr, A., Kasper, T.: Branch-and-infer: A unifying framework for integer and
finite domain constraint programming. INFORMS Journal on Computing 10(3),
287–300 (1998)

15. Bockmayr, A., Pisaruk, N.: Solving assembly line balancing problems by combin-
ing IP and CP. In: Sixth Annual Workshop of the ERCIM Working Group on
Constraints (June 2001)

16. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear pro-
gramming. In: Proceedings of the IEEE VLSI Design Conference, pp. 741–746
(2002)

17. Computational infrastructure for operations research, http://www.coin-or.org
18. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
19. Forrest, J.J., Hirst, J.P.H., Tomlin, J.A.: Practical solution of large scale mixed

integer programming problems with UMPIRE. Management Science 20(5), 736–
773 (1974)

20. Fügenschuh, A., Martin, A.: Computational integer programming and cutting
planes. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Discrete Optimiza-
tion. Handbooks in Operations Research and Management Science, ch. 2, vol. 12,
pp. 69–122. Elsevier, Amsterdam (2005)

http://opus.kobv.de/tuberlin/volltexte/2007/1611/
http://miplib.zib.de
http://www.coin-or.org

20 T. Achterberg et al.

21. Gomory, R.E.: Solving linear programming problems in integers. In: Bellman, R.,
Hall, J.M. (eds.) Combinatorial Analysis, Symposia in Applied Mathematics X,
pp. 211–215, Providence, RI, American Mathematical Society (1960)

22. Hooker, J.N., Osorio, M.A.: Mixed logical/linear programming. Discrete Applied
Mathematics 96-97(1), 395–442 (1999)

23. ILOG CPLEX. Reference Manual, http://www.ilog.com/products/cplex
24. International technology roadmap for semiconductors (2005),

http://public.itrs.net
25. Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of

optimization problems. INFORMS Journal on Computing 13(4), 258–276 (2001)
26. Johnson, E.L., Padberg, M.W.: Degree-two inequalities, clique facets, and biperfect

graphs. Annals of Discrete Mathematics 16, 169–187 (1982)
27. Klar, A.: Cutting planes in mixed integer programming. Master’s thesis, Technische

Universität Berlin (2006)
28. Letchford, A.N., Lodi, A.: Strengthening Chvátal-Gomory cuts and Gomory frac-

tional cuts. Operations Research Letters 30(2), 74–82 (2002)
29. Marchand, H.: A polyhedral study of the mixed knapsack set and its use to solve

mixed integer programs. PhD thesis, Faculté des Sciences Appliquées, Université
catholique de Louvain (1998)

30. Marchand, H., Martin, A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer
and mixed integer programming. Discrete Applied Mathematics 123/124, 391–440
(2002)

31. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions of Computers 48, 506–521 (1999)

32. Mittelmann, H.: Decision tree for optimization software: Benchmarks for optimiza-
tion software, http://plato.asu.edu/bench.html

33. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley & Sons, Chichester (1988)

34. Opencores, http://www.opencores.org
35. Padberg, M.W., van Roy, T.J., Wolsey, L.A.: Valid inequalities for fixed charge

problems. Operations Research 33(4), 842–861 (1985)
36. Refalo, P.: Tight cooperation and its application in piecewise linear optimization.

In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 375–389. Springer, Heidelberg
(1999)

37. Rodosek, R., Wallace, M.G., Hajian, M.T.: A new approach to integrating mixed
integer programming and constraint logic programming. Annals of Operations Re-
search 86(1), 63–87 (1999)

38. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer pro-
gramming problems. ORSA Journal on Computing 6, 445–454 (1994)

39. Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency directed back-
tracking in a system for computer-aided circuit analysis. Artificial Intelligence 9,
135–196 (1977)

40. Timpe, C.: Solving planning and scheduling problems with combined integer and
constraint programming. OR Spectrum 24(4), 431–448 (2002)

41. Wolter, K.: Implementation of cutting plane separators for mixed integer programs.
Master’s thesis, Technische Universität Berlin (2006)

42. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD the-
sis, Technische Universität Berlin (1996)

43. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in a boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

http://www.ilog.com/products/cplex
http://public.itrs.net
http://plato.asu.edu/bench.html
http://www.opencores.org

New Filtering for the cumulative Constraint
in the Context of Non-Overlapping Rectangles

Nicolas Beldiceanu1, Mats Carlsson2, and Emmanuel Poder1

1 École des Mines de Nantes, LINA UMR CNRS 6241, FR-44307 Nantes, France
{Nicolas.Beldiceanu,Emmanuel.Poder}@emn.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mats.Carlsson@sics.se

Abstract. This paper describes new filtering methods for the cumulative con-
straint. The first method introduces bounds for the so called longest cumula-
tive hole problem and shows how to use these bounds in the context of the
non-overlapping constraint. The second method introduces balancing knapsack
constraints which relate the total height of the tasks that end at a specific time-
point with the total height of the tasks that start at the same time-point. Exper-
iments on tight rectangle packing problems show that these methods drastically
reduce both the time and the number of backtracks for finding all solutions as
well as for finding the first solution. For example, we found without backtracking
all solutions to 66 perfect square instances of order 23-25 and sizes ranging from
332 × 332 to 661 × 661.

1 Introduction

The utility of cumulative constraints in the context of non-overlapping rectangles has
been advocated for 15 years in the context of constraint programming [1]. The two
main reasons for this utility are: first, it allows to come up with necessary conditions
for non-overlapping which reuse classical filtering algorithms for cumulative like task
intervals [2,3] and compulsory parts [4]; second, it reduces in practice the combinatorial
aspect by dividing by a factor of two the number of decision variables of the problem.1

More recently, cumulative constraints have been used by OR people [7] in the context
of rectangle packing problems for the reasons we have just mentioned. Knapsack con-
straints were also used, by both OR [8,7] and CP [9] people, to solve the subset-sum
problem in the context of scheduling and packing.

In the context of tight rectangle placement problems one can observe that standard
filtering methods for the cumulative constraint are in fact rather weak. A first reason is
that they do not explicitly completely integrate the slack (i.e., the difference between the
available place and the total area of the rectangles to place) within the filtering process.
A second reason is that they relax too much the cumulative constraint by allowing to
split the tasks in small squares of size one. Based on these observations, we decided to

1 Experiments have shown [1,5] that, once all coordinates of the rectangles in one dimension are
fixed, it is usually straightforward to extend the partial solution to a full solution even if there
exist examples [6] where this is not possible at all.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 21–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 N. Beldiceanu, M. Carlsson, and E. Poder

develop new filtering methods that consider the slack and/or the fact that tasks should
not be split in too many small pieces.

The paper is organized as follows. Section 2 recalls the definitions of the cumulative
and the non-overlapping constraints. Section 3 introduces the longest cumulative hole
problem, shows its use in the context of the cumulative constraint, and provides bounds
for this problem. Section 4 presents a new knapsack model of the cumulative constraint
which considers the available slack. Section 5 evaluates the contribution of the two
methods on two types of tight placement problems. Finally, Section 6 concludes.

2 Background

The cumulative constraint was introduced in [1] in order to model scheduling problems
where one has to deal with a resource of limited capacity. It has the following definition:

cumulative(T, L)

where for a task t ∈ T , t.s, t.d and t.h denote respectively its start, duration and height.
They all correspond to integer variables2, while L is a non-negative integer correspond-
ing to the capacity of the resource. The constraint holds if the following condition is
true:

∀i ∈ N,
∑

t|t.s≤i≤t.s+t.d−1

t.h ≤ L

In the context of a cumulative constraint, the compulsory part [4] of a task t is the
intersection of all feasible instances of t. It can be computed by making the intersection
between the task positioned at its earliest start and the task positioned at its latest start.
Then the compulsory part profile is the aggregation of all compulsory parts of the differ-
ent tasks of a cumulative constraint. When all tasks that have a non-empty compulsory
part are completely fixed, the compulsory part profile is simply called the cumulative
profile.

The diffn constraint was introduced in [10] in order to handle multi-dimensional
placement problems. It has the following definition:

diffn(B)

where for a box b ∈ B, b.ok and b.sk (0 ≤ k ≤ n − 1) are integer variables that
respectively denote the origin and size of b in dimension k. The constraint holds when,
for each pair of boxes b, b′, there exist at least one dimension k where their projections
do not overlap.

∀b, b′ ∈ B (b �= b′), ∃k ∈ [0, n − 1] | b.ok ≥ b′.ok + b′.sk ∨ b′.ok ≥ b.ok + b.sk

In the context of this paper we focus on the two-dimensional case (n = 2), and
assume that all the rectangle sizes are fixed. However note that most of the results of
this paper can be used when we have more than two dimensions, as it is actually the
case for our current implementation.

2 An integer variable V ranges over a finite set of integers denoted by D(V). The extremal
values in D(V) are denoted by V and V .

New Filtering for the cumulative Constraint 23

3 The Longest Cumulative Hole Problem

This section first introduces the longest cumulative hole problem and then shows how it
can be used in the context of a non-overlapping constraint. Finally, it provides different
ways for evaluating an upper bound of the longest cumulative hole.

3.1 Defining the Longest Cumulative Hole

Given a cumulative(T, L) constraint that involves a set of tasks T and a resource
limit L, let σ denote the difference between the available space and the needed space
(i.e., σ = (maxt∈T (t.s + t.d) − mint∈T (t.s)) · L −

∑
t∈T t.d · t.h). Now, given an

integer ε ∈ [1, L] and the subset of tasks T ′ of T for which the resource consumption
is at most ε, the longest hole problem3 is to find the largest integer lmax ε

σ(T ′) such that
there exist a cumulative placement of maximum height ε involving a subset of tasks of
T ′ where, on one interval [i, i + lmax ε

σ(T ′) − 1] of the cumulative profile, the area of
the empty space does not exceed σ.4

Example 1. First, consider seven tasks of respective size 11 × 11, 9 × 9, 8 × 8, 7 × 7,
6×6, 4×4, 2×2. Part (A) of Figure 1 provides a cumulative profile corresponding to the
longest hole problem according to ε = 11 and σ = 0. The longest hole lmax 11

0 ({11 ×
11, 9 × 9, 8 × 8, 7 × 7, 6 × 6, 4 × 4, 2 × 2}) = 17 since:

– The task 8 × 8 can not contribute since a gap of 3 cannot be filled by the unique
candidate the task 2 × 2.

– The task 6 × 6 can also not contribute since a gap of 5 cannot be completely filled
by the candidates 4 × 4 and 2 × 2.

Second, consider a task of size 3 × 2. Part (B) of Figure 1 provides a cumulative profile
corresponding to the longest hole problem according to ε = 11 and σ = 20. The longest
hole lmax 11

20({3 × 2}) = 2.

Note that when the gap ε is equal to the resource capacity L, the problem of checking
whether or not a cumulative constraint has a solution coincides with the longest hole
problem so the longest hole problem is clearly NP-hard. Consequently, our goal is to
find upper bounds for the longest hole problem as well as easy cases which can be
solved in polynomial time.

3.2 Using the Longest Cumulative Hole for Filtering

The main advantage of the longest cumulative hole problem is that it can be used in
quite a number of different ways in the context of a two-dimensional non-overlapping
constraint, where the slack σ is the difference between the available and the needed
space:

3 A related problem when the slack σ is equal to 0 in the context of rectangles non-overlapping
(but not in the context of a cumulative constraint) is called the length of the longest flat surface
in http://www.stetson.edu/%7Eefriedma/mathmagic/1099.html.

4 When the set of tasks T is empty we have that lmax ε
σ(T) = �σ

ε
�.

24 N. Beldiceanu, M. Carlsson, and E. Poder

17

(B)(A)

2

ep
sil
on
=1
1

ep
sil
on
=1
1

1

4

76
8

2

9
11

Fig. 1. Two examples for illustrating the longest hole problem

– First, as depicted by Part (A) of Figure 2, it can be used for making an initial prun-
ing of the origin coordinates of the rectangles in order to avoid creating too small
holes that cannot be filled enough, with respect to the slack σ, between the border
of a rectangle R1 and the border of the placement space. For instance, Part (A)
illustrates the fact that if, for a given distance ε ∈ N between the lower border
of a rectangle to place and the lower border of the placement space, the quantity
lmax ε

σ(R) is strictly less than the width of R1, then R1 cannot start at the corre-
sponding position. R corresponds to the set of rectangles for which the height does
not exceed ε (i.e., the rectangles that can fit within the gap). Finally, doing an initial
pruning of the origins of the rectangles is important for the knapsack constraints
that will be presented in the next section.

– Second, while fixing both origin coordinates of a rectangle R1 during the search, it
can also be used to check that the vis-à-vis between R1 and each rectangle that is
already completely fixed5 can be filled enough with respect to σ. This is illustrated
by Part (B) of Figure 2.

– Finally, it can also be directly used within the two cumulative constraints, which
are well-known necessary conditions for a non-overlapping constraint. For this pur-
pose, consider the highest peak of the compulsory part profile that does not reach
the resource capacity (i.e., the difference between the resource capacity and the
height of the peak is equal to a strictly positive integer ε). Again, we can use the
longest cumulative hole problem in order to check that we can fill enough the gap
on top of the highest peak. This is illustrated by Part (C) of Figure 2.

3.3 Evaluating the Longest Cumulative Hole

This section shows how to evaluate an upper bound of lmax ε
σ(T). It assumes that we

already know:

– An upper bound of lmax e
σ(T) for all non-negative integers e that are strictly less

than ε.

5 Two fixed rectangles have a vis-à-vis if and only if (1) they intersect in one dimension, and
(2) if there is a non-empty gap between them in the other dimension.

New Filtering for the cumulative Constraint 25

(C)(B)(A)

lmax s0

lmax

ep
si

lo
n

peak
heighest

R1

R2

R1

d=
1

d=0

d=
1

d=0

d=
1

d=0

with dimension 0
cumulative profile associated

lm
ax

<
s0

fil
l e

no
ug

h
on

 to
p

of
 h

ig
he

st
 p

ea
k

in
fe

as
ib

le
 s

in
ce

 c
an

 n
ot

cumulative profile of compulsory
parts in dimension 0

lm
ax

<
s0

be
tw

ee
n

R
1

an
d

R
2

in
fe

as
ib

le
 v

is
−

à−
vi

s

cumulative profile associated
with dimension 0

lm
ax

<
l0

fo
r

th
e

or
ig

in
 o

f R
1

in
fe

as
ib

le
 v

al
ue

with dimension 0
cumulative profile associated

)
(s

in
ce

lmax

ep
si

lo
n

(s
in

ce

s0

)

(s
in

ce
) l0

ep
si

lo
n

Fig. 2. Three ways of using the longest cumulative hole for filtering a two-dimensional
non-overlapping constraint

– An upper bound of lmax e
σ(T \ {t}) for all non-negative integers e that are strictly

less than ε and for all t ∈ T for which t.h ≤ ε.6 This quantity will be used for
checking what can be put on top of a task t without reusing t.

We first present three rules that simplify the problem by removing some tasks, one
rule that reduces the length of some tasks7, and a rule that computes an exact value
of lmax e

σ(T) when a specific condition on the heights of the tasks holds. Finally, we
present two upper bounds of lmax e

σ(T) and show that they are incomparable. In the
following, a task t of length t.d and height t.h will be denoted by t.d × t.h.

Simplification 1. Let t be a task of T such that t.h > ε. We have that lmax ε
σ(T) =

lmax ε
σ(T \ {t}).

Proof. By definition of the longest hole problem, a task of height strictly greater than ε
cannot be used.

Example 2. Consider the set of tasks T = {2×2, 4×4, 6×6} and assume that we want
to compute lmax 1

3(T). Using Simplification 1, we have that lmax 1
3(T) = lmax 1

3(∅),
which means that we can only use the slack of 3 to cover a gap of height 1. Conse-
quently, lmax 1

3(T) = 3.

Simplification 2. Let Tε denote the set of tasks of T for which the heights are equal
to ε. We have that lmax ε

σ(T) =
∑

t∈Tε
t.d + lmax ε

σ(T \ Tε).

Proof. Since the tasks of Tε completely fill the height ε, they can be considered sepa-
rately.

Example 3. Consider the set of tasks T = {2 × 2, 4 × 4, 6 × 6} and assume that we
want to compute lmax 6

0(T). Using Simplification 2, we have that lmax 6
0(T) = 6 +

lmax 6
0(T \ {6 × 6}).

6 If we don’t want to explicitly evaluate an upper bound of lmaxe
σ(T \ {t}), we can take advan-

tage of the fact that lmaxe
σ(T) is an upper bound of lmaxe

σ(T \ {t}).
7 If, as we will see later, a task cannot contribute on its full length to the longest cumulative hole.

26 N. Beldiceanu, M. Carlsson, and E. Poder

Simplification 3. Let t be a task of T such that t.h < ε and lmax ε−t.h
σ (T \ {t}) = 0.

We have that lmax ε
σ(T) = lmax ε

σ(T \ {t}).

Proof. When lmax ε−t.h
σ (T \ {t}) is equal to 0, this means that no gap of height ε − t.h

can be filled by the tasks of T \ {t} without creating an empty space greater than the
slack σ. Consequently, if we use task t, we cannot fill enough any gap on top of task t.

Example 4. Consider the set of tasks T = {2 × 2, 3 × 3} and assume that we want to
compute lmax 3

0(T). Assume that we already know that lmax 1
0(T \{2×2}) = 0. Then,

we have that lmax 3
0(T) = lmax 3

0(T \ {2 × 2}). In other words, we can eliminate task
2 × 2, since we cannot cover any gap of height 1 on top of task 2 × 2.

Shrinking 1. Consider a task t of T such that t.h < ε, t.d > lmax ε−t.h
σ (T \ {t}) and

lmax ε−t.h
σ (T \ {t}) > 0. We have that lmax ε

σ(T) ≤ lmax ε
σ(T \ {t} ∪ {lmax ε−t.h

σ (T \
{t}) × t.h}).

Proof. Similar to Simplification 3. We have an inequality since reducing the lengths
of more than two disjunctive tasks (i.e., two tasks for which the total height is strictly
greater than ε) can lead to an overestimation of lmax ε

σ(T). This stems from the fact
that at most two disjunctive tasks can be reduced (and the other disjunctive tasks have
to be discarded since they would have to be completely included within the interval
corresponding to the longest cumulative hole).-

Example 5. Consider the set of tasks T = {2×2, 4×4, 6×6} and assume that we want
to compute lmax 6

0(T). Suppose we already know that lmax 2
0(T \ {4 × 4}) = 2. Then

we have that lmax 6
0(T) = lmax 6

0((T \ {4 × 4}) ∪ {2 × 4}). In other words, the length
of task 4 × 4 is reduced to 2 (i.e., its maximum intersection in time with the longest
cumulative hole cannot exceed 2) since, for a gap of 2, we can cover at most a length of
2 without exceeding the slack σ = 0.

In the following, all simplification and shrinking rules previously presented are system-
atically tried before applying the next rule and before evaluating any upper bound.

Termination rule. Given a set of tasks T = {t1.d× t1.h, t2.d× t2.h, . . . , tn.d× tn.h}
such that ti.h ≥ ti+1.h and ti.h = ti+1.h ⇒ ti.d ≥ ti+1.d (1 ≤ i < n), let Tdisj =
{t1.d×t1.h, t2.d×t2.h, . . . , tndisj .d×, tndisj .h}, where ndisj is the largest integer that
satisfies ndisj = 1 or tndisj−1.h + tndisj .h > ε, be the non-empty subset of disjunctive
tasks of T . If the total height of the tasks in T \ Tdisj plus the maximum height of
the tasks in Tdisj (i.e., t1.h) is at most ε, then the quantity lmax ε

σ(T) can be directly
evaluated by using the construction depicted by Figure 3.8

The intuition of the first upper bound is to consider the total area of the tasks as well
as the slack. However, to get a sharper bound we take into account the fact that at most
two disjunctive tasks can partially overlap a given interval.

8 Assuming that the tasks were sorted, a direct algorithm implementing this construction has the
complexity of O(n) where n is the number of tasks.

New Filtering for the cumulative Constraint 27

lmax=8

epsilon=
10

6

5

321

4

Fig. 3. Illustration of the easy case on six tasks 3 × 6, 2 × 6, 2 × 5, 9 × 1, 5 × 2 and 1 × 1 with
ε = 10 and a slack σ of 23. Tasks {3 × 6, 2 × 6, 2 × 5} correspond to disjunctive tasks, while
tasks {9 × 1, 5 × 2, 1 × 1} correspond to small tasks that can be put on top of the disjunctive
tasks. Then the slack σ = 23 is positioned as early as possible between the disjunctive tasks and
the small tasks, which gives a value of 8 for lmax10

23({3 × 6, 2 × 6, 2 × 5, 9 × 1, 5 × 2, 1 × 1}).

Upper bound 1. Given a set of tasks T = {t1.d × t1.h, t2.d × t2.h, . . . , tn.d × tn.h}
such that ti.h ≥ ti+1.h and ti.h = ti+1.h ⇒ ti.d ≥ ti+1.d (1 ≤ i < n), let Tdisj =
{t1.d × t1.h, t2.d × t2.h, . . . , tndisj .d × tndisj .h}, where ndisj is the largest integer
that satisfies ndisj = 1 or tndisj−1.h + tndisj .h > ε, be the non-empty subset of
tasks of T . Moreover, let T ′disj ⊆ Tdisj be the subset of tasks of Tdisj for which the
lengths were reduced by rule Shrinking 1. If T ′disj contains more than two tasks then
let area max 1 and area max 2 respectively denote the two largest areas of the tasks
of T ′disj , and let area rest denote the total area of the tasks in T \ T ′disj . We have that
lmax ε

σ(T) ≤
area rest+area max1+area max2+σ
ε �.

Proof. Given a fixed interval [low , up] and a set of disjunctive tasks Tdisj , at most two
tasks of Tdisj can partially overlap interval [low , up]. Note that disjunctive tasks for
which the lengths were reduced cannot be completely included within interval [low , up]
(i.e., they either overlap one border of interval [low , up], or they don’t overlap at all
interval [low , up]). Consequently, if we reason in terms of areas, we can only consider
the two largest areas of the disjunctive tasks for which the lengths were reduced.

Example 6. Figure 4 illustrates the computation of the first upper bound. From the set
of tasks T we can construct the set Tdisj = {2 × 5, 2 × 5, 2 × 5, 2 × 5, 1 × 4, 3 × 3}
of disjunctive tasks, since for any pair of tasks in Tdisj we have that their total height
exceeds ε = 6. By hypothesis, T ′disj = {2 × 5, 2 × 5, 2 × 5, 2 × 5} and area max 1 =
area max 2 = 10. Finally, the total area of the tasks in T \ T ′disj , area rest , is equal to

4 + 9 + 4 + 1 = 18. Consequently, lmax 6
3(T) ≤
 18+10+10+3

6 � = 6.

The intuition of the next upper bound is not to reason any more just in terms of area,
but to take into account the fact that disjunctive tasks cannot be piled up. We sort the
disjunctive tasks by decreasing height and try now to reduce their length according to
the tasks (and the slack) that can be effectively placed on top of the disjunctive tasks.

Upper bound 2. Given a set of tasks T = {t1.d × t1.h, t2.d × t2.h, . . . , tn.d × tn.h}
such that ti.h ≥ ti+1.h and ti.h = ti+1.h ⇒ ti.d ≥ ti+1.d (1 ≤ i < n), let Tdisj =

28 N. Beldiceanu, M. Carlsson, and E. Poder

area_max =10

�
�
�
�

�
�
�
�

(C)(B)

(A)

1

2

ep
si

lo
n=

6

lmax<7 lmax=4

ep
si

lo
n=

6

slack=3 area_rest=18

area_max =10

������ ��������
7

65

8

21 1 2

8

1 2 3 4 5 6 7 8

slack=
3

Fig. 4. (B) Illustration of the first upper bound on eight tasks (A) T = {2 × 5, 2 × 5, 2 × 5, 2 ×
5, 1 × 4, 3 × 3, 2 × 2, 1 × 1}, where the length of the first four tasks was reduced by applying
rule Shrinking 1 (this reduction is depicted by a dashed line along the right border of a task),
with ε = 6 and a slack σ of 3. (C) A placement giving the exact value for lmax6

3(T). Note
that a task for which the length was reduced can only be put at one of the two extremities of the
placement; consequently, we cannot add task 5 and task 7 to gain an extra unit for lmax6

3(T)
(since the lengths of tasks 1 and 2 were reduced, tasks 1 and 2 have to be kept at one of the two
extremities).

{t1.d× t1.h, t2.d× t2.h, . . . , tndisj .d× tndisj .h}, where ndisj is the largest integer that
satisfies ndisj = 1 or tndisj−1.h+ tndisj .h > ε), be the non-empty subset of tasks of T .
Let t1, t2, . . . , tndisj denote the tasks of Tdisj sorted by decreasing height and for any h
let areah denote the total area of the tasks of T that have a height less than or equal to
h. If there is an i ∈ [1, |Tdisj |] such that:

– ∀j ∈ [1, i − 1],
∑j

k=1 tk.d · tk.h + areaε−tj .h + σ ≥
∑j

k=1 tk.d · ε,

–
∑i

k=1 tk.d · tk.h + areaε−ti.h + σ <
∑i

k=1 tk.d · ε,

then the length of task ti can be reduced to
areaε−ti.h+σ−∑ i−1
k=1 tk.d·(ε−tk.h)

ε−ti.h
�.

Now let T ′disj be the set of tasks derived from Tdisj by considering their reduced
length and by discarding the tasks for which the reduced length is equal to 0. Let area =∑

t∈T−T ′
disj

t.d · t.h + σ and let t′1, t
′
2, . . . , t

′
|T ′

disj |, t
′
|T ′

disj |+1 denote the tasks of T ′disj
sorted by decreasing height, where t′|T ′

disj |+1 stands for an additional task of height 0

and length �area
ε �. In this context, let i be the smallest integer such that

∑i
k=1 t′k.d ·

(ε − t′k.h) ≥ area . We have that lmax ε
σ(T) ≤

∑i−1
k=1 t′k.d +
area−∑ i−1

k=1 t′
k.d·t′

k.h
ε−t′

i.h
�.

Example 7. Figure 5 provides an example of application of the second upper bound on
a set of tasks T = {3 × 5, 2 × 4, 2 × 4, 5 × 3, 3 × 3, 2 × 2, 1 × 1} under the hypothesis
that we have a slack σ = 3 and a gap ε = 6. The set of disjunctive tasks Tdisj built from
these rectangles is {3 × 5, 2 × 4, 2 × 4, 5 × 3}. The length of task t3 (i.e., i = 3) can be
reduced since:

New Filtering for the cumulative Constraint 29

– [j = 1]: t1.d · t1.h + area6−5 + σ = 3 · 5 + 1 + 3 = 19 ≥ 3 · 6,
– [j = 2]: t1.d·t1.h+t2.d·t2.h+area6−4+σ = 3·5+2·4+5+3 = 31 ≥ (3+2)·6,
– [i = 3]: t1.d·t1.h+t2.d·t2.h+t3.d·t3.h+area6−4+σ = 3·5+2·4+2·4+5+3 =

39 < (3 + 2 + 2) · 6.

The length of task t3 = 3 × 4 is reduced to
areaε−t3.h+σ−t1.d·(ε−t1.h)−t2.d·(ε−t2.h)
ε−t3.h � =

 5+3−3·(6−5)−2·(6−4)
6−4 � = 0. Consequently, lmax 6

3(T) = 8 (instead of 9 if t3 is not
removed).

(B)

slack=3

(D)

slack=3

ep
si

lo
n=

6

lmax<10

ep
si

lo
n=

6

ep
si

lo
n=

6

lmax<5+3+1 lmax=8
(C)

(A) 21

5
6

421

4321

4321

76543

7

7 6

6

5

5

slack=
3

Fig. 5. (A) Seven tasks 3×5, 2×4, 2×4, 5×3, 3×3, 2×2 and 1×1 to place with a slack of 3
and a gap ε of 6, (B) An upper bound of 9 obtained without shrinking, (C) A tighter upper bound
of 8 obtained by removing the third task, (D) An optimal placement which reaches the bound 8.

This second upper bound can be enhanced by trying to compute a bigger list of tasks in
disjunction. A task ti cannot overlap a task tj if the sum of their heights, ti.h + tj .h, is
greater than ε. But we can also use the fact that we have already computed the longest
cumulative hole for smaller values of ε. Tasks ti and tj are also in disjunction if there is
a gap g on top of the two tasks (i.e., g = ε − ti.h − tj .h) for which lmax g

σ(T \ {ti, tj})
is equal to 0.

3.4 Illustrating the Incomparability of the Two Bounds

This section shows that the two bounds previously described are in fact incomparable.
For this purpose, consider the tasks of size 2 × 2, 4 × 4, 6 × 6, 7 × 7, 8 × 8, 9 × 9,
11×11 and 15×15. Let B1ε

σ and B2ε
σ respectively denote the upper bounds for lmax ε

σ

obtained by the first and the second upper bounds previously introduced. On the one
hand, we have that B112

0 = 5 and B212
0 = 4, while on the other hand we have that

B115
0 = 30 and B215

0 = 32.

30 N. Beldiceanu, M. Carlsson, and E. Poder

4 Balancing Knapsack Constraints

In the context of a cumulative(T, L) constraint with |T | = n and slack σ, let its
timespan be defined as [umin, umax] where umin = min{t.s | t ∈ T } and umax =
max{t.s + t.d − 1 | t ∈ T }. If σ = 0, then for every time point b ∈ [umin, umax], the
total height of tasks intersecting b must equal L. This reasoning can be generalized to
non-zero slack and strengthened by considering adjacent pairs of time points (b − 1, b)
into the following proposition.

Proposition 1. For a cumulative(T, L) constraint with slack σ and timespan [umin,
umax], for every time point b ∈ [umin + 1, umax], each of the following conditions is a
necessary condition for the constraint.

– Let Hb−1 denote the total height of tasks intersecting b − 1. Hb−1 ∈ [L − σ, L]
must hold.

– Let Hb denote the total height of tasks intersecting b. Hb ∈ [L − σ, L] must hold.
– Hb−1 + Hb ∈ [2 · L − σ, 2 · L] must hold.

Let ti denote the ith task of T . For every time point b ∈ [umin + 1, umax] and task
ti ∈ T , we have four mutually exclusive possibilities. We encode these possibilities as
0-1 variables Sib, Cib, Oib, Nib where Sib + Cib + Oib + Nib = 1 and:

Sib = 1 ⇔ ti intersects b but not b − 1, that is, ti.s = b
Cib = 1 ⇔ ti intersects b − 1 but not b, that is, ti.s = b − ti.d
Oib = 1 ⇔ ti intersects both b − 1 and b, that is, ti.s ∈ [b − ti.d + 1, b − 1]
Nib = 1 ⇔ ti intersects neither b − 1 nor b, that is, ti.s �∈ [b − ti.d, b]

(1)

For a given time point b, the set of tasks T and the above, we can set up the following
pseudo-boolean equation system, which essentially captures the above proposition.

∀i ∈ [1, n] : Sib + Cib + Oib + Nib = 1
Hb−1 =

∑
i∈[1,n] ti.h · (Cib + Oib) ∈ [L − σ, L]

Hb =
∑

i∈[1,n] ti.h · (Sib + Oib) ∈ [L − σ, L]
Hb−1 + Hb ∈ [2 · L − σ, 2 · L]

(2)

This equation system can be solved by a dynamic programming method similar to
the one described in [11]. Define a function f(k, l, r) equal to 1 if and only if the derived
equation system (3) has a solution, and define the dynamic programming recursion as
in (4).

∀i ∈ [1, k] : Sib + Cib + Oib + Nib = 1∑
i∈[1,k] ti.h · (Cib + Oib) = l∑
i∈[1,k] ti.h · (Sib + Oib) = r

(3)

f(0, l, r) =
{

1 , if l = 0 ∧ r = 0
0 , otherwise

f(k, l, r) = max

⎧
⎪⎪⎨

⎪⎪⎩

f(k − 1, l, r − tk.h)
f(k − 1, l − tk.h, r)
f(k − 1, l − tk.h, r − tk.h)
f(k − 1, l, r)

, if k > 0
(4)

New Filtering for the cumulative Constraint 31

Now, intuitively, (2) has a solution if and only if there exist l and r such that l ∈
[L−σ, L], r ∈ [L−σ, L], l+r ∈ [2 ·L−σ, 2 ·L], and f(n, l, r) = 1. One can visualize
this as a directed graph with a node for every (k, l, r) for which f(k, l, r) = 1 and arcs
corresponding to (4). Also, each arc is annotated with the 0-1 variable that is assumed
to take the value 1 in that branch of the recursion:

(k − 1, l, r − tk.h)
Skb �� (k, l, r)

(k − 1, l − tk.h, r)
Ckb �� (k, l, r)

(k − 1, l − tk.h, r − tk.h)
Okb �� (k, l, r)

(k − 1, l, r)
Nkb �� (k, l, r)

Among the nodes, let the single source node be (0, 0, 0), and let the sink nodes be all
nodes (n, l, r) where l ∈ [L − σ, L], r ∈ [L − σ, L], and l + r ∈ [2 · L − σ, 2 · L]. Then
a path from the source to some sink corresponds to a solution to (2). By inspecting the
arcs of such paths, we can determine for each 0-1 variable whether it takes the value
1 in some solution to (2). After computing all paths, we inspect each 0-1 variable: if it
does not take the value 1 in any solution, the corresponding start time domain is pruned
according to the equivalences given in (1). The complexity of this algorithm is O(nL2)
(space and time).

Example 8. Consider a cumulative({t1, t2, t3}, 6) constraint with tasks as defined in
Figure 6. Let us apply the method for b = 4 and σ = 4 (the slack has been tightened
by other, fixed tasks that have been omitted in the example). The method explores the
digraph shown in Figure 6. The four sink nodes are denoted by ellipses. As there is no
arc annotated with O3b on a path reaching a sink, we conclude that t3 cannot intersect
both 3 and 4, hence the value 3 can be removed from D(t3.s). In this example, the
digraph is a tree, which is not generally the case.

4.1 Strengthening the Method

The method can be strengthened by adding more knapsack constraints, e.g., constraints
that capture the fact that the height of the cumulative profile must not exceed L. This
can be done as follows:

– Identify subsets Tl ⊆ T and Tr ⊆ T such that the following properties hold:
• For each ti ∈ Tl, both 0 and 1 are feasible values for Oib, and Oib = 0 would

create a compulsory part of ti to the left of b.
• If Oib = 0 for all ti ∈ Tl, the cumulative profile would exceed L.
• For each ti ∈ Tr, both 0 and 1 are feasible values for Oib, and Oib = 0 would

create a compulsory part of ti to the right of b.
• If Oib = 0 for all ti ∈ Tr, the cumulative profile would exceed L.

– Add the knapsack constraint
∑

ti∈Tl
Oib ≥ 1 for every such subset Tl found.

– Add the knapsack constraint
∑

ti∈Tr
Oib ≥ 1 for every such subset Tr found.

Our implementation includes this idea, using at most one subset Tl and at most one
subset Tr.

32 N. Beldiceanu, M. Carlsson, and E. Poder

D(t1.s) = {3}, t1.h = 4, t1.d = 3
D(t2.s) = {2, 3, 4}, t2.h = 2, t2.d = 2
D(t3.s) = {1, 3, 4}, t3.h = 1, t3.d = 2

(0,0,0) (1,4,4)
O1b

(2,4,6)
S2b

(2,6,6)
O2b

(2,6,4)

C2b

(3,4,7)S3b

(3,5,7)O3b

(3,4,6)
N3b

(3,6,7)S3b

(3,7,7)
O3b

(3,6,6)

N3b

(3,6,5)S3b

(3,7,5)
O3b

(3,6,4)

N3b

Fig. 6. Tasks and digraph explored by dynamic programming for b = 4, σ = 4, L = 6

4.2 Learning Solutions

Let the pre-signature of a cumulative(T, L) constraint and time point b be the set of 0-1
variables for which the value 1 is feasible according to (1) prior to solving the equation
system. Similarly, let its post-signature be the set of 0-1 variables for which the value 1
is still feasible after solving the equation system.

It is worth noting that, given fixed T, L, σ, the pseudo-boolean equation system is
totally abstracted away from the chosen b as well as from the variable domains. It is
totally determined by its pre-signature. Thus having solved an equation system, it makes
sense to record its pre- and post-signatures. Later on, if an equation system with the same
pre-signature arises, we can retrieve the associated post-signature instead of recomputing
it. Experience shows that this idea saves about 75% of the computational effort.

5 Performance Evaluation

All the new filtering methods described in this paper were integrated into our geost ker-
nel [12] in order to strengthen the sweep-based filtering associated with non-overlapping
constraints. The experiments were run in SICStus Prolog 4 compiled with gcc -02 ver-
sion 4.0.2 on a 3GHz Pentium IV with 1MB of cache. All benchmarks were run with the
following four phases search procedure, where at each phase, rectangles are considered
by decreasing area. Let o.x denote the X coordinate variable of the rectangle o:

1. For each rectangle o, narrow by binary search the domain of o.x until it has a
compulsory part that is at least half the length of o.

2. For each rectangle o, fix o.x by binary search.
3. Repeat steps 1-2 for the Y coordinates.

Wanting to get an idea of their performance on perfect packing problems (i.e., 0%
slack), we considered the perfect square problem [1,9]. A perfect square of order n is
a square that can be tiled with n smaller squares where each of the smaller squares has

New Filtering for the cumulative Constraint 33

a different integer size. We used the data available (i.e., the size of the small squares to
pack) from the catalogue [13] and tested the corresponding 207 instances. On the one
hand, 66 problems were completely solved (i.e., finding all solutions and proving that
no other solution exists) without a single backtrack. On the other hand, 36, 84, 20, resp.
1 problems were solved by using 1-10, 11-100, 101-1000, resp. 1001-1438 backtracks.
This is an improvement by two orders of magnitude over [12]. From a time point of
view, 35, 169 resp. 3 problems were solved in less than 10, 100 resp. 200 seconds.

Set Ghk Gh Gk G

Butone N 170730 (29637) 275445 (25013) 520050 (94205) 1383888 (107317)
Squares N 10043 (4168) 96213 (10951) 17417 (5470) 1006336 (86080)
Squares 1 996 (1557) 9730 (1203) 1817 (1840) 151905 (11813)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Butone N: Ghk vs. Gh

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Butone N: Ghk vs. Gk

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

Squares N: Ghk vs. Gh

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Squares N: Ghk vs. Gk

 1

 10

 100

 1000

 10000

 1 10 100 1000

Squares 1: Ghk vs. Gh

 1

 10

 100

 1000

 1 10 100 1000

Squares 1: Ghk vs. Gk

Fig. 7. Top: performance summary as total backtracks (seconds) per benchmark set. Bottom:
scatter plots of number of backtracks per instance. X coordinate values correspond to problem
instances with both methods enabled. In the left hand column, balancing knapsack constraints
were knocked out in the Y coordinate values. In the right hand column, the longest cumulative
hole method was knocked out in the Y coordinate values. Ghk, Gh, Gk and G denote respectively
the geost kernel with both methods, with longest cumulative holes only, with balancing knapsack
constraints only, and with neither method added.

34 N. Beldiceanu, M. Carlsson, and E. Poder

In order to evaluate our method on non-perfect packing problems (with non-zero
slack), we took 202 out of the same 207 perfect square instances, removing in each in-
stance the smallest square to place. Five instances were excluded because they exceeded
the time limit.

To evaluate the effectiveness of the two methods described in this paper, Figure 7
summarizes per benchmark set the performance. Square 1 denotes searching for the
first solution of a perfect square with symmetry breaking, whereas Square N denotes
searching for all (8 or 16) solutions of a perfect square instance with no symmetry
breaking, and Butone N denotes searching for all solutions of a perfect square instance
with the smallest square removed, also with no symmetry breaking. The figure also
contains six scatter plots. Each dot corresponds to a problem instance. Its X coordinate
equals the number of backtracks to solve it with both methods enabled. Its Y coordinate
equals the number of backtracks to solve it with only one method enabled.

On the perfect square instances, we find that both methods sharply decrease the num-
ber of backtracks, balancing knapsack constraints having the strongest effect. On the
non-perfect packing instances, the results suggest that the effectiveness of balancing
knapsack constraints degrades somewhat more rapidly with increasing slack than that
of the longest cumulative hole method. In both cases, we find a nice multiplicative ef-
fect from combining the two methods. However, when we tried the methods on the
2D orthogonal packing instances proposed by Clautiaux et al. [7], the two methods did
not significantly decrease the number of backtracks on non-perfect packing instances,
whereas on instances with zero slack they did. So the results should be treated with
caution for non-perfect packing problems.9

6 Conclusion

This paper introduces two new filtering methods that can be used in the context of the
cumulative as well as the non-overlapping constraints.

1. The longest cumulative hole problem can be used to detect early that some specific
space can not be filled enough.

2. The balancing knapsack constraint relates the total height of the tasks that end at a
given time point to the total height of the tasks that start at the same time point.

As demonstrated by our benchmarks, these two methods are complementary, es-
pecially when the slack is very small. In such contexts, they reduce significantly the
number of backtracks and even allow to completely enumerate the search space for a
significant number of instances without any backtrack. An open issue is to come up
with more efficient methods for proving infeasibility when the slack is not so small.

Acknowledgements

This research was conducted under European Union Sixth Framework Programme Con-
tract FP6-034691 “Net-WMS”.

9 Unlike the squares instances, it is worth noting that Clautiaux instances contain rectangles that
are long in one dimension and short in the other dimension.

New Filtering for the cumulative Constraint 35

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and
placement problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)

2. Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Joint International
Conference and Symposium on Logic Programming (JICSLP 1996), MIT Press, Cambridge
(1996)

3. Mercier, L., Van Hentenryck, P.: Edge-finding for cumulative scheduling. INFORMS Journal
on Computing 20(1) (2008)

4. Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in cumulative
problems. C.R. Acad. Sci., Paris 294, 209–211 (1982)

5. Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint programming approach
for the orthogonal packing problem. Computers and Operation Research 35(3), 944–959
(2008)

6. Biró, M.: Object-oriented interaction in resource constrained scheduling. Information Pro-
cessing Letters 36(2), 65–67 (1990)

7. Clautiaux, F., Carlier, J., Moukrim, A.: A new exact method for the two-dimensional orthog-
onal packing problem. European Journal of Operational Research 183(3), 1196–1211 (2007)

8. Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: Exhaustive approaches to 2d rectan-
gular perfect packings. Information Processing Letters 90(1), 7–14 (2004)

9. Van Hentenryck, P.: Scheduling and packing in the constraint language cc(FD). In: Zweben,
M., Fox, M. (eds.) Intelligent Scheduling, Morgan Kaufmann Publishers, San Francisco
(1994)

10. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathl. Comput. Mod-
elling 20(12), 97–123 (1994)

11. Trick, M.A.: A dynamic programming approach for consistency and propagation for knap-
sack constraints. Annals of Operations Research 118(1-4), 73–84 (2003)

12. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical
constraint kernel in space and time for handling polymorphic k-dimensional objects. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)

13. Bouwkamp, C.J., Duijvestijn, A.J.W.: Catalogue of simple perfect squared squares of orders
21 through 25. Technical Report EUT Report 92-WSK-03, Eindhoven University of Tech-
nology, The Netherlands (November 1992)

Multi-stage Benders Decomposition for Optimizing
Multicore Architectures

Luca Benini, Michele Lombardi, Marco Mantovani, Michela Milano,
and Martino Ruggiero

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. Software optimization for multicore architectures is one of the most
critical challenges in today’s high-end computing. In this paper we focus on a
well-known multicore platform, namely the Cell BE processor, and we address
the problem of allocating and scheduling its processors, communication channels
and memories, with the goal of minimizing application execution time.

We have developed a complete optimization strategy based on Benders’ de-
composition. Unfortunately, a traditional two-stage decomposition produces un-
balanced components: the allocation part is difficult, while the scheduling part is
much easier. To address this issue, we have developed a multi-stage decomposi-
tion, which is a recursive application of standard Logic based Benders’ Decom-
position (LBD). Our experiments demonstrate that this approach is very effective
in obtaining balanced sub-problems and in reducing the runtime of the optimizer.

1 Introduction

Multicore architectures on a single chip are emerging as the most significant paradigm
shift in high-end computing platforms in the last twenty years. From the technology
viewpoint, multicores are a necessity: a single processor cannot meet the ever increasing
performance requirements of applications within a reasonable power budget. Moreover,
multicore architectures are intrinsically more robust to variations and hardware failures
that characterize current and future silicon technologies.

The Cell Broadband Engine (BE), jointly designed by IBM, Toshiba and Sony, is
probably one of the most visible examples of high-end multicore architecture. These
industry-leading companies have invested several hundred million dollars in its devel-
opment, and the Cell BE is now a strategic component for embedded computing (i.e.
game consoles) as well as for general-purpose high-performance computing.

The shift toward multicores has pushed to the center stage the critical issue of pro-
gramming these highly parallel architectures, and more in general, the need for opti-
mally exploiting the available resources in time and space. Cell is a pivotal example
also in this area: even though its hardware capabilities are impressive, it is extremely
difficult to program it effectively, mostly because software designers cannot manually
allocate and schedule processors, communication channels and storage resources in an
optimal way.

For this purpose, we have developed a programming infrastructure embedding
constraint and integer programming optimization technology for the allocation and

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 36–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 37

scheduling of embedded applications on the Cell BE architecture. We have an applica-
tion modeled as a task graph. The application workload is partitioned into computation
sub-units denoted as tasks, which are the nodes of the graph. Graph edges connecting
any two nodes indicate task dependencies due, for example, to communication and/or
synchronization. Tasks communicate through queues and each task can handle several
input/output queues. We have to allocate tasks to processors, memory requirements and
input/output queues to memory devices and schedule the overall application in order to
minimize the application execution time (i.e., the schedule makespan).

We have previously solved similar applications [1], [2] via Logic-based Benders De-
composition [7], by facing allocation via Integer Linear Programming and scheduling
via Constraint Programming, and the method was proved to be effective. In this case,
however, a similar approach scales poorly. The main problem is that for the problem at
hand the two-stage decomposition produces two unbalanced components. The alloca-
tion part is extremely difficult to solve while the scheduling part is indeed easier.

We have experimented a multi-stage decomposition, which is actually a recursive ap-
plication of standard Logic based Benders’ Decomposition (LBD), that aims at obtain-
ing balanced and lighter components. An extensive set of experimental results confirms
that the multi-stage decomposition pays off in terms of efficiency and in the quality of
the solutions provided, when the proof of optimality cannot be completed in the avail-
able time. Also, we analyze the impact of Benders cuts and number of iterations in the
traditional Benders’ approach and in the variant we propose.

2 Problem Description

2.1 The Architecture

In this section we give a brief overview of the the Cell hardware architecture, focus-
ing on the features that are most relevant for our optimization engine. Cell is a non-
homogeneous multicore processor [11] which includes a 64-bit PowerPC processor
element (PPE) and eight synergistic processor elements (SPEs), connected by an in-
ternal high bandwidth Element Interconnect Bus (EIB) [10]. Figure 1 shows a pictorial
overview of the Cell Broadband Engine Hardware Architecture. The PPE is dedicated
to the operating system and acts as the master of the system, while the eight synergis-
tic processors are optimized for compute-intensive applications. The PPE is a multi-
threaded core and has two levels of on-chip cache, however, the main computing power
of the Cell processor is provided by the eight SPEs. The SPE is a compute-intensive
coprocessor designed to accelerate media and streaming workloads [5]. Each SPE con-
sists of a synergistic processor unit (SPU) and a memory flow controller (MFC). The
MFC includes a DMA controller, a memory management unit (MMU), a bus interface
unit, and an atomic unit for synchronization with other SPUs and the PPE.

Efficient SPE software should heavily optimize memory usage, since the SPEs oper-
ate on a limited on-chip memory (only 256 KB local store) that stores both instructions
and data required by the program.

38 L. Benini et al.

Fig. 1. Cell Broadband Engine Hardware Architecture

2.2 The Target Application

The target application to be executed on top of the hardware platform is input to our
methodology, and for this purpose it must be represented as a task graph. This latter
consists of a graph pointing out the parallel structure of the program. The application
workload is therefore partitioned into computation sub-units denoted as tasks, which are
the nodes of the graph. Graph edges connecting any two nodes indicate task dependen-
cies due, for example, for communication and/or synchronization. Tasks communicate
through queues and each task can handle several input/output queues. Task execution is
modeled and structured in three phases: all input communication queues are read (In-
put Reading), task computation activity is performed (Task Execution) and finally all
output queues are written (Output Writing). Each phase consists of an atomic activity.
Each task also has two kinds of associated memory requirements:

1. Program Data: storage locations required for computation data and for processor
instructions;

2. Communication queues: each task needs queues to transmit and receive messages
to/from other tasks, eventually mapped on different SPEs.

Both these memory requirements can be either allocated on the local storage of each
SPE or in the shared memory (DRAM in figure 1). Clearly the duration of the reading
and writing phases are related to the corresponding queue allocation and the duration
of the execution is related to the corresponding program data allocation. Remote mem-
ory allocation requires a bus access and the time spent is greater than the one for the
local memory access. Tasks do not have deadlines, but these constraints could be easily
handled by our method.

2.3 Problem Definition

The problem we have to solve is the allocation of tasks to SPE processors, the allocation
of program data and communication queues of each task either on the local memory
or on the remote DRAM, and the corresponding schedule. For the overall scheduling

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 39

problem with alternative resources we have to minimize the total application execution
time (i.e., the makespan).

3 Multi-stage Benders Decomposition

The problem we have to solve is a scheduling problem with alternative resources and
allocation dependent durations. A good way of facing these kind of problems is via Ben-
ders Decomposition, and its Logic-based extension [7]. Previous papers have shown the
effectiveness of the method for similar problems. Hooker in [8] and [9] has shown how
to deal with several objective functions in problems where tasks allocated on different
machines are not linked by precedence constraints. Similar problems have been faced
by Jain and Grossmann [6], Bockmayr and Pisaruk [4] and Sadykov and Wolsey [12],
the latter comparing this approach with branch and cut and column generation. Many of
these approaches consider multiple independent subproblems: that is, once the master
problem is solved, then many decoupled subproblems result which can be solved in an
independent fashion. The same approach is used by Tarim and Miguel [16] to solve
stochastic problems with complete linear recourse.

The allocation is in general effectively solved through Integer Linear Programming,
while scheduling is better faced via Constraint Programming. In our case, the schedul-
ing problem cannot be divided into disjoint single machine problems since we have
precedence constraints linking tasks allocated on different processors. We have im-
plemented such an approach, similarly to [1], [2], and experimentally experienced a
number of drawbacks. The main problem is that for the problem at hand a two stage
decomposition produces two unbalanced components. The allocation part is extremely
difficult to solve while the scheduling part is indeed easier. We will see in section 4 that
this approach scales poorly.

We have experimented a multi-stage decomposition, which is actually a recursive
application of standard Logic based Benders’ Decomposition (LBD), that aims at ob-
taining balanced and lighter components. The allocation part should be decomposed
again in two subproblems, each part being easily solvable.

In figure 2 at level one the SPE assignment problem (SPE stage) acts as the master
problem, while memory device assignment and scheduling as a whole are the subprob-
lem. At level two (the dashed box in figure 2) the memory assignment (MEM stage)
is the master and the scheduling (SCHED stage) is the correspondent subproblem. The
first step of the solution process is the computation of a task-to-SPE assignment; then,
based on that assignment, allocation choices for all memory requirements are taken.
Deciding the allocation of tasks and memory requirements univocally defines task dura-
tions. Finally, a scheduling problem with fixed resource assignments and fixed durations
is solved.

When the SCHED problem is solved (no matter if a solution has been found), one
or more cuts (labeled A) are generated to forbid (at least) the current memory device
allocation and the process is restarted from the MEM stage; in addition, if the schedul-
ing problem is feasible, an upper bound on the value of the next solution is also posted.
When the MEM & SCHED subproblem ends (either successfully or not), more cuts
(labeled B) are generated to forbid the current task-to-SPE assignment. When the SPE

40 L. Benini et al.

Fig. 2. Solver architecture: two level Logic
based Benders’ Decomposition

Fig. 3. Solver architecture with schedulability
test

stage becomes infeasible the process is over converging to the optimal solution for the
problem overall.

We found that quite often SPE allocation choices are by themselves very relevant:
in particular, a bad SPE assignment is sometimes sufficient to make the scheduling
problem infeasible. Thus, after the task to processor allocation, we can perform a first
schedulability test as depicted in figure 3. In practice, if the given allocation with min-
imal durations is already infeasible for the scheduling component, then it is useless
to complete it with the memory assignment that cannot lead to any feasible solution
overall.

3.1 SPE Allocation

The computation of a task-to-SPE assignment is tackled by means of Integer Linear
Programming (ILP). Given a graph with n tasks, m arcs and a platform with p process-
ing elements the ILP model we adopted is very simple: this a first visible advantage of
the the multi-stage approach. We introduce a decisional variable Tij ∈ {0, 1} such that
Tij = 1 is task i is assigned to PE j. The model to be solved is:

min z

s.t. z ≥
n−1∑

i=0

Tij ∀j = 0, . . . , p − 1 (1)

p−1∑

j=0

Tij = 1 ∀i = 0, . . . , n − 1 (2)

Tij ∈ {0, 1} ∀i = 0, . . . , n − 1, ∀j = 0, . . . p − 1

Constraints (2) state that each task can be assigned to a single SPE; constraints (1)
are needed to express the objective function. The makespan objective function depends
only on scheduling decision variables. Here we adopt an objective function that tends
to spread tasks as much as possible on different SPEs, which often provides good

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 41

makespan values pretty quickly. Constraints (1) force the objective variable z to be
greater than the number of tasks allocated on any PE.

Constraints on the total duration of tasks on a single SPE were also added to a priori
discard trivially infeasible solutions; this methodology in the LBD context is often re-
ferred to as “adding a subproblem relaxation”, and is crucial for the performance of the
method. In practice the model also contains the constraints:

n−1∑

i=0

dmin(i)Tij ≤ dline ∀j = 0, . . . , p − 1

Where dmin(i) is the minimum possible duration of task i (reading and writing phases
included), and dline is a deadline. Since tasks have no deadline in the present problem,
we impose as deadline the makespan of the best solution found so far.

Since the SPE are symmetric resources, the allocation model also features quite stan-
dard symmetry breaking ordering constraints to remove SPE permutations.

3.2 Schedulability Test

We modified the solver architecture by inserting a schedulability test between the PE
and the MEM stage, as depicted in figure 3.

In practice, once a SPE assignment is computed, the system checks the existence of
a feasible schedule using model of section 3.4, with all activity durations (execution,
read, write) set to their minimum. If no schedule is found cuts that forbid (at least) the
last SPE assignment are generated. Once a feasible schedule is found, the task-to-SPE
assignment is passed to the memory device allocation component.

3.3 Memory Device Allocation

Once tasks are assigned to processing elements, their memory requirements and com-
munication buffers must be properly allocated to storage devices. We tackled the prob-
lem by means of Mixed Integer Linear Programming, devising a model with a relatively
simple “core”.

Given a task-to-SPE assignment, for each task we introduce a boolean variable Mi

such that Mi = 1 if ti allocates its computation data on the local memory of the
SPE it is assigned to (let this be pe(i)). Similarly, for each arc/communication queue
ar = (th, tk), we introduce two boolean variables Wr and Rr such that Wr = 1 if
the communication buffer is on SPE pe(h) (that of the producer), while Rr = 1 if the
buffer is on SPE pe(k) (that of the consumer).

Mi ∈ {0, 1} ∀i = 0, . . . , n − 1
Wr ∈ {0, 1}, Rr ∈ {0, 1} ∀r = 0, . . . , m − 1

Note that, if for an arc ar = (th, tk) it holds pe(h) �= pe(k), then either the commu-
nication buffer is on the DRAM, or it is local to the producer or local to the consumer;
if instead pe(h) = pe(k), than the communication buffer is either on the DRAM, or it is
local to both the producer and the consumer. More formally, for each arc ar = (th, tk):

42 L. Benini et al.

Rr + Wr ≤ 1 if pe(h) �= pe(k) (3)

Rr = Wr if pe(h) = pe(k) (4)

Constraints on the capacity of local memory devices can now be defined in terms of
M , W and R variables. When a task executes it always works on local data, therefore
everything it needs (input and output buffers, internal data) is copied to the local device
when the task starts. At the end of the execution all data allocated in DRAM are copied
back, while all locally allocated requirements are left on the local device.

Therefore, in order to state memory capacity constraint we first define:

base usage(j) =
∑

ar = (th, tk)
pe(k) = j

comm(r)Rr+
∑

pe(i)=j

mem(i)Mi+
∑

ar = (th, tk)
pe(h) = j

pe(h) �= pe(k)

comm(r)Wr

Where mem(i) is the amount of memory required to store internal data of task i and
comm(r) is the size of the communication buffer associated to arc r. Thebase usage(j)
expression is the amount of memory needed to store all data permanently allocated on
the local device of processor j. Then we can post the constraints:

∀j = 0, . . . , p − 1, ∀i such that pe(i) = j :

base usage(j) +
∑

ar=(th,ti)

(1 − Rr)comm(r) +

(1 − Mi)mem(i) +
∑

ar=(ti,tk)

(1 − Wr)comm(r) ≤ Cj

As in the previous stage, we also add to the model a scheduling subproblem relax-
ation; again, the two basic ideas are that the length of the longest path and the total
duration of tasks on a single SPE must be lower than any current deadline. However,
since memory allocation choices influence task duration, the relaxation is much more
complex than that used in the SPE stage. Details on the relaxation can be found in [3].

The use of multistage Benders decomposition enables the complex resource alloca-
tion problem to be split into the drastically smaller SPE and MEM models. However,
adding a decomposition step hinders the definition of high quality heuristics in the allo-
cation stages and makes the coordination between the subproblems a critical task. We
tackle these issues by devising effective Benders’ cuts and using poorly informative,
but very fast to optimize objective functions in the SPE and MEM stages. In practice
the solver moves towards promising part of the search space by learning from its mis-
takes, rather than taking very good decisions in the earlier stages. Some preliminary
experimental results showed how in our case this choice pays off in terms of computa-
tion time, compared to using higher quality (but harder to optimize) heuristics, or less
expensive (but weaker) cuts.

3.4 Scheduling Subproblem

The scheduling subproblem is modeled and solved with ILOG Scheduler. In particular,
we introduce an activity for each execution phase (execi) and buffer reading/writing

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 43

operation (rdr, wrr). Task are not preemptive, thus all activities regarding a single task
execute without interruption in a pre-specified sequence. Suppose rdr0 . . . rdrh−1 are
the reading activities of task ti and wrrh

, . . . , wrrk−1 its writing activities, then:

∀l = 0, . . . , h − 2 end(rdrl
) = start(rdrl+1)

end(rdrh−1) = start(execi)
end(execi) = start(wrrh

)
∀l = h, . . . , k − 2 end(wrrl

) = start(wrrl+1)

Each communication buffer must be written before it can be read. Thus for each pair
of tasks th, tk linked via a precedence constraint ar = (th, tk) in the task graph we
impose:

∀r = 0, . . . , m − 1 end(wrr) ≤ start(rdr)

Processing elements are modeled as unary resources, and all activities regarding task
ti use SPE of index pe(i). Task durations are fixed and depend on memory allocation;
in particular, a local memory requirement allocation always yields smaller durations.
The objective function to minimize is the makespan.

In the previous papers on similar problems [1,15] we introduced a bus model using
cumulative constraints. Here the applications we face are not communication intensive
and the Cell platform provides plenty of communication bandwidth. We therefore did
not impose such a constraint on the bus capacity.

3.5 Benders Cuts

Benders cuts are used in the Logic Based Benders Decomposition to control the iterative
solution method and are of extreme importance for the success of the approach.

In first place, cuts are generated at each iteration yielding an infeasible subproblem
in order to forbid (at least) the current master problem solution; when, after a number
of iterations, the master problem becomes infeasible the solution process ends. The
efficiency and the effectiveness of those cuts have therefore a strong influence on the
total solution time.

Second, whenever a feasible complete solution is found, a new deadline constraint
is added to the makespan requiring the forthcoming solutions to be better than the cur-
rent one; then, cuts for the master problem are generated as in the previous case. In
principle, the effectiveness of the method could be further improved by analyzing the
last feasible solution to deduce cost bounds for not yet explored master problem assign-
ments. Unfortunately, devising effective bounds of that kind is tricky in our case, due
to the presence of precedence relations between tasks on different SPEs: we therefore
decided to focus on generating strong feasibility cuts.

In a multi stage Benders Decomposition approach we have to define Benders cuts
for each level. Here we have to specify both level 1 and level 2 cuts: we start from the
level 2 Benders cuts, between the SCHED ad the MEM stage (“A” cuts in figure 2).

44 L. Benini et al.

Let σ be a solution of the MEM stage, that is an assignment of memory requirements
to storage devices. If X is a variable, we denote as σ(X) the value it takes in σ. The
level 2 cuts we used are:

∑

σ(Mi)=0

Mi +
∑

σ(Rr)=0

Rr +
∑

σ(Wr)=0

Wr ≥ 1 (5)

This forbids the last solution σ and all solutions one can obtain from σ by remotely
allocating one or more requirements previously allocated locally: this would only yield
longer task durations and worse makespan. In practice we ask for at least one previously
remote memory requirement to be locally allocated.

Similarly, level 1 cuts (“B” cuts in figure 2), between the SPE and the MEM &
SCHED stage must forbid at least the last proposed SPE assignment. Again, let σ be
such a (partial) solution. Since the processing elements are symmetric resources, we
can forbid together with the last assignment all its possible permutations. This is done
by means of a polynomial size family of cuts.

For each processing element j we introduce a variable Sj ∈ {0, 1} such that Sj = 1
iff all and only the tasks assigned to SPE j in σ are on a single SPE in a new solution.
This is enforced by the constraints:

∀j, k = 0, . . . , p − 1
∑

σ(Tij)=1

(1 − Tik) +
∑

σ(Tij)=0

Tik + Sj ≥ 1 (6)

We can then forbid the assignment σ and all its permutations by posting the con-
straint:

p−1∑

j=0

Sj ≤ p − 1 (7)

The level 1 and level 2 cuts we have just presented are sufficient for the method to
work, but they are too weak to make the solution process efficient enough; we therefore

Algorithm 1. Refinement procedure
1: let X be the set of all master problem decisional variables in the original cut
2: sort the X set in nonincreasing order according to a relevance score
3: set lb = 0, ub = |X|, n = lb + �ub−lb

2 �
4: while ub > lb do
5: feed subproblem with current MP solution
6: relax subproblem constraints linked to variables Xin , Xin+1 , . . . , Xi|X|−1

7: solve subproblem to feasibility
8: if feasible then
9: set lb = n + 1

10: else
11: set ub = n
12: end if
13: restore relaxed subproblem constraints
14: end while
15: return lb

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 45

need stronger cuts. For this purpose we have devised a refinement procedure (described
in Algorithm 1) aimed at identifying a subset of assignments which are responsible for
the infeasibility. We apply this procedure to (5), (6) and (7).

Algorithm 1 refines a cut produced for the master problem, given that the correspon-
dent subproblem is infeasible with the current master problem solution; an example is
shown in figure 4, where Xi0, . . . Xi5 are variables involved in the Benders cut we want
to refine.

First all master problem variables in the original cut (let them be in the X set) are
sorted according to some relevance criterion: least relevant variables are at the end of
the sequence (figure 4-1). The algorithm iteratively updates a lower bound (lb) and an
upper bound (ub) on the number of decisional variables which are responsible for the
infeasibility; initially lb = 0, ub = |X |. At each iteration an index n is computed and all
subproblem constraints linked to decisional variables of index greater or equal to n are
relaxed; in figure 4-1 n = 0 + � 0+6

2 � = 3. Then, the subproblem is solved: if a feasible
solution is found we know that at least variables from Xi0 to Xin are responsible of the
infeasibility and we set the lower bound to n + 1 (figure 4-2). If instead the problem
is infeasible (see figure 4-3), we know that variables from Xi0 to Xin−1 are sufficient
for the subproblem to be infeasible, and we can set the upper bound to n. The process
stops when lb = ub. At that point we can restrict the original cut to variables from Xi0

to Xin−1 .
When we apply the Algorithm 1 to level 2 cuts the X set contains all M , R and

W variables in the current cut (5); the relevance score is the difference between the
current duration of the activity they refer to in the scheduling subproblem (resp. exe-
cution, buffer reading/writing) and the minimum possible duration of the same activity.
Relaxing constraints linked to M , R and W variables means to set the duration of the
corresponding activities to their minimum value.

Level 1 cuts are more tricky to handle: the X set contains tasks (ranked by their
minimum duration) rather than decisional variables, and to relax the constraints we
have to: A) set to the minimum the duration of all activities related to the considered
task; B) remove all related (3) and (4) constraints in the memory allocation subproblem

Fig. 4. Refinement procedure: an example

46 L. Benini et al.

and set to 0 the memory requirement associated to all the corresponding M , R and W
variables in the capacity constraints.

This cut refinement method has some analogies with what is done in Cambazard and
Jussien [17], where explanations are used to generate logic based Benders cuts.

Note that refinement of level 2 cuts requires to repeatedly solve (relaxed) scheduling
problems, which are by themselves NP-hard; the situation is even worse for level 1 cuts,
since the subproblem is in this case the couple MEM & SCHED, which is iteratively
solved. Therefore generation of refined cut is very expensive: the question is how much
effort is worthwhile to spend in generating strong cuts. This is an issue which will be
considered in the section about experimental results.

Finally, the described refinement procedure finds the minimum set of consecutive
variables in X which cause the infeasibility of the subproblem, without changing the
order of the sequence. Note however that is possible that some of the variables from
Xi0 to Xin−1 are not actually necessary for the infeasibility. To overcome this limitation
Algorithm 1 can be used within the iterative conflict detection algorithm described in
[13], [14] to find a minimum conflict set. We implemented such an iterative procedure
to generate even stronger (but of course more time consuming) cuts.

4 Experimental Results

Our approach has been implemented using the state of the art solvers ILOG Cplex
10.1 and Scheduler/Solver 6.3. We tested the approach on 200 task graphs represent-
ing realistic applications. All graphs were randomly generated by means of a specific
instance generator designed to produce realistic task graphs. All instances feature high
parallelism and complex precedence relations; durations and memory requirements are
randomly generated, but based on values taken from real applications. The Cell config-
uration we used for the tests has 6 available SPEs.

Table 1 compares performance results for the traditional two stage logic based Ben-
ders decomposition approach referred to as BD, and the three stage that we propose
in this paper, referred to as TD. In the two level solver, the master problem performs
allocation of tasks to SPEs and memory requirements to storage devices through Inte-
ger Linear Programming while the subproblem is a scheduling problem and is solved
via Constraint Programming. Instances are grouped by number of tasks; each group
contains 20 instances, for which the minimum and maximum number of arcs is also re-
ported. The table reports the average number of SPE, MEM iterations for the three-stage
approach and the average number of iterations between the master and subproblem in
the two stage approach (we refer to this quantity as PM iterations). In the time columns
we report the average solution time for both solvers. All tests were run with a cutoff
time of 1800 seconds: the last three columns report the number of instances (out of 20)
for which: 1) both TD and BD exceed the time limit (TD ∧ BD); 2) BD exceeds the
time limit ad TD does not (¬ TD ∧ BD); 3) TD exceeds the time limit and BD does not
(TD ∧ ¬ BD).

Note that in general TD is much more efficient than BD. Starting from group 20−21,
the high number of timed out instances makes the average execution time a less relevant
index; by looking at the last three columns, however, one can easily see how in many

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 47

Table 1. Performance tests

TD BD Timed out
ntasks narcs SPE it. MEM it. time PM it. time TD ∧ BD ¬ TD ∧ BD TD ∧ ¬ BD

10-11 4-11 12 13 3.67 73 73.30 0 0 0
12-13 8-14 17 15 11.19 46 151.31 0 1 0
14-15 8-15 19 28 10.25 9 144.49 0 0 0
16-17 11-17 30 41 29.53 101 387.24 0 2 0
18-19 13-19 47 73 158.93 122 814.75 1 4 0
20-21 16-22 90 129 403.20 114 1291.90 2 10 0
22-23 19-26 87 132 571.88 95 1686.00 3 15 0
24-25 20-29 107 162 920.00 79 1639.00 9 7 0
26-27 23-29 88 187 837.50 30 1706.50 6 12 0
28-29 25-35 109 224 1218.50 24 1721.00 9 10 0

large instances TD can still find the optimal solution, while BD is not able to provide
it within the time limit (column ¬ TD ∧ BD); note also that the opposite never occurs
(column TD ∧ ¬ BD). Of course as the number of nodes and arcs grows the number of
instances for which both solvers exceed the time limit also increases (column TD ∧ BD).

Note that TD has a lower execution time, despite it generally performs more itera-
tions than BD. This suggest that the two solvers have in practice a very different behav-
ior: TD tends to work by solving many easy subproblems, while BD performs fewer
and slower iterations.

This is more clearly shown in table 2, which reports for each instance group the
average number of SPE, MEM, SPE & MEM (PM) and SCHED subproblems solved
by both solvers. For each solver the average time to solve a single subproblem of every
type is reported.

One can see how TD solves thousands of problems (mostly to generate cuts), while
BD faces fewer of them. On the other hand TD subproblems are very easy; note that
the difference between the number of SPE, MEM and SCHED subproblems for the
TD solver is around one order of magnitude, while the time to solve each subproblem
type follows an analogous, inverse trend: once again this suggest that the TD solver
has a quite balanced behavior. On the contrary, the resource allocation stage for the BD
solver is instead often very time consuming compared to the scheduling; moreover, the
gap becomes larger as the size of the instance increases.

Going more deeply, it is interesting to observe the distribution of the solution time
between the problem components in the instances solved within the time limit and in
those which are not.

Figure 5 reports histograms that show the distribution of the allocation/scheduling
time ratio for the TD solver (where “allocation” means SPE + MEM). The X axis is di-
vided into intervals, the Y axis counts the number of instances which fall in each interval.

Intuitively, in a balanced three stage decomposition strategy, the resource allocation
is expected to take around 2/3 of the total solution time. One can see how the distribution
for the instances solved within the time limit roughly follows a bell-shaped curve, with
a peak around 0.7-0.8, slightly more than 2/3. The solution time for instances not solved
within the limit appears to be more unbalanced with most of the time absorbed by the

48 L. Benini et al.

Table 2. Number of subproblems solved and their difficulty

TD #probs TD time BD #probs BD time
ntasks SPE MEM SCHED per SPE per MEM per SCHED PM SCHED per PM per SCHED

10-11 12 177 484 0.0362 0.0046 0.0013 12 165 2.1314 0.0010
12-13 17 285 573 0.0954 0.0078 0.0013 13 195 4.8076 0.0014
14-15 19 389 1312 0.0291 0.0083 0.0016 14 201 6.0836 0.0016
16-17 30 692 2304 0.0656 0.0141 0.0019 18 302 35.5924 0.0017
18-19 47 1463 6014 0.1266 0.0270 0.0028 26 495 84.7409 0.0024
20-21 90 2764 12641 0.7690 0.0549 0.0030 23 428 246.3311 0.0037
22-23 83 2707 12010 0.7709 0.0585 0.0988 19 448 270.8062 0.0049
24-25 107 3807 20877 1.4909 0.0860 0.0077 10 203 773.3269 0.0055
26-27 88 3959 24692 0.6456 0.0824 0.0087 5 87 1088.9167 0.0205
28-29 109 4731 31267 1.4714 0.1091 0.0104 5 140 1080.7726 0.0099

allocation. This suggests that for the TD solver more time could be spent in scheduling,
for example to generate stronger cuts for the MEM stage.

This differentiated behavior between timed out and not timed out instances is not
observed for the BD solver where substantially all the process time is spent in solving
allocation subproblems (see figure 6).

Since most instances in the last two groups were not solved to optimality by both
the approaches, we now want to compare the solution quality when optimality is not
proved. In these cases the TD solver always finds the best solution and the average
improvement is around 9%.

Finally, we considered the impact of strong Benders cuts on the TD solver. We dis-
abled the strong cut refinement system in the TD solver: instead of finding a minimum
conflict at each iteration we only remove some non relevant elements, using Algorithm
1. Table 3 reports the number of SPE and MEM iterations, the average solution time and
the number of instances not solved within the time limit for the first three groups, with-
out and with strong cut refinement. Note how disabling the refinement process causes a
drastic performance breakdown: the weak refinement procedure is therefore not strong
enough. Tuning the effort to be spent in cut generation remains an open problem.

Fig. 5. TD execution time distribution for instances solved within the time limit (on the left) and
not solved within the time limit (on the right)

Multi-stage Benders Decomposition for Optimizing Multicore Architectures 49

Fig. 6. BD execution time distribution for instances solved within the time limit (on the left) and
not solved within the time limit (on the right)

Table 3. Performance results for the TD solver with and without strong cut refinement

Without strong ref. With strong ref.
ntasks SPE it. MEM it. time > TL SPE it. MEM it. time > TL

10-11 192 90 497.90 5 12 13 3.67 0
12-13 386 295 1144.21 11 17 15 11.19 0
14-15 410 539 1181.24 12 19 28 10.25 0

5 Conclusion and Future Works

In this paper we have shown how to optimally solve allocation and scheduling of em-
bedded applications modeled as task graphs on the Cell BE architecture. We have pro-
posed a multi-stage logic based Benders decomposition approach featuring different
components interleaved through Benders cuts. Experimental results show that the multi-
stage is more efficient than the traditional two stage approach. Open problems remain:
the issue concerning how to tune the strength of Benders cuts is extremely important
for improving our approach. Also, the question of whether it is possible to determine
the optimal number of stages for Benders decomposition based approaches is still open.

Finally, the choice of Benders’ decomposition was motivated by the successful appli-
cation of such method to similar problems with different objective functions; however,
the use of other solution techniques, possibly better suited to makespan minimization
(such as pure CP or heuristics methods), is of great interest and is subject of current
research.

References

1. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSOCs via
decomposition and no-good generation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
Springer, Heidelberg (2005)

2. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation, Scheduling and Voltage Scal-
ing on Energy Aware MPSoCs. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, Springer, Heidelberg (2006)

50 L. Benini et al.

3. Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-stage Benders
Decomposition for Optimizing Multicore Architectures. Technical Report LIA-008-07

4. Bockmayr, A., Pisaruk, N.: Detecting infeasibility and generating cuts for MIP using CP.
In: Int. Workshop Integration AI OR Techniques Constraint Programming Combin. Optim.
Problems CP-AI-OR 2003, Montreal, Canada (2003)

5. Flachs, B., et al.: A streaming processing unit for a cell processor. In: Solid-State Cir-
cuits Conference. Digest of Technical Papers. ISSCC. 2005 IEEE International, pp. 134–135
(2005)

6. Grossmann, I.E., Jain, V.: Algorithms for hybrid milp/cp models for a class of optimization
problems. INFORMS Journal on Computing 13, 258–276 (2001)

7. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Program-
ming 96, 33–60 (2003)

8. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004)

9. Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 314–327. Springer, Heidelberg (2005)

10. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: Built for
speed. IEEE Micro 26(3), 10–23 (2006)

11. Pham, D., et al.: The design and implementation of a first-generation cell processor. In: IEEE
International Solid-State Circuits Conference ISSCC 2005, vol. 1, pp. 184–592 (2005)

12. Sadykov, R., Wolsey, L.A.: Integer Programming and Constraint Programming in Solving
a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates. IN-
FORMS Journal on Computing 18(2), 209–217 (2006)

13. de Siqueira, N.J.L., Puget, J.F.: Explanation-Based Generalisation of Failures. In: European
Conference on Artificial Intelligence, pp. 339–344 (1988)

14. Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained
Problems. In: Proc. of the Nineteenth National Conference on Artificial Intelligence - AAAI
2004, San Jose, California, USA, July 2004, pp. 167–172. AAAI Press / The MIT Press
(2004)

15. Lombardi, M., Milano, M.: Stochastic Allocation and Scheduling for Conditional Task
Graphs in MPSoCs. In: Proc. of the Intl. Conference in Principles and Practice of Constraint
Programming (2006)

16. Tarim, A., Miguel, I.: A Hybrid Benders Decomposition Method for Solving Stochastic Con-
straint Programs with Linear Recourse. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.)
CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 133–148. Springer, Heidelberg (2006)

17. Cambazard, H., Jussien, N.: Integrating Benders Decomposition Within Constraint Program-
ming. In: Proc. of the Intl. Conference in Principles and Practice of Constraint Programming,
pp. 752–756. Springer, Heidelberg (2005)

Fast and Scalable Domino Portrait Generation

Hadrien Cambazard, John Horan, Eoin O’Mahony, and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.cambazard,j.horan,e.omahony,b.osullivan}@4c.ucc.ie

Abstract. A domino portrait is an approximation of an image using
a given number of sets of dominoes. This problem was first stated in
1981. Domino portraits have been generated most often using integer
linear programming techniques that provide optimal solutions, but these
can be slow and do not scale well to larger portraits. In this paper we
propose a new approach that overcomes these limitations and provides
high quality portraits. Our approach combines techniques from opera-
tions research, artificial intelligence, and computer vision. Starting from
a randomly generated template of blank domino shapes, a subsequent
optimal placement of dominoes can be achieved in constant time when
the problem is viewed as a minimum cost flow. The domino portraits one
obtains are good, but not as visually attractive as optimal ones. Combin-
ing techniques from computer vision and large neighborhood search we
can quickly improve our portraits to be visually indistinguishable from
those found optimally. Empirically, we show that we obtain many orders
of magnitude reduction in search time.

1 Introduction

In 1981 Kenneth Knowlton filed for a United States Patent entitled “Repre-
sentation of Designs” [4] in which he proposed the use of dominoes to render
monochrome images. Twenty five years later, at the 2006 Conference on Con-
straint Programming, Artificial Intelligence and Operations Research (CP-AI-
OR 2006), Robert Bosch gave an invited talk on “OptArt”, focusing on how
optimisation could be used to create pictures, portraits, and other works of art.
In that talk, Bosch not only demonstrated the beauty of computer-generated
art, but also the technical challenges involved in producing it. A domino por-
trait is simply a rendering of an image using a given number of sets of dominoes.
Generally he uses “double nine” domino sets, which contain all dominoes from
the “double blank” to the “double nine”, giving fifty five dominoes in all.

The nice property of “double nine” domino sets is that they give a wide range
of shades from complete black (the blank domino) to a bright white (the double
nine domino). A set of dominoes gives us a constrained palette of monochrome
shades, which we can use to produce images. We say that the palette is con-
strained for two reasons. Firstly, each set of dominoes contains only one domino
of each type. Secondly, we are not allowed to break dominoes into two parts, but
rather use the entire domino.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 51–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 H. Cambazard et al.

Fig. 1. A well known portrait of George Boole is presented on the left, with a sequence
of domino portraits generated from this image using 1, 4 and 16 sets of dominoes as
we move to the right, respectively

Several examples of domino portraits based on a well known portrait of George
Boole are presented in Figure 1. It is clear that as we increase the number of
dominoes we have at our disposal, the domino portrait we obtain is a better
approximation of the target input image. In Figure 2 a much larger domino
portrait of Boole is presented, which is sufficiently large for the reader to see
each of the individual dominoes that comprise the portrait.

A problem with current approaches to generating domino portraits is that they
do not scale very well. This is mostly due to the fact that Bosch has been interested
in finding optimal domino portraits; we will explain how the notion of optimality is
defined later in this paper. We set out to develop a scalable approach to generating
domino portraits that would not be concerned with whether the portraits found
were optimal or not, but be concerned with whether the portraits were sufficiently
good so as to be visually indistinguishable from the optimal ones.

In this paper we present a new approach to building approximations of a target
image using a specified number of complete sets of “double nine” dominoes [3,2].
We adopt an approach similar to Knowlton’s [4] (and to Knuth’s [5]), in which
the image is divided up into blank domino outlines to which we assign dominoes.
Rather than treating this problem as a traditional assignment problem, which
can be solved using the Hungarian Method, and other similar algorithms, we
formulate it as a minimum cost flow. The advantage is that the assignment step
becomes constant time, allowing us to scale to arbitrary sized portraits. However,
because we predetermine the orientations of the dominoes, we are unlikely to find
an optimal domino configuration. Therefore, we adopt a heuristic approach to
identifying regions of the domino placement that, if redesigned, would improve
the quality of the resultant portrait. This last step is performed using a large
neighborhood search. An empirical evaluation demonstrates the utility of our
approach.

The remainder of the paper is organised as follows. Section 2 presents the
domino portrait problem and explains in detail how it is defined. We then briefly
summarise an existing linear model for finding optimal domino portraits in Sec-
tion 3, as well as other heuristic approaches that have been studied. Section 4
describes the two-step approach we employ here, and our innovation based on a
minimum cost flow formulation. In Section 5 we outline a practical improvement

Fast and Scalable Domino Portrait Generation 53

Fig. 2. A domino portrait of George Boole generated by our approach using 49 sets of
“double nine” dominoes, i.e. 49 × 55 = 2695 individual dominoes

to our basic approach that involves locally perturbing the portrait. Section 6
presents and discusses the results. A number of concluding remarks are made in
Section 7.

2 The Domino Portrait Generation Problem

A domino portrait can be generated for any target image. The first step in the
process is to convert the target image into a grayscale graphic image using, for
example, the UNIX pgm command. Each pixel in a grayscale image is given a
grayscale value between 0 (black) and 255 (white).

We consider rendering images using sets of “double nine” dominoes. There
are 55 dominoes in a complete set of double nine dominoes: 10 dominoes with

54 H. Cambazard et al.

equal face values in both halves, i.e. all dominoes with face valuations equal to
(0, 0), . . . , (9, 9) along with an additional 45 non-equal face dominoes with face
values in {(v1, v2)|v1 ∈ {0, . . . , 8}, v2 ∈ {v1 + 1, . . . , 9}}. The area covered by a
single set of dominoes is 110 square units, since we have 55 dominoes each with
2 units. Therefore, given s sets of dominoes, the grayscale image is divided into
11s×10s cells and for each cell in row ri and column ci the mean grayscale value
is computed and scaled to an integer between 0 and 9 called gij . The values in
each cell defines the perfect half domino value to place in that cell.

Each domino with equal valued halves has two possible orientations, vertical
and horizontal, whereas each non-equal valued dominoes have 4 orientations
since such a domino can be flipped along its vertical and horizontal axes. For
k = s2 sets of dominoes we can use a canvas of size 11s × 10s to be filled with
the 55×k dominoes, but in practice we can represent any canvas of size 110×k.
The following notation will be used throughout the paper:

– k is the number of sets of dominoes, and N = 55 × k is the number of
individual dominoes.

– di = (p1
i , p

2
i) for domino number i, with pq

i ∈ {0, . . . , 9}
– gij is the grey value of cell (ri, cj) between 0 and 9. The whole matrix of

grey values is refered to as the grey matrix in the following.

The cost of positioning a half-domino pq
l on a cell (ri, cj) is equal to (pq

l − gij)2.
Notice that it is quadratic so that the cost grows faster than the error and
large errors are strongly penalised. The problem is to place the dominoes on the
canvas so that the overall cost (the sum of the costs of each cell of the canvas)
is minimised and every domino is used exactly once. A graphical representation
of the process is presented in Figure 3.

(a) The grayscale values
are scaled to 0 . . . 9.

(b) The result of the
scaling process.

(c) An example place-
ment of dominoes.

Fig. 3. A summary of the process of generating a domino portrait from an image

Fast and Scalable Domino Portrait Generation 55

3 An Integer Linear Programming Model

Robert Bosch proposed an integer linear programming formulation of the domino
portrait generation problem in [3]. His model is based on boolean variables that
specify if a given domino is placed with a given orientation with respect to
its reference square (the top left corner of each horizontally placed domino in
Bosch’s model) in a given cell of the canvas. Constraints then stipulate that
each domino has to be used exactly once, and that each cell has to be covered by
a domino. The resulting integer programs are quite large, with more than one
million decision variables and five thousand constraints for k = 49, but Bosch
reports that they are relatively easy to solve, requiring almost two hours when
k = 49.

We used this model in our experiments as a baseline, with a very simple
improvement not described by Bosch in his papers, but used by Knowlton, which
involves keeping only the optimal orientation for each domino. A domino can be
placed in two orientations at a given position but one often dominates the other,
in terms of cost, and it is only necessary to consider the best orientation; this
can be seen as a form of symmetry breaking over individual dominoes. The
scalability of this model is, however, very limited and we will present a non-
optimal, but much more efficient, approach to generating domino portraits in
the next section, and then follow this presentation with an improvement based
on large neighbourhood search.

4 A Two-Step Approximation

In his original patent, Knowlton outlined a two-stage process for generating
domino portraits. The first step in his approach involved generating an initial
arrangement of empty domino holders (rectangles) on the canvas, i.e. pairs of ad-
jacent cells, which were later “filled” using dominoes. In this step he maximised
the average unbalance of each domino holder by maximising the average differ-
ence between the two brightness values it contained. The second step involved
assigning dominoes to the holders computed from the first step in order to min-
imise the error between the brightness provided by a domino and the brightness
required in the domino holder computed from the first step. Donald Knuth sub-
sequently recast Knowlton’s method as an assignment problem [5], but because
the two steps are independent, there is no guarantee the the resulting domino
portrait will be close to optimality.

Here, we use another modification of Knowlton’s method in which the initial
pattern of empty dominoes is generated randomly, the dominoes are then placed
into this pattern using an assignment problem formulation. This approach relies
on the observation that the problem becomes polynomial if the pattern of the
dominoes is known, since the assignment step is itself polynomial. This suggests
that restricting ourselves to searching over alternative patterns is enough to
generate optimal domino portraits. In practice we will show that any random
pattern provides a very good upper bound on the cost of the domino portrait.
We will present the details of each step in detail.

56 H. Cambazard et al.

4.1 Generating the Pattern of Empty Domino Holders

We generate a random packing of empty domino holders on the canvas using
Algorithm 1. We refer to this arrangement of empty domino holders as a pattern.
Generating the pattern can be regarded as a packing problem. An example
pattern is presented in Figure 4.

9

6 3 2

1

4 4

6 3 2

1

4 4

6

3

6

321

1 1

1 1

91

1

0

9

2

1 2

2 0 1 1

1 1 1 9

1

Fig. 4. An example of a pattern on the right that covers the grey matrix on the left

Algorithm 1 proceeds by filling the grid from the bottom to the top, line by
line from the left to the right (lines 2 and 3). At each step it randomly assigns
a rectangle vertically or horizontally (line 4) before going into a propagation
step. Once a cell is surrounded (orthogonally) by three cells already covered by
a domino holder, the orientation of the rectangle covering this cell is known and
can be propagated (lines 5–6). This is performed until a fixed-point is reached,
or a contradiction is met. A contradiction is raised when an odd number of
connected cells remains in the grid, since dominoes cover pairs of cells. Each
time a contradiction is met a restart step is performed. A small sub-region of
the pattern is wiped out by removing a given number of lines.

Algorithm 1. Random pattern generator
1: while there exists an empty cell in the grid do
2: i ← the first row containing an empty cell
3: j ← the first column such that (i, j) is empty
4: Place a rectangle randomly at position (i, j), (i + 1, j) or (i, j), (i, j + 1)
5: while there exists (i, j), an empty cell with three occupied orthogonal neighbours

and all regions of empty connected cells are of even size do
6: Place a rectangle to cover (i, j) and the empty cell next to (i, j)
7: end while
8: if there is a region of an odd number of connected empty cells in the grid then
9: Wipe out part of the grid

10: end if
11: end while

Fast and Scalable Domino Portrait Generation 57

This non-deterministic approach to random pattern generation performs very
well in practice. In particular, we found this approach much faster than a com-
plete backtracking algorithm for large number of dominoes.

4.2 Solving the Assignment Problem as a Min-Cost Flow

Once the pattern is known, placing the dominoes optimally is a polynomial
problem – it is an optimal assignment problem. Figure 5 presents an example of
the assignment problem. Notice that the cost c(di, 〈a, b〉) of assigning a domino
di = (p1

i , p
2
i) in a given rectangle of grey values 〈a, b〉 is defined as the best cost

among the two possible orientations of the domino:

c(di, 〈a, b〉) = min((p1
i − a)2 + (p2

i − b)2, (p1
i − b)2 + (p2

i − a)2). (1)

6 3

12

6

4 4

4

9
3

8

55 × k rectangles

(6 − 4)2 + (3 − 1)2 = 8

55 × k dominoes

Fig. 5. An example of the assignment problem to be solved once the pattern is known

Solving the assignment problem can be done very efficiently using the Hungar-
ian method in O(n3). However, in our setting n denotes the number of individual
dominoes, which can quickly become very large. A good portrait often requires
at least 100 sets of dominoes, giving 5500 individual dominoes. Clearly, the Hun-
garian method would not scale to those sizes.

We propose a novel formulation of this step as a min-cost flow. Observe that
in the bipartite graph in Figure 5, dominoes on the left side are repeated k times
and many rectangles on the right side have identical costs. In fact as the number
of points varies from 0 to 9 on each square, there is only 55 possible pairs of
points (for two adjacent squares) in the portrait. We can take advantage of these
symmetries using the following formulation. We define the following notation:

– An area is a set of all rectangles with identical pairs of costs in the pattern.
Area j corresponds to a rectangle of cost 〈j1, j2〉 and the number of such

58 H. Cambazard et al.

rectangles is denoted capaj . Moreover, the total number of areas is denoted
by nbArea and nbArea ≤ 55.

– xij is the number of dominoes of kind i assigned to area j.
– c(di, j) is the cost of assigning a domino of kind di into area j. c(di, j) is

the same cost as previously so that c(di, j) = c(di, 〈j1, j2〉) as defined by
Equation 1.

In the pattern given in Figure 4, we would have nbArea = 6 where each area
would be defined by one of the six rectangles {〈6, 3〉, 〈2, 1〉, 〈2, 0〉, 〈4, 4〉, 〈1, 1〉,
〈9, 9〉}. The optimal assignment can be reformulated as follows:

Minimize
∑

i,j cijxij

subject to∑
j xij = k, ∀i ≤ 55∑
i xij ≤ capaj, ∀j ≤ nbArea

(2)

The first constraint of this linear program ensures that exactly k dominoes
of each kind are assigned. The second constraint ensures that no more than
capaj dominoes are placed in the same area. In practice, there are exactly capaj

dominoes to fill the area as we have
∑

j capaj = 55 × k. This problem can be
better understood, and more efficiently solved, as a min-cost flow problem on
the graph presented in Figure 6, where the x variables can be interpreted as the
amount of flow from a domino i to an area j.

There are two key observations to be made about this formulation. Firstly, we
only need to know the area where a domino is assigned and not specifically where
it is placed in this area. Secondly, we only need to know how many dominoes
of each kind are assigned in each area and not where each specific domino is
assigned. The min-cost flow formulation takes these symmetries into account and
provides a much more efficient way of solving the previous assignment problem.
Notice that the size of the graph (number of nodes and edges) supporting the
flow is independent of k; only the flow and capacities are increasing, making the
approach robust to increases in k.

Once reduced to a min-cost flow formulation the problem can be solved in a
variety of ways. It is easy, for example, to formulate it as a linear program (see
Model 2). Fortunately this linear program has the quality of integrality, thus
only the linear relaxation needs to be solved. Alternatively, there exist many
algorithms to solve min-cost flow, e.g. the Successive Shortest Path (SSP) [1]
algorithm which sends the largest possible flow along the shortest path from
source to sink, found by Dijkstra’s algorithm, at each iteration. The complexity
of this algorithm with a small optimisation is O(n × maxj∈{1...nbArea}(capaj))
where n is the number of nodes.

An alternate algorithm, the Enhanced Capacity Scaling algorithm [1], is a
strongly polynomial improvement on the Successive Shortest Path algorithm. It
has a complexity of O((m log n)(m + n log n)), where n is the number of nodes
and m is the number of arcs. This means that for our min-cost flow formulation
the algorithm runs in constant time as the number of nodes and the number of

Fast and Scalable Domino Portrait Generation 59

6 3

6 3 6
3

6
3

55 Dominoes At most 55 areas

capaj

k

k

k

k

55 × k units of flow through the network

c(di, j)
xij ?

Fig. 6. The assignment problem translated as a min-cost flow problem

arcs are constant and not dependent on the number of sets of dominoes used to
generate the portrait.

5 Improving the Pattern Using Local Search

Using the min-cost flow formulation we can solve the assignment step of the
domino portrait generation problem in constant time. The only obstacle to gen-
erating optimal domino portraits is the choice of pattern to provide to the flow
step. Notice that the pattern only matters where the grey values are unbalanced;
the pattern in uniform areas has almost no effect on the final cost. In terms of
the flow formulation, it means that a change of the pattern that would not affect
the size of the areas of the flow graph, the capaj values, has no effect on the
optimal assignment. Therefore, we consider perturbing the pattern slightly in a
local search approach to affect the capaj values in order to improve the flow.

The algorithm we implemented can be described as a Large Neighborhood
Search [8] over patterns. It proceeds as follows:

1. Identify the regions of the canvas where the grey values are unbalanced and
thus, where the pattern might benefit from improvement. We denote as X
the set of points (i, j) corresponding to those regions.

2. Select a point x ∈ X and remove it from X . If X is empty then select a
point randomly.

3. Remove M dominoes around x; x can be seen as the centre of the new empty
region.

60 H. Cambazard et al.

4. Enumerate all possible patterns that can fill the empty region. For each
of those patterns incrementally update the capaj values and compute the
corresponding new min-cost flow denoting the cost of the overall resulting
pattern. Note that this is a global optimization step as the dominoes that
were previously assigned in the region might now be in a completely different
place.

5. Return to Step 2 (above) as long as the average improvement over the last
20 iterations remains above a threshold (set very low in practice).

The points in the set X are weighted in such a way that any points of interest
adjacent to one already chosen for improvement are less likely to be selected than
those that are independent of chosen points. This is to maximize the impact of
the improvements during the initial executions and to ensure an overall faster
convergence.

The first point is performed using an algorithm from computer vision that
performs corner detection, or interest point detection, to extract certain kinds
of features to infer the contents of an image. We used the FAST (Features from
Accelerated Segment Test) algorithm from [6,7]. This approach seems very well
suited for portraits as it highlights the important characteristics of the face (eyes,
mouth, hair etc...) which matter in the final domino portrait. Figure 7(b) shows
the result of FAST on the “Girl with a Pearl Earring”.

The neighborhood explored is defined by all the possible patterns for a small
region of 2 × M squares of the grid (M = 15 is the setting used in our ex-
periments). The enumeration is performed using the propagation described in
Algorithm 1 in a complete backtracking search. Finally, the problem of finding
the optimal flow regarding small changes of capaj is a sensitivity analysis prob-
lem on the min-cost flow and can be performed incrementally [1]. The optimal

(a) Vermeer’s “A Girl with a Pearl Ear-
ring”.

(b) The X region detected by the FAST
algorithm for k = 225.

Fig. 7. Selecting the interesting region to focus on in the local search step

Fast and Scalable Domino Portrait Generation 61

flow is maintained while performing a local search on the capaj values reflecting
the changes in the pattern. This is possible due to the efficiency of the flow model
and its incremental behaviour.

6 Experiments

Robert Bosch proposed an integer linear programming (ILP) approach to solv-
ing this problem, which we discussed earlier in the paper, and we used his ap-
proach as a baseline in our experiments. We used Vermeer’s “A Girl with a Pearl
Earring” (Figure 7(a)). All times quoted are the times it takes to generate and
solve the respective models; they do not include the time taken to convert the
solution into a viewable image. Experiments were run on a 2.8GHz Intel Xeon
processor running Linux Fedora Core 2 with 4Gb of RAM.

Firstly, we sought to compare the performance of the min-cost flow and Hun-
garian method to demonstrate the scalability of the flow algorithm (Table 1).
The flow algorithm used is SSP, mentioned previously, which was efficient enough
for our purposes and easy to implement. Clearly, the Hungarian method does
not scale, while the min-cost flow does very well. While the min-cost flow is
constant-time in this setting (although not necessarily so when using the SSP
algorithm), there is a small variation for different numbers of sets of dominoes
due to the time spent generating the problem.

Table 1. Comparing the Hungarian and Min-Cost Flow approaches to solving the
assignment phase of domino portrait generation

#Sets of Time (in seconds)
Dominoes Min-Cost Flow Hungarian

9 0.23 0.47
25 0.15 6.87
49 0.15 50.17

121 0.17 734.69
2,500 0.31 -

10,000 0.63 -

Table 2. Comparing the quality and speed of ILP and random patterns

ILP Two phase (100 runs) Gap (%)
k Cost Time (s) Avg Cost Best Cost Time (s) Avg Best

1 1,192 1.04 1,260 1,222 0.02 5.96 2.52
4 4,844 13.8 5,228 5,139 0.04 7.99 6.09
9 11,255 65.9 12,183 12,013 0.07 8.26 6.73

25 33,673 325.62 36,265 35,998 0.12 7.71 6.90
49 69,585 7,030.29 74,075 73,639 0.13 6.45 5.83

121 171,961 9,797.55 181,768 180,991 0.16 5.72 5.25
225 376,176 44,895.86 386,870 386,326 0.17 2.84 2.69

62 H. Cambazard et al.

Secondly, we show the average quality of a random pattern (over 100 runs)
for different number of sets of dominoes to support our claim that any random
pattern provides a good bound on the quality of the domino portrait (see Ta-
ble 2). The ILP model is solved with CPLEX using Bosch’s model discussed
in Section 3. In Table 2, the cost is the total cost of the optimal solution; we
present both the average and best costs for the random pattern approach. It
is interesting to note that as the number of sets of dominoes is increased, the
quality of the portrait generated from a random pattern is improving; we can
find portraits that are 2.69% worse than the optimal cost found using ILP when
using 225 sets of dominoes. A very important difference between methods here,
of course, is that the random pattern-based portrait is generated in a fraction
of a second, while ILP takes several hours for larger numbers of dominoes.

(a) Optimal (ILP)

(b) Random Pattern + Min Cost Flow (c) Large Neightbourhood Search

Fig. 8. Comparing the output of the ILP versus our full approach combining min-cost
flow and local search

Fast and Scalable Domino Portrait Generation 63

Fig. 9. A domino portrait of Alan Turing generated by our approach using 361 sets
of “double nine” dominoes, i.e. 19,855 individual dominoes. The min-cost flow phase
for this portrait required 0.194 seconds, and the local search phase required 33.965
seconds. We also generated a much larger portrait using 10,000 sets of dominoes (55,000
individual dominoes), which required 0.539 seconds and 26.285 seconds for the min-cost
flow and local search phases, respectively. This portrait is not included in the paper
since it would look almost like a standard grayscale image.

Thirdly, in Table 3 we show the results of the ILP formulation and the flow-
based approach using local search over patterns which provide very good por-
traits within a few percent of the optimal value with orders-of-magnitude of
speed-up in search time. The resulting images are indistinguishable visually from
the optimum for “A Girl with a Pearl Earring” as shown on Figure 8. We show

64 H. Cambazard et al.

Table 3. Comparing the quality and speed of ILP against the flow-based approach
using local search to improve the pattern

ILP LNS patterns
k Opt Cost Time (s) Cost Time (s) Gap (%)

1 1,192 1.04 1,207 8.32 1.26
4 4,844 13.80 4,903 14.00 1.22
9 11,255 65.90 11,512 14.54 2.28

25 33,673 325.62 34,498 15.72 2.45
49 69,585 7,030.29 70,977 17.66 2.00

121 171,961 9,797.55 175,669 27.34 2.16
225 376,176 44,895.86 380,408 32.71 1.13

three portraits using 49 sets of dominoes corresponding to the optimal value ob-
tained by the ILP, random pattern and local search approaches. For interesting
sizes (between 9 and 225 sets of dominoes), the local search approach outper-
forms the ILP model in time without losing any relevant quality in the picture
(gap no more than 2.45% and visually irrelevant).

We could not solve the ILP model for portraits requiring more than 225 sets of
dominoes because of memory problems. However, even portraits requiring 10, 000
sets of dominoes (55, 000 dominoes) are not a challenge for our approach. In fact,
the larger the number of domino sets we use, the less we need to optimize the
pattern using local search. In Figure 9 we show a very complex portrait of Alan
Turing generated using 361 sets of dominoes, and report the times required by
the min-cost flow and local search phases in its caption. We also report that
using 10, 000 sets of dominoes we can generate portraits even faster because we
have a much shorter local search step.

7 Conclusion

We have proposed a new solving technique for the domino portrait problem which
is based on an original and efficient reformulation of part of the problem as a
min-cost flow problem combined with local search. We show that we can obtain
several orders-of-magnitude of speed-up to get high quality portraits within a few
percent of the optimal value. This approach does not provide optimal solutions
but produces high quality solutions within a couple of seconds. It is moreover
very robust to the increase of the size of the problem.

Interesting ideas have been explored that might be useful in the context of
packing problems with a positioning cost. The packing problem here is easy, as
it is only made of rectangles of the same size, but the overall approach might be
interesting in more complex and real-life applications where the objects are of
different shapes.

Our application involves well known OR algorithms (Hungarian, Min-cost
flow and sensitivity analysis of the flow), search techniques (large neighbourhood
search, depth first search with constraint propagation) as well as an algorithm

Fast and Scalable Domino Portrait Generation 65

from the computer vision area (FAST) and is, therefore, well suited for teach-
ing Operations Research. It has been used with great success at the Discovery
Exhibition 2007 in Cork1, a science outreach event for pupils aged between 10
and 16.

Acknowledgements

This work was supported by Science Foundation Ireland (Grant No. 05/IN/I886).
We thank Robert Bosch for providing the inspiration for tackling this problem
and for providing some useful feedback.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs (1993)

2. Berlekamp, E., Rogers, T.: The mathemagician and pied puzzler: A collection in
tribute to Martin Gardner. AK Peters (1999)

3. Bosch, R.: Constructing domino portraits. Tribute to a Mathemagician, 251–256
(2004)

4. Knowlton, K.C.: Representation of designs. U.S. Patent # 4,398,890 (August 16,
1983)

5. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison-Wesley, Reading (1993)

6. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking.
In: ICCV, pp. 1508–1515 (2005)

7. Rosten, E., Reitmayr, G., Drummond, T.: Real-time video annotations for aug-
mented reality. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005.
LNCS, vol. 3804, pp. 294–302. Springer, Heidelberg (2005)

8. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

1 http://www.corkcity.ie/discovery/

Gap Reduction Techniques
for Online Stochastic Project Scheduling�

Grégoire Dooms and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912

Abstract. Anticipatory algorithms for online stochastic optimization have been
shown very effective in a variety of areas, including logistics, reservation systems,
and scheduling. For such applications which typically feature purely exogenous
uncertainty, the one-step anticipatory algorithm was shown theoretically to be
close to optimal when the stochasticity of the problem, measured by the anticipa-
tory gap, is small. This paper studies the behavior of one-step anticipatory algo-
rithms on applications in which the uncertainty is exogenous but the observations
are endogenous. It shows that one-step anticipatory algorithms exhibit a much
larger anticipatory gap and proposes a number of gap-reduction techniques to ad-
dress this limitation. The resulting one-step anticipatory algorithms are shown to
outperform significantly the state-of-the-art dynamic-programming approach on
an online stochastic resource-constrained project scheduling application.

1 Introduction

Online anticipatory algorithms [8] have been recently proposed to address a wide va-
riety of online combinatorial optimization problems in areas such as logistics, net-
working, scheduling, and reservation systems. The applications emerged from progress
in telecommunication and in information technologies which enable organizations to
monitor their activities in real time and collect significant amount of historical data.
One-step anticipatory algorithms only rely on two black-boxes: a conditional sampler
to generate scenarios consistent with past observations and an offline solver which ex-
ploits the combinatorial structure of the application to solve the deterministic version of
the problem. Their essence is to transform the multi-stage stochastic optimization ap-
plication into a 2-stage problem by ignoring all non-anticipativity constraints but those
of the current decision. This 2-stage problem is then approximated by sampling, and
the approximated problem is solved optimally by computing the offline optimal solu-
tions for all pairs (scenario,decision). One-step anticipatory algorithms were shown to
be very effective on a variety of online stochastic combinatorial problems in dynamic
fleet management [1,2], reservation systems [8], resource allocation [6], and jobshop
scheduling [7]. They were also analyzed theoretically in [4] in terms of the global an-
ticipatory gap (GAG) which is a measure of the stochasticity of the application. The
analysis shows that, when the GAG is small, anticipatory algorithms are guaranteed to
return high-quality solutions when ran with enough scenarios.

� This research is partially supported by NSF award DMI-0600384 and ONR Award
N000140610607.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 66–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Gap Reduction Techniques for Online Stochastic Project Scheduling 67

This paper examines the behavior of one-step anticipatory algorithms on online
Stochastic Resource-Constrained Project Scheduling Problems (S-RCPSP). Such ap-
plications are increasingly common for research and development projects, as well as
the management of projects in the services industry. Contrary to the above applications
in which the uncertainty is purely exogenous, the uncertainty in online S-RCPSP is ex-
ogenous but the observations are endogenous: it is necessary to execute an activity to
observe its cost, its duration, and its outcome. The endogenous nature of the observa-
tions produces a significantly higher GAG, making these applications more challenging.

This paper shows that, despite these difficulties, one-step anticipatory algorithms still
outperform the state-of-the-art algorithm proposed in [3] which applies dynamic pro-
gramming to a heuristically-confined state space (HCDP). Moreover, the paper investi-
gates a number of generic gap-reduction techniques, including a waiting strategy, gap
correction, time scaling, and problem pruning. These techniques significantly improve
the behavior of one-step anticipatory algorithms which produce an average improve-
ment of about 15% compared to the HCDP algorithm.

The rest of the paper is organized as follows. Section 2 specifies the online S-RCPSP.
Section 3 generalizes the generic online algorithm proposed in [8] to accommodate
endogenous observations. Section 4 shows how to instantiate the generic algorithm to
the online S-RCPSP. Section 5 presents an improved version of the HCDP algorithm
from [3]. Section 6 presents the one-step anticipatory algorithm and studies its behavior
experimentally. Sections 7, 8, 9, and 10 describe the gap-reduction techniques. Section
11 presents the experimental results and Section 12 concludes the paper.

2 Online Stochastic Project Scheduling

This section describes the online Stochastic Resource-Constrained Project Scheduling
Problem (S-RCPSP) from [3]. It starts with the offline (deterministic) problem, presents
its stochastic and online versions, and illustrates the problem visually.

The Resource Constrained Project Scheduling. The RCPSP consists of a set of projects
(jobs) that must be scheduled on a number of laboratories (machines). Each project con-
sists of a sequence of experiments (activities) which are characterized by their durations
and their costs. Each project brings a reward which depends on its completion time. The
goal is to schedule the jobs to maximize revenues, i.e., the sum of the project rewards
minus the sum of the activity costs. More formally, given a set of labs L, and a set of jobs
J , a RCPSP instance ξ consists of a sequence of n(j, ξ) activities a1,j,ξ, . . . , an(j,ξ),j,ξ
for each job j ∈ J . Activity ai,j,ξ has duration di,j,ξ and cost ci,j,ξ . The reward of
project j is given by a function fJ : N → R which, given a completion time t of project
j, returns its reward fj(t). A solution to a RCPSP instance ξ is a schedule σ, i.e., is
a partial assignment of activities to labs and starting times (σ : A → L × N). The
schedule typically assigns only a subset of activities but satisfies the constraint that, if
an activity is assigned to a lab at a given start time, all the preceding activities of the
job must have been assigned to a lab and completed before the start time. The set of
activities scheduled in σ is denoted by dom(σ); We abuse notations and use ai,j,ξ ∈ σ
instead of ai,j,ξ ∈ dom(σ). If a ∈ σ, we use σs(a) to denote the start time of activity a
in σ. A project j is scheduled in σ, denoted by j ∈ σ, if all its activities are scheduled in

68 G. Dooms and P. Van Hentenryck

σ and its completion time ct(j, σ) is given by σs(an(j,ξ),j,ξ)+ dn(j,ξ),j,ξ . The objective
value of a schedule is given by

f(σ, ξ) =
∑

j∈σ

fj(ct(j, σ)) −
∑

ai,j,ξ∈σ

ci,j,ξ.

The S-RCPSP. The S-RCPSP has uncertainty regarding the durations, the costs, and
the outcomes of activities. In particular, an activity can now fail, in which case the en-
tire project fails. It may also succeed, in case the project is successful and completed. If
the activity neither fails or succeeds, its status is “open”. Activities whose outcome is
a success or a failure have no successors. Formally, a S-RCPSP is specified by a prob-
ability distribution over the set Ξ of RCPSP scenarios. Each scenario ξ ∈ Ξ specifies
a RCPSP instance. Moreover, for each activity ai,j,ξ, the scenario specifies an outcome
oi,j,ξ ∈ {success, fail, open}. A job j is a success in ξ, denoted by success(j, ξ), if
its sequence of activities is of the form

o1,j,ξ = . . . = on(j,ξ)−1,j,ξ = open & on(j,ξ),j,ξ = success.

It is a failure otherwise, which means that its sequence is of the form
o1,j,ξ = . . . = on(j,ξ)−1,j,ξ = open & on(j,ξ),j,ξ = failure.

The goal in the S-RCPSP is to find a schedule σ maximizing the objective

Eξ

⎡

⎣
∑

j∈σ:success(j,ξ)

fj(ct(j, σ)) −
∑

ai,j,ξ∈σ

ci,j,ξ

⎤

⎦ .

In [3], the distribution of S-RCPSP scenarios is specified as follows. The number of
jobs, labs, and the reward functions of all jobs are the same for all scenarios. The un-
certainty on the sequence of activities of each job is modeled using a Markov chain.
Each activity ai,j has a set R of potential realizations which are tuples of the form
〈oi,j,r, ci,j,r, di,j,r〉 specifying the outcome oi,j,r, cost ci,j,r, and duration di,j,r of the
activity. The probability to reach a given realization for an activity is conditioned on the
realization of its preceding activity. More formally, a transition matrix Pi,j defines the
conditional probability pi,j,r,r′ of activity ai,j having realization r given that activity
ai−1,j has realization r′, i.e.,

pi,j,r,r′ = Pr(〈ci,j,ξ, di,j,ξ, oi,j,ξ〉 = 〈ci,j,r, di,j,r, oi,j,r〉 |
〈ci−1,j,ξ, di−1,j,ξ, oi−1,j,ξ〉 = 〈ci−1,j,r′ , di−1,j,r′ , oi−1,j,r′〉)

Figure 2 illustrates such a Markov chain. In the figure, the failing activities are depicted
in color, the costs are given inside the activities, and the durations are specified by the
length of the tasks. The probability distributions are shown implicitly by the thickness
of the transition arrows. For instance, the first activity has a low probability of having a
realization with a cost of 400. However, if such a realization happens, it has then a high
probability of having a second realization with a cost 250 and a rather long duration.

The Online S-RCPSP. In the online S-RCPSP, the decision maker alternates between
scheduling activities and observing the uncertainty. Although the uncertainty about the

Gap Reduction Techniques for Online Stochastic Project Scheduling 69

Fig. 1. An Example of Online and Offline
Schedules for the S-RCPSP

Fig. 2. A Markov Chain Describing the Un-
certainty of a Job

projects and their activities is exogenous, the decision maker must schedule an activity
to observe its realization, that is its duration, its cost, and its outcome. In particular, its
outcome is revealed only when the activity is completed, at which time the decision
maker also knows its duration and its cost. The online S-RCPSP is thus of a funda-
mentally different nature than the online stochastic optimization applications presented
in [8]. Indeed, in these applications, the uncertainty is purely exogenous and is about
which requests arrive and when: Once a request is placed, its information is fully re-
vealed. In the online S-RCPSP, the decision maker must schedule an activity to reveal
its uncertainty, which means that the observation is conditioned to a prior decision (thus
it is endogenous). This poses some serious computational issues, partly due to the fact
that activities may fail, in which case their project will incur a cost, take scheduling
time, and bring no reward.

Illustration. Figure 1 illustrates the concepts visually. It depicts the reward functions of
five jobs (bottom right of the figure). The reward fj of each job is a constant before its
first deadline dj ; it then decreases linearly until a second deadline after which it remains
constant. For instance, the third job has a reward of 10,000 if it is completed before time
20 and the reward decreases linearly between 20 and 29 to reach 1,100 at the second
deadline.

The bottom-left of the figure describes the clairvoyant schedule which has observed
all the uncertainty. The solution schedules the first and the fourth job, which finish at
times 14 and 13 and yield rewards of 5, 000 and 11, 000 respectively. The inside of each
activity specifies the job number, the activity number, and the outcome. The top of the
figure describes an online schedule. The online schedule includes activities of failing
jobs 2, 3, and 5, with job 5 failing very late. These failed projects push the finish time of
job 1 which only brings a reward of 3, 800. Of course, the value of the entire schedule
further decreases by the cost of scheduling the activities of the failed projects.

3 The Generic Online Decision-Making Algorithm

Because of the endogenous nature of observations, the online generic algorithm pre-
sented in [8] must be generalized to accommodate the concept of observation explicitly.
The new generic algorithm is depicted in Figure 3. It receives a decision-making agent
A and a scenario ξ unknown to the decision maker and it maintains the current state of

70 G. Dooms and P. Van Hentenryck

ONLINEDECISIONMAKING(A, ξ)
1 s ← (0, ∅, ∅);
2 while true do
3 d ← A .decide(s);
4 if d = ⊥ then
5 return f(s, ξ);
6 s ← applyDecision(d, s);
7 s ← observe(s, ξ);

Fig. 3. The Generic Online Decision-Making Algorithm

decisions and observation s. As long as the decision maker does not decide to terminate
(decision ⊥ in line 4), the online algorithm calls the agent to obtain a decision d (line 3).
The decision is applied to the state in line 6 and possible realizations of the uncertainty
are observed in line 7. When the decision-maker terminates, the algorithm returns the
value of the final state (line 5).

4 Instantiating The Online Decision-Making Algorithm

We now describe how to instantiate the states, the decisions, and the functions applyDe-
cision and observe for the online S-RCPSP. The rest of the paper will then be concerned
with how to make the decision in line 3.

States of the Online Decision-Making Algorithm. The states for the online S-
RCPSP are triples 〈t, C, R〉, in which t represents the time, C the scheduling deci-
sions whose activities have been completed and R the scheduling decisions whose
activities are still running on the labs. The set C contains tuples of the form
〈i, j, ci,j,ξ, di,j,ξ, oi,j,ξ, ti,j,ξ, li,j,ξ〉, specifying that completed activity ai,j,ξ has cost
ci,j,ξ, duration di,j,ξ , outcome oi,j,ξ , and has been scheduled at time ti,j,ξ in lab li,j,ξ.
The set R contains tuples of the form 〈i, j, ti,j,ξ, li,j,ξ〉, specifying that running activity
ai,j,ξ has been scheduled at time ti,j,ξ in lab li,j,ξ. For simplicity, we use ai,j,ξ ∈ C to
denote ∃c, d, o, t, l : 〈i, j, c, d, o, t, l〉 ∈ C and use a similar notation for membership in
R. Finally, we use f(s, ξ) to denote the objective value of a state s for scenario ξ.

Decisions. In a first approximation, there are only two types of decisions: scheduling
a job in a lab and terminating. Scheduling a job j is feasible in state s, denoted by
Feasible(j, s), if none of its activities are currently running and if all its completed
activities have open outcomes, i.e., ¬∃i : ai,j,ξ ∈ R ∧ ∀ai,j,ξ ∈ C : oi,j,ξ = open.
The set of feasible scheduling decisions in state s consists of scheduling feasible jobs
in some available lab, i.e.,

Feasible(s)={schedule(j, l) | j ∈ J ∧ Feasible(j, s) ∧ ¬∃i, j, t : 〈i, j, t, l〉 ∈ R}.

Terminating is the equivalent of rejecting all requests in request-based online applica-
tions and consists in renouncing to schedule all the remaining activities.

Gap Reduction Techniques for Online Stochastic Project Scheduling 71

Applying a Decision. We are now in position to specify the function applyDecision
which describes the effect of applying a decision in a state:

applyDecision(schedule(j, l), 〈t, C, R〉) =
〈
t, C, R ∪ 〈next(j, C), j, t, l〉

〉

where next(j, C) denotes the next activity of job j to schedule. Scheduling a job on a
lab simply inserts the next activity of the job on the lab.

Observations. It remains to specify the observe function which returns the next decision
state. This happens whenever one of the running activities is completed. For a state s
and a scenario ξ, this is given by NT (s, ξ) = minai,j,ξ∈R ti,j,ξ +di,j,ξ. The completed
activities, i.e., Completed(s, ξ) = {〈i, j, t, l〉 ∈ R | t + di,j,ξ ≤ NT (s, ξ)}. must
then be removed from the running set and transfer, with their observations, to the set of
completed decisions, i.e.,

Backup(s, ξ) = {〈i, j, ci,j,ξ, di,j,ξ, oi,j,ξ, t, l〉 | 〈i, j, t, l〉 ∈ Completed(s, ξ)}

With this at our disposal, the observe function can be specified as

observe(〈t, C, R〉, ξ) = 〈NT (s, ξ), C ∪ Backup(s, ξ), R \ Completed(s, ξ)〉

We also use τ(s, d, ξ) = observe(applyDecision(d, s), ξ) to denote the transition ob-
tained by taking decision d in state s and observing ξ in the resulting state.

5 Heuristically-Confined Dynamic Programming

The online S-RCPSP originated from [3] who also proposed an innovative solution
technique to approach it: dynamic programming in a heuristically-confined state space
(HCDP). Their approach is motivated by the fact that, on their instances, there are 109

possible scenarios. Combined with the inherent combinatorics of the offline problem
itself, this would generate a gigantic state space, which would preclude the use of dy-
namic programming techniques.

To tackle this complexity issue, they propose a three-stage algorithm. In the first
step, their algorithm applies a set H of heuristics on a set Ξ of scenarios to explore
a number of reasonable trajectories in the state space. In the second step, these states
are then merged to form a directed acyclic graph that defines a heuristically-confined
state space. In the third step, the algorithm uses dynamic programming to obtain the
best decision in this state space. The algorithm can be specified as an instantiation of
the generic online algorithm as follows. Let D(s, H, Ξ) be the set of decisions taken
by the heuristics in H in state s for the set Ξ of scenarios during the first phase of the
algorithm and let C(s, Ξ) be the set of scenarios in Ξ compatible with state s, that is

the set of scenarios ξ such that there exists a trajectory s0
d0−→ s1

d1−→ . . .
dt−1−−−→ st = s

satisfying si+1 = τ(si, di, ξ) for all i < t. The HCDP policy value of decision d in
state s for a set of scenarios Ξ and the set H of heuristics is given by

v(s, d, Ξ, H) =
1

#C(s, Ξ)

∑

ξ∈C(s,Ξ)

Q(τ(s, d, ξ), C(s, Ξ), H)

72 G. Dooms and P. Van Hentenryck

where the Q-value is defined as follows

Q(s, Ξ, H) =

{
1

#C(s,Ξ)

∑
ξ∈C(s,Ξ) f(s, ξ) if s is a leaf;

maxd∈D(s,H,Ξ) v(s, d, Ξ, H) otherwise.

We specify the HCDP algorithm as an instance of the online generic algorithm:

HCDP.DECIDE(s)
1 Ξ ← {sample(s) | i ∈ 1..10, 000};
2 return argmaxd∈D(s,H,Ξ) v(s, d, Ξ, H);

where sample is conditional sampling procedure to generate scenarios of the future
compatible with the observation in state s. This implementation is in fact an im-
provement over [3] because the heuristics and the dynamic program are run for every
decision, instead of once at the beginning of the computation. The results improve sig-
nificantly with this online implementation. Moreover, our actual implementation also
uses the fact that the graph is acyclic to improve the runtime performance.

6 The One-Step Anticipatory Algorithm

We now study the use of one-step anticipatory algorithm for the online S-RCPSP. Antic-
ipatory algorithms for online stochastic combinatorial optimization [8] make decisions
by generating scenarios of the future, solving these scenarios optimally, and exploiting
the resulting optimal solutions to select a decision. They typically use two black-boxes:
(1) An optimization algorithm O(s, ξ) to solve the offline problem associated with state
s and scenario ξ and (2) A conditional sampling procedure sample(s) to generate sce-
narios of the future compatible with the observation in state s. In the S-RCPSP, the
offline problem associated with a state s and scenario ξ is the scenario ξ with the ad-
ditional constraints that all scheduling decisions in state s must be enforced. Note that
the uncertainty is completely revealed in this offline problem: the costs and durations
of the activities, as well as their outcomes, are known to O. As a result, failed projects
and their activities are never scheduled in their optimal solutions.

This paper focuses on the one-step anticipatory algorithm which solves a number
of scenarios and selects the best decision with respect to these scenarios. This algo-
rithm was initially proposed for exogenous uncertainty but generalizes naturally to
those applications with endogenous observations. Its pseudo-code is depicted in Fig-
ure 4. We use the notation O+(s, d, ξ) = O(s, d, ξ) − f(s, ξ), where O(s, d, ξ) =
O(applyDecision(d, s), ξ), to denote the “future” value of the scenario when decision
d is taken. The algorithm first collects the set of possible decisions (line 1) and initial-
izes their scores (lines 2–3). It then generates m scenarios (lines 4–5), which are solved
optimally (line 7) for each decision d, whose score is updated accordingly. The decision
d with the best score is computed in line 8. The algorithm terminates (decision ⊥) if the
score of the best decision is not positive and returns the best decision otherwise.

This one-step anticipatory algorithm was analyzed for purely exogenous problems in
[4]. It was shown that the expected loss of the anticipatory algorithm compared to the

Gap Reduction Techniques for Online Stochastic Project Scheduling 73

A.DECIDE(s)
1 D ← Feasible(s);
2 for d ∈ D do
3 score[d] ← 0;
4 for i ∈ 1..m do
5 ξ ← sample(s);
6 for d ∈ D do
7 score[d] ← score[d] + O+(s, d, ξ);
8 d ← argmaxd∈D score[d];
9 if score[d] > 0 then return d else return ⊥;

Fig. 4. The Basic One-Step Anticipatory Algorithm

Table 1. Experimental Results of the One-Step Anticipatory Algorithm A

Agr C2 C5 D.6 D1.5 Reg P1 P2 P3 P4 R.6 R1.5 Avg
CV 14096 10806 4216 10062 13425 12418 17939 21242 28014 30051 7595 20394 15855
HCDP 12192 4218 0 6432 10333 7318 12638 16114 21657 24084 3571 13605 11013
A 12731 4342 -6197 5712 10441 8115 14347 18602 26587 28851 3906 15096 11878

clairvoyant (i.e., the expected value of the offline problems) is bounded by the global
anticipatory gap, which measures the stochasticity of the problem (instance + distribu-
tion) and a sampling error which can be arbitrarily small. Moreover, many applications
in online routing, scheduling, and resource allocation were shown to have a small global
anticipatory gap, explaining the excellent behavior of (approximations) of the one-step
anticipatory algorithms. The anticipatory gap of a decision d in a state s is defined as

Δg(s) = Eξ

[
max
d∈D

O(s, d, ξ)
]

− max
d∈D

Eξ [O(s, d, ξ)]

and measures the difference in expectation between being clairvoyant now and after the
decision in state s. The global anticipatory gap for an algorithm is simply the sum of
the local anticipatory gap for each successive state.

Table 1 gives the expected value Eξ [O(s0, ξ)] of the clairvoyant (CV) where all
the uncertainty is revealed immediately, the expected value of HCDP, and the expected
value of the one-step anticipatory algorithm (A) with 200 scenarios (the implemetation
and experimental setting is detailed in section 11). The results contain both good and
bad news. On the one hand, the one-step anticipatory algorithm performs better in gen-
eral and in average than the HCDP algorithm, showing the benefit of solving scenarios
optimally. This is a very satisfying results, since it means that one-step anticipatory al-
gorithms apply to applications with endogenous observations and outperforms the best
method proposed for the online S-RCPSP. On the other hand, the loss of the antici-
patory algorithm compared to the clairvoyant is quite substantial and may reach about
10,000 and 6,000 on instances C5 and C2 (These instances are described in detail later
in the paper).

The distance between the anticipatory algorithm and the clairvoyant can be explained
by the theoretical analysis in [4]. Indeed, Figure 5 depicts the evolution of the local an-
ticipatory gap and the agreement degree over time. The circles in the figure give the

74 G. Dooms and P. Van Hentenryck

Fig. 5. Local Anticipatory Gap and Agreement Degree as a Function of the Decision Time

mean, while the intervals show one standard deviation around each side of the mean.
The left part of Figure 5 shows a significant local anticipatory gap especially during the
middle part of the execution. In the early part of the execution, the gap is small, because
the algorithm has time to recover from a bad decision. The right part of Figure 5 depicts
the agreement degree, i.e., the percentage of scenarios which admit the same optimal
decision. Although this agreement is well above 70% in average in applications in rout-
ing, packet scheduling, and reservation systems, it is only 20% early in the execution
and below 40% for a substantial part of the execution in the online S-RCPSP.

Why is the gap so large and the agreement so low in the online S-RCPSP? One of
the main reasons is the endogenous nature of the observations. Indeed, the clairvoyant
immediately sees which projects are valuable and does not spend time or incur costs
scheduling them. The online algorithm in contrast must execute the project to deter-
mine their outcomes. Obviously, the one-step anticipatory algorithms extract from the
scenarios which projects are promising, but they still have some significant probability
to fail. This explanation is confirmed by instance P4 in which projects have a low prob-
ability of failure and only fail early. On this instance, the global loss is small, which
directly means that the global anticipatory gap is small. Note also that this difficulty is
not only due to the fact that projects may fail: A similar behavior occurs if some project
takes an extremely long time. One may also wonder whether all online algorithms will
exhibit so large a gap, but this is not the case. For instance, on instance C5, the optimal
online policy (in the expected sense) consists of not scheduling any activity, since the
expected value of all projects is negative. Yet the one-step anticipatory algorithm has
an expected value of -6,197, showing that a significant portion of the gap is due to its
behavior. The rest of this paper addresses how to enhance the one-step anticipatory to
account for this gap.

7 Gap Reduction through Waiting

Waiting has been proposed for online stochastic vehicle routing (e.g., [2]) and was
shown to produce significant improvements in solution quality. Its main benefit is to
give the online algorithm more opportunity to observe the uncertainty, thus helping in
taking more informed decisions. It is easy to integrate waiting in the online S-RCPSP:
It suffices to schedule a dummy activity with no cost, no reward, and duration 1.

We can now show that waiting may be the optimal decision in some instances of the
online S-RCPSP. Figure 6 shows a problem instance consisting of job 1 which succeeds
and fails fifty percent of the time with respective durations of 5 and 10, as well as two
other successful jobs. Job 2 has two activities of duration 2 and job 3 has one activity

Gap Reduction Techniques for Online Stochastic Project Scheduling 75

Fig. 6. An S-RCPSP Instance Fig. 7. Clairvoyant Solutions Fig. 8. The Optimal Online
Policy with a Wait Action

of duration 5. The deadlines are strict: either the job finishes before its deadline and
receives its reward, or it has no reward. The activities have no cost. Figure 7 shows the
optimal solutions for both scenarios. Job 1 is not scheduled if it fails and the two other
jobs yield their rewards for a total of 4. If job 1 succeeds, it yields its reward of 8 and
there is enough room for job 2 which receives a reward of 3, giving a total reward of
11. Overall the expected value of the clairvoyant is thus 4+11

2 = 7.5.
Figure 8 depicts the best online policy which achieves an optimal expected value of

7.5 (the GAG is zero in this case). The policy consists in scheduling jobs 1 and 2 and
then waiting one time unit to observe the status of job 1. If the first activity of job 1 is
not finished at time 3, it will fail. The best decision then consists in scheduling job 3
then job 2. If the first activity of job 1 is completed at time 3, then the best decision is to
schedule its second activity and job 2. By waiting one time unit, the online agent is able
to observe the status of job 1 and to select the best schedule. Note that if the agent waits
until job 1 finishes to take the next decision and that job fails, it does not have time to
schedule job 3 and therefore is sub-optimal. Similarly, if the agent does not wait, it will
have to choose between scheduling jobs 2 and 3, which is suboptimal.

8 Gap Reduction through Gap Correction

The one-step anticipatory algorithm uses the offline solution O(s, d, ξ) as a prediction
of the optimal policy A∗(s, d, ξ) to evaluate each decision d in state s as shown in line
7 of the algorithm of Figure 4. Obviously, replacing O by A∗ would produce an opti-
mal decision. The basic idea in this section is to correct the evaluation O+(s, d, ξ) by
estimating the anticipatory gap in a state s: gap(s, ξ) = O+(s, ξ) − A∗+(s, ξ) which
denotes the loss of the optimal online policy A∗ compared to the clairvoyant on state
s and scenario ξ. Note that the expected value of perfect information (EVPI), a fun-
damental concept in stochastic programming, is simply EV PI(s) = Eξ [gap(s, ξ)] .
Evaluating gap(s, ξ) is difficult however. On the one hand, A∗ is not known: It is the
optimal policy that we are trying to approximate. On the other hand, there are a gigantic
number of states and scenarios in this problem. Our approach in this paper consists in
evaluating the anticipatory gap on a training set and computing the best parameters of
a model g̃ap(s, ξ) approximating gap(s, ξ). This is very natural, since stochastic opti-
mization problems have a stochastic model of the uncertainty as part of their input.

76 G. Dooms and P. Van Hentenryck

Approximating the Gap using the First Decision. The first difficulty in learning the
anticipatory gap can be addressed by learning the expected global loss, i.e., EGL =
Eξ [O(ξ) − A(ξ)] , which provides an upper bound to the EVPI instead of the gap. The
second difficulty is addressed by using a set Ξ of training scenarios and measuring

ẼGL =
1

#Ξ

∑

ξ∈Ξ
O(ξ) − A(ξ).

Then the anticipatory gap at state s for scenario ξ can be approximated by

G̃ap(s, ξ) = ẼGL ×
(
1 − CR(s, ξ)

)

where CR(s, ξ) = #C+#R
#ξ denotes the completion ratio of s in scenario ξ. The antici-

patory algorithm with gap correction AGC is algorithm A in which line 7 becomes

score[d] ← score[d] + O+(s, d, ξ) − G̃ap(applyDecision(s, d), ξ).

More Complex Gap Learning models. We also have investigated several finer models
for gap learning. These models learn the gap in terms of the completion factors, the
offline value of the scenario, and the set of successful jobs. The results were a disap-
pointment as they produce no significant improvement over algorithm A-GC.

9 Gap Reduction through Time Scaling

Although gap correction significantly improves the solution quality of the one-step an-
ticipatory algorithm, if fails to address some of the consequences of the endogenous
nature of observations. Indeed, a comparison between offline and online solutions re-
veals that the clairvoyant is often able to schedule an additional project. This is possible
because the clairvoyant does not lose time scheduling failing projects. The online algo-
rithm however needs to schedule them to determine whether they will be successful.

Gap correction is successful in detecting when not to schedule projects whose ex-
pected value is negative but is not particularly effective in differentiating potential
scheduling decisions. This is due to the fact that the learning phase of gap correction
uses algorithm A which has a low local anticipatory gap early in the search as depicted
in Figure 5. This means that, whatever decision is taken at an early step, the clairvoyant
has enough time subsequently to reach a high-quality solution, since it does not lose
time scheduling unsuccessful projects.

Time scaling is another generic technique to reduce the anticipatory gap: It rec-
ognizes that algorithm A necessarily loses time scheduling activities of unsuccessful
projects and compensates by scaling the durations in the offline problems.

Systematic Time Scaling. The simplest time scaling increases the duration globally
by a common factor f−1 (we use f < 1), which, conceptually speaking, amounts to
replacing the reward fj for project j by

f−j (t) = fj(
t

f
).

Gap Reduction Techniques for Online Stochastic Project Scheduling 77

A more dynamic approach consists in scaling the remaining time only, i.e., after the
decision time td of the current state s = 〈td, C, R〉, i.e.,

f∗j (t) =

{
fj(t) if t < td

fj(td + t−td

f) otherwise.

Time Scaling by Job Effectiveness. The above proposal scales durations uniformly.
It seems more appropriate however to apply scalings tailored to each of the jobs. To
obtain such a differentiated scaling, we use job effectiveness, that is, the time spent on
successful realizations of a job over the total time spent on the job. This measure can be
learned offline like in gap correction and it gives ratios by which the durations should
be scaled. Experimental results showed that this ratio was very low and led to drastic
deadlines. Averaging the resulting with 1.0 (or equivalently dividing its distance to 1 by
2) led to much better results.

10 Gap Reduction by Problem Reduction

When studying the results of an online algorithm on a training set, another statistic can
be gathered to boost the quality of the algorithm: the job performance. The performance
of job j in a schedule σ for scenario ξ is simply fj(ct(j, σ)) −

∑
ai,j,ξ∈σ ci,j,ξ if j is

successfully scheduled in σ and −
∑

ai,j,ξ∈σ ci,j,ξ otherwise. Obviously removing a job
from consideration in the offline problem will decrease the quality of the offline sched-
ule and reduce the anticipatory gap. Moreover, if a job contributes a negative amount
in expectation, or a small amount compared to the total reward, the gap reduction will
not come at a high cost, since removing the job will not degrade the overall quality of
the online algorithm. This is the strategy we experimented with in order to reduce the
anticipatory gap: jobs yielding low performance (under a specific threshold like 1% or
5%) are discarded from the whole online policy.

11 Experimental Results

Table 2 gives a summary of the experimental results.

The Instances. The experimental results are based on the reference instance proposed
in [3] and a number of derived instances to explore the stochasticity and combinatorial
landscape on the online S-RCPSP. The derived instances are obtained by scaling multi-
ple parameters of the instance: the activity costs or durations, the deadlines, and the job
rewards. The structure of the instances was also changed by removing activity failures
by levels: this is the case of instances P1–P4 which have increasingly fewer failures
and whose failures occur earlier. One instance (P1) has no failures in the last activity in
the jobs, while other instances (P2–P4) have no failures in the last two, three, or four
levels (the latter has no failures at all since the longest jobs have four activities). Fi-
nally instance Agr averages the realizations to obtain only two realizations: one success
and one failure. This reduces the number of realizations while roughly preserving the
length, cost, and success distributions.

78 G. Dooms and P. Van Hentenryck

Table 2. Experimental Results on Gap Reduction Techniques

Agr C2 C5 D.6 D1.5 Reg P1 P2 P3 P4 R.6 R1.5 Avg
CV 14096 10806 4216 10062 13425 12418 17939 21242 28014 30051 7595 20394 15855

HCDP 12192 4218 0 6432 10333 7318 12638 16114 21657 24084 3571 13605 11013

A 12731 4342 -6197 5712 10441 8115 14347 18602 26587 28851 3906 15096 11878
Aw 12414 3544 -3042 5760 9097 7606 13674 18542 26808 28967 3430 13855 11721

AGC 12696 4804 0 5588 10448 8146 14442 18760 26794 28956 3840 15000 12456

ATS 12681 4355 -2066 7950 10059 8281 13861 17392 23330 26031 4451 14461 11732
ATI 12444 4261 0 6688 9702 8036 14518 18755 26787 28961 3903 14670 12394
ATE 12608 4495 -1659 5467 10435 8337 14563 18728 26787 28919 3937 15385 12334

ATEPR 12612 5375 0 5737 10708 8432 14446 18474 26797 28918 4357 15586 12620

The Algorithms. The experimental results compare a variety of algorithms on the online
S-RCPSP. They include the anytime Heuristically-Confined Dynamic Programming al-
gorithm with 10,000 simulations per heuristic, the one-step anticipatory algorithm with-
out (A) and with (Aw) waiting, the anticipatory algorithm with gap correction (AGC ,
the anticipatory algorithms with the three time-scaling approaches (ATS , ATI , ATE),
and the hybrid algorithm combining time scaling by job effectiveness and job prun-
ing (ATEJP). The systematic common scaling factor is 0.8 for ATS . All anticipatory
algorithms have been run with 200 scenarios per decision and all learning has been
performed on an independent set of scenarios. The results are the average over 1,000
scenarios. Note that using less scenarios decreases the quality of the solutions and intro-
duces much more variability. Using more than 200 scenarios does not lead to significant
improvements. The optimization solver used for the anticipatory algorithm is a dedi-
cated branch and bound algorithm whose upper bound relaxes the resource constraints
for the remaining tasks (implemented from scratch in C). Elastic relaxations were also
tried but provided no additional computational benefits. This branch and bound is very
fast and it takes on average less than 1ms for the reference instance.

Gap Reduction Through Waiting. The results about the waiting algorithm Aw are some-
what mixed since, in average, Aw produces solutions of slightly lower quality than A.
Aw improves instance C5 significantly, although the global loss on this instance is still
significant. It also produces the best solutions on P3 and P4 which are the least stochas-
tic problems. Why is waiting disappointing on the online S-RCPSP? The reason is once
again the endogenous nature of observations. When waiting, algorithm Aw also ob-
serves the realization of any activity that algorithm A would have scheduled and only
loses a single time unit for that observation. As a result, in the context of endogenous
observations, waiting actually increases the anticipatory gap; the algorithm also has a
strong tendency to wait, since the gap is larger for this decision. The wait decision gets
favored for many scenarios as depicted in figure 9.

Gap Reduction Through Gap Correction. Algorithm AGC returns better expected val-
ues than HCDP on all instances except D.6 and provides a 13% revenue improvement in
average, which is quite significant. Gap correction is also very robust as it improves the
solution quality of almost all instances. An examination of the traces of algorithm AGC

reveals its main benefits: It terminates schedules early because the overall expected

Gap Reduction Techniques for Online Stochastic Project Scheduling 79

value of the projects is now negative thanks to the gap correction. It is highlighted on
instances C2 and C5: In fact, AGC now returns the optimal policy on C5. However, as
mentioned earlier, gap correction is not effective in differentiating the decisions. This is
highlighted on instance D.6 for which its solution quality decreases.

Gap Reduction Through Time Scaling. The static time-scaling algorithm ATI whose
factors are computed for each instance from the expected loss of algorithm A on the
training scenarios is also an effective gap-reduction technique. It returns better expected
values than HCDP on all instances except D1.5 (an instance where the deadlines are
much looser) and provides a 12% revenue improvement in average, which is quite sig-
nificant. In contrast to AGC , algorithms ATI and ATS are able to improve the solution
quality of instance D.6 by removing sub-optimal jobs from consideration. Using job
effectiveness is almost similarly effective and it is likely that, with a second learning
phase, it would further improve. Scaling durations uniformly on all instances is not
sufficient for improving solution quality as highlighted by the overall performance of
ATS .

Combining Gap Reduction Techniques. The best algorithm in this experimental study
is ATEPR , which combines time scaling by job effectiveness and problem reduction. It
returns better expected values than HCDP on all instances except D.6 and provides an
expected revenue improvement close to 15% over HCDP and of more than 6% over the
one-step anticipatory algorithm.

The Benefits of Gap-Reduction Techniques. The results on the instances P1–P4 con-
firm the obvious intuition: the bigger the gap, the more effective the gap reduction
techniques. In particular, on instances P3 and P4 which are the least stochastic, gap-
reduction techniques cause a slight decrease in expected value. Only a fine tightening
of the deadlines on P4 and a complex learning model for gap correction (i.e., learn a
linear regression of A+(s, d, ξ) with respect to O+(s, d, ξ) at each depth of decision)
managed to improve algorithm A slightly on this instance. More generally, gap cor-
rection, dynamic time scaling, and the hybridization of time scaling and job pruning
are robust across all instances and provide significant benefits. None of them however
uniformly dominates the others on all instances.

Running-time Comparison. An additional advantage of these gap-reduction techniques
is that they do not increase the time of decision-making. Some require offline learning
which took 1000 runs of algorithm A. Figure 10 compares two anticipatory algorithms
with HCDP in its online and the original version (OHCDP) whose quality is signifi-
cantly worse. The results gives the time taken to solve 1000 instances of instance Reg.
Algorithm OHCDP learns with 450,000 trajectories and the AT EPR learns with 1,000
scenarios. These results show that algorithms A and AT EPR outperform the HCDP
class of algorithms both in expected value and performance.

Comparison with AMSAA. A companion paper presented another approach to reduce
the anticipatory gap: the multi-step anticipatory algorithm AMSAA [5]. AMSAA is
guaranteed to converge to the optimal policy, although the convergence result is mostly

80 G. Dooms and P. Van Hentenryck

0
BBBBBBBBBBBBB@

25650 25650 25200 25650
13150 13150 12750 13150

0 −500 −450 −550
0 −250 −650 −550

21750 21500 21500 21750
9050 8550 8650 9050

0 −300 −400 −550
17228 18428 20194 16628
16250 16250 15650 15700

0 −500 −450 −600

1
CCCCCCCCCCCCCA

Avg: 10530 10289 10518 10369

Max

Fig. 9. Decision matrix in basic expectation,
the anticipativity benefits the waiting decision
(first column)

A AT EPR HCDP OHCDP

Offline − 303 s − 772 s
Online 249 s 273 s 227 h 1 s

Total 249 s 576 s 227 h 773 s

Fig. 10. Comparison of Running Times for
Solving 1000 scenarios

Table 3. Comparison of Algorithm ATEPR with AMSAA

Agr Cost2 Cost5 D.6 D1.5 Reg P1 P2 P3 P4 R.6 R1.5 Avg
AT EP R 12612 5375 0 5737 10708 8432 14446 18474 26797 28918 4357 15586 12620
AMSAA-ms 12166 4335 -3229 6143 10378 7856 14218 17879 23066 19058 3671 14502 10837
AMSAA-s 12754 4888 0 6893 10754 8452 14736 19007 26951 29099 4134 15525 12766

of theoretical interest. The following table reports the relative gap in percentage be-
tween AMSAA and ATEPR. We compare ATEPR with AMSAA-31MS in which de-
cisions are given 31ms, for a total time of 611s for 1,000 scenarios and AMSAA-32S

which takes 91h to solve those instances.
Table 3 shows that ATEPR is very competitive with AMSAA: it performs 14%

better than AMSAA-31MS in average and is within 1% of the score of AMSAA-32S

which cpu time is a factor 1000 greater than ours. On some instances, such as Cost2
and R.6, ATEPR even significantly outperforms AMSAA-32S. Note that, on some
instances such as D.6, ATEPR has a much larger gap than AMSAA but ATS in fact
performs 15% better than AMSAA-32S on that instance.

12 Conclusion

This paper studied the performance of one-step anticipatory algorithms on the online
S-RCPSP. This application is particularly challenging because of the endogenous
nature of the observations that produces a significant anticipatory gap. Despite this dif-
ficulty, the paper showed that one-step anticipatory algorithms significantly outperform
the state-of-art HCDP algorithm. The paper also studied a number of gap-reduction
techniques, including waiting, gap correction, time scaling, problem reduction, and
their hybridizations. It showed that waiting produces mixed results, typically increasing
the anticipatory gap, and often postponing decision too eagerly. The remaining
gap-reduction techniques produce significant improvements in solution quality over
HCDP, the best algorithm reaching about 15% in average. Gap-reduction techniques are

Gap Reduction Techniques for Online Stochastic Project Scheduling 81

particularly appropriate in settings in which decisions must be taken under severe time
constraints as the gap-reduction techniques do not introduce significant overhead during
execution.

References

1. Bent, R., Van Hentenryck, P.: Scenario-Based Planning for Partially Dynamic Vehicle Routing
Problems with Stochastic Customers. Operations Research 52(6) (2004)

2. Bent, R., Van Hentenryck, P.: Waiting and Relocation Strategies in Online Stochastic Vehicle
Routing. In: IJCAI 2007 (2007)

3. Choi, J., Realff, M., Lee, J.: Dynamic Programming in a Heuristically Confined State Space:
A Stochastic Resource-Constrained Project Scheduling Application. Computers and Chemical
Engineering 28(6-7), 1039–1058 (2004)

4. Mercier, L., Van Hentenryck, P.: Performance Analysis of Online Anticipatory Algorithms for
Large Multistage Stochastic Programs. In: JCAI 2007 (2007)

5. Mercier, L., Van Hentenryck, P.: AMSAA: A Multistep Anticipatory Algorithm for Multistage
Stochastic Combinatorial Optimization. In: CPAIOR (submitted, 2007)

6. Parkes, D., Duong, A.: An Ironing-Based Approach to Adaptive Online Mechanism Design in
Single-Valued Domains. In: AAAI 2007, pp. 94–101 (2007)

7. Thomas, M., Szczerbicka, H.: Evaluating Online Scheduling Techniques in Uncertain Envi-
ronments. In: The 3rd Multidisciplinary International Scheduling Conference (2007)

8. Van Hentenryck, P., Bent, R.: Online Stochastic Combinatorial Optimization. The MIT Press,
Cambridge (2006)

Integrating Symmetry, Dominance, and

Bound-and-Bound in a Multiple Knapsack
Solver

Alex S. Fukunaga

Global Edge Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
fukunaga@is.titech.ac.jp

Abstract. The multiple knapsack problem (MKP) is a classical com-
binatorial optimization problem. A recent algorithm for some classes
of the MKP is bin-completion, a bin-oriented, branch-and-bound algo-
rithm. In this paper, we propose path-symmetry and path-dominance,
which are instances of the symmetry detection by dominance detection
approach for pruning symmetric nodes in the MKP branch-and-bound
search space. In addition, we integrate the “bound-and-bound” upper
bound validation technique used in MKP solvers from the OR literature.
We show experimentally that our new MKP solver, which integrates sym-
metry techniques from constraint programming and bound-and-bound
techniques from operations research, significantly outperforms previous
solvers on hard instances.

1 Introduction

Consider m containers (bins) with capacities c1, ..., cm, and a set of n items,
where each item has a weight w1, ..., wn and profit p1, ..., pn. Packing the items
in the containers to maximize the total profit of the items, such that the sum
of the item weights in each container does not exceed the container’s capacity,
and each item is assigned to at most one container is the 0-1 Multiple Knapsack
Problem, or MKP.

For example, suppose we have two bins with capacities c1 = 10, c2 = 7, and
four items with weights 9,7,6,1 and profits 3,3,7,5. The optimal solution to this
MKP instance is to assign items 1 and 4 to bin 1, and item 3 to bin 2, giving us
a total profit of 15. Thus, the MKP is a natural generalization of the classical
0-1 Knapsack Problem to multiple containers.

Let the binary decision variable xij be 1 if item j is placed in container i,
and 0 otherwise. Then the 0-1 MKP can be formulated as the integer program
below, where constraint 2 encodes the capacity constraint for each container,
and constraint 3 ensures that each item is assigned to at most one container.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 82–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrating Symmetry, Dominance, and Bound-and-Bound 83

maximize
m∑

i=1

n∑

j=1

pjxij (1)

subject to:
n∑

j=1

wjxij ≤ ci, i = 1, ..., m (2)

m∑

i=1

xij ≤ 1, j = 1, ..., n (3)

xij ∈ {0, 1} ∀i, j. (4)

The MKP has numerous applications, including task allocation among au-
tonomous agents, continuous double-call auctions [7], multiprocessor scheduling
[9], vehicle/container loading [1], and the assignment of files to storage devices
in order to maximize the number of files stored in the fastest storage devices
[9]. A special case of the MKP where the profits of the items are equal to their
weights, i.e., pj = wj for all j is the Multiple Subset-Sum Problem (MSSP).

The MKP (including the special case of the MSSP) is strongly NP-complete.1

Thus, state-of-the-art algorithms for finding optimal solutions are based on
branch-and-bound. Previous work has shown that for problems where the ratio
of items to bins is relatively small (i.e., n/m < 4), the state-of-the-art algorithm
is bin-completion, a bin-oriented branch-and-bound algorithm [6].

The search space explored by bin-completion has many symmetric states. Pre-
vious work introduced some techniques for exploiting the symmetry and demon-
strated their utility. In this paper, we further investigate methods for exploiting
symmetries in the MKP bin-completion algorithm. We propose new techniques
that result in significant improvements over the previous state of the art. These
techniques are instances of the general symmetry breaking via dominance detec-
tion (SBDD) approach [2; 3].

A technique which is responsible for much of the power of previous branch-
and-bound MKP solvers in the OR literature is “bound-and-bound” [10; 12],
which seeks to prune nodes by heuristically seeking to validate the (optimistic)
upper bound on the total profit at each search node. We integrated this technique
into our extended bin-completion based MKP solver.

The paper is organized as follows. We start by reviewing the bin completion
algorithm (Section 2). Section 3 defines the basic framework we use for sym-
metry detection and breaking, and reviews previous algorithms for exploiting
symmetry in the MKP. We then introduce new, generalized symmetry detection
techniques which are more powerful than the previous techniques. We discuss
methods for combining various symmetry mechanisms, and compare these meth-
ods with related work on symmetry detection and breaking and in the constraint
programming literature. We describe the bound-and-bound technique and our
integration of bound-and-bound into bin-completion in Section 4. In Section 5,

1 In contrast, the single-container 0-1 Knapsack problem is weakly NP-complete, and
can be solved in pseudopolynomial time using dynamic programming.

84 A.S. Fukunaga

1 search MKP(bins, items, sumProfit)

2 if bins==∅ or items == ∅
3 if sumProfit > bestProfit then bestProfit = sumProfit; return

4 ri = reduce(bins,items) /* Pisinger’s R2 reduction */

5 if ri �= ∅
6 search MKP(bins, items \ ri, sumProfit)

7 return

8 upperBound = compute upper bound(items,bins)
9 if (sumProfit + upperB ≤ bestProfit

10 return /* upper-bound based pruning using SMKP bound */

11 if (validate upper bound(upperBound))
12 return /* bound-and-bound */

13 bin = choose bin(bins)
14 undominatedAssignments = generate undominated(items,capacity(bin))
15 foreach A ∈ sort assignments(undominatedAssignments)
16 if not(symmetric(A))
17 assign A to bin

18 search MKP(bins \ bin, items \ A, sumProfit+
P

j∈A pj)

Fig. 1. Bin-completion-based algorithm for the MKP. The top-level call is
search MKP(bins,items,0).

we experimentally evaluate various combinations of symmetry mechanisms, and
conclude with a discussion of results and directions for future work.

2 Bin-Completion Algorithm for the MKP

Bin-completion is a branch-and-bound algorithm for finding optimal solutions
to multi-container assignment problems including the MKP and bin packing
problems [6]. We briefly describe this algorithm. For simplicity of exposi-
tion, in the examples below, we assume (unless stated otherwise)
multiple-subsets sum problem (MSSP) instances, where ∀j, pj = wj.
Thus, whenever possible in the description below, we simply refer to
an item by its weight.

A bin assignment Bi = (item1, ..., itemk) is a set of all of the items that are
assigned to a given bin i, 1 ≤ i ≤ m. Thus, a valid solution to a MKP instance
consists of a set of bin assignments, where each item appears in exactly one bin
assignment. A bin assignment is feasible with respect to a given bin j if the
sum of its weights does not exceed the capacity of the bin, ci. Otherwise, the bin
assignment is infeasible. We say that a bin assignment S is maximal with respect
to bin i if S is feasible, and adding any other remaining items would make it
infeasible.

The bin-completion algorithm searches a tree where each node at depth d,
1 ≤ d ≤ m, represents a maximal, feasible bin assignment. The bin-completion
algorithm for the MKP is shown in Figure 1, where each call to search MKP
corresponds to a node in the branch-and-bound search tree (e.g., Figure 2).

Integrating Symmetry, Dominance, and Bound-and-Bound 85

Nodes are pruned according to an upper bound which is based on a relax-
ation of the problem by Martello and Toth [11] (Line 8). Pisinger’s R2 reduction
procedure [12] is applied at each node (Line 4) in order to try to reduce the prob-
lem by eliminating some items for consideration. The choose bin function (Line
13) selects the bin b with least remaining capacity. The generate undominated
function generates the set of all maximal, feasible assignments for b, with the
additional constraint that these assignments are not dominated by any other as-
signment according to a dominance criterion. Given two feasible bin assignments
F1 and F2, F1 dominates F2 if the value of the optimal solution which can be ob-
tained by assigning F1 to a bin is no worse than the value of the optimal solution
that can be obtained by assigning F2 to the same bin. Bin-completion prunes
feasible assignments which are dominated according to the following MKP dom-
inance criterion [6], which is based on the Martello-Toth dominance criterion for
bin packing [11].

Proposition 1 (MKP Dominance Criterion). Let A and B be two assign-
ments that are feasible with respect to capacity c. A dominates B if B can be
partitioned into i subsets B1, ..., Bi such that each subset Bk is mapped one-to-
one to (but not necessarily onto) ak, an element of A, and for all k ≤ i, (1) the
weight of ak is greater than or equal to the sum of the item weights of the items
in Bk, and (2) the profit of item ak is greater than or equal to the sum of the
profits of the items in Bk.

The undominated bin assignments are sorted (Line 20) in order of non-decreasing
cardinality, and ties are broken in order of non-increasing profit. The symmetric
function (Line 21) applies one of the symmetry detection strategies described in
this paper, and validate upper bound implements the bound-and-bound strat-
egy described in Section 4. For example, given a bin with capacity 10 and items
9,8,7,3,2, the undominated, feasible bin assignments are (9),(8,2), and (7,3).
It is possible for there to be a very large number of undominated bin assign-
ments generated by generate undominated, but this problem can be avoided
by processing these in smaller batches, and the only thing we lose is part of
the benefits of the value ordering (sort assignments). This is called hybrid in-
cremental branching, and details are in [6]. Figure 2 shows part of an example
bin-completion search tree.

3 Exploiting Symmetry

To describe our symmetry breaking mechanisms, which are instances of the
general SBDD approach [2; 3], we first introduce some notation and define the
notion of a nogood, which is central to all of our symmetry exploitation methods.

Let Bd denote a bin assignment which assigns the elements of set B to a bin
at depth d. Thus, (10, 8, 2)1 and (10, 7, 3)1 denote two possible bin assignments
for a bin at depth 1.

Definition 1 (Nogood). Let Xd be some node in the bin-completion search tree
at depth d. Let E1, ..., Ed−1 be ancestors of Xd at depths 1, ..., d−1, respectively.

86 A.S. Fukunaga

�

�������

�������

(83,12,5)

����
����

(42,41)

(40,11)

(42,40) (42,11)

(83,11,5) ...

Fig. 2. Part of the bin-completion search tree for a MKP instance with capacity 100 and
items with weights {83,42,41,40,12,11,5} (∀i, pi = wi) Each node represents a maximal,
feasible bin assignment Bin assignments shown with a strikethrough, e.g., (83,11,5), are
pruned because they are dominated according to the criterion in Proposition 1

For each such ancestor Ei, we say that every sibling of Ei to the left of Ei in
the depth-first bin-completion search tree is a nogood with respect to Xd.

In Figure 3, (8, 2)1 is a nogood with respect to the descendants of (7, 4)1. Since
bin-completion is a depth-first branch-and-bound algorithm, a nogood denotes
a bin assignment (node) whose descendants have been exhaustively searched in
the current search tree. The union of all current nogoods is a concise description
of the entire portion of the search tree which has been searched so far. This is
similar to the use of the term “nogood” in [4].

3.1 Path-Symmetry

Consider the search tree shown in Figure 3. Assume that the capacities for
bins 1-4 are 11,11,12, and 10, respectively. Assume that we have already ex-
haustively searched the subtree under (8, 2)1, and we have generated the node
(7, 4)1, (10)2, (8, 3)3, (6, 2, 2)4. By rearranging the items in bins 1-4, we can obtain
a new set of bin assignments: (8, 2)1, (7, 3)2, (10, 2)3, (6, 4)4. This is a symmetric
rearrangement, as the optimal solution under the first set of bin assignments is
the same as the optimal solution under the latter set of assignments. Thus, we
can prune the node at (6, 2, 2)4.

More generally: Given a bin-completion search tree where we are considering
a bin assignment for depth d, we define the current path from depth g to depth
d as the union of bins g,g + 1,...,d. The current path items are the union of all
items in the current path. For example, in Figure 3, if we are at node (6, 2, 2)4,
the current path from depth 1 to 4 is the set of bins 1, 2, 3, and 4, and the
current path items are 7, 4, 10, 8, 3, 6, 2, 2.

Definition 2 (Path-Symmetry). Let Ng be a nogood with respect to a can-
didate bin assignment Bd, and let P be the current path items from depth g to
d. we say that there is a path-symmetry with respect to nogood Ng if two condi-
tions hold: (1) every item in Ng is a member of P , and (2) it is possible to (a)
assign the items from the current path items corresponding to the items of Ng

Integrating Symmetry, Dominance, and Bound-and-Bound 87

�

�� ��
(8, 2)1

...

(7, 4)1

(10)2

(8, 3)3

(6,2,2)4

Fig. 3. The bin assignment (6, 2, 2)4 can be pruned by Path-Symmetry. (c1 = 11, c2 =
11, c3 = 12, c4 = 10).

(Items(Ng) ⊂ P) to bin g , and (b) assign the remaining items (P \Items(Ng))
to bins g + 1, ..., d such that all bins g, ..., d are feasible.

If there is a path-symmetry between Bd and some nogood Ng as defined above,
Bd can be pruned. The correctness follows directly from the definition of no-
goods.

Checking the first condition of Definition 2 is straightforward. However, check-
ing the second condition efficiently is not as straightforward, because it is essen-
tially the decision version of a bin packing problem,2 where we attempt to pack
the items in P \ Items(Ng) into bins with capacities cg+1, ..., cd. We describe
several approaches:

In the first approach, we try to directly solve this bin packing problem using a
simple backtracking algorithm (BT). The bin packing problem, like the MKP, is
strongly NP-complete, and in the worst case, BT will take time which is O(nm),
where n is the number of items and m is the number of bins. It is possible to avoid
backtracking and use a standard bin packing heuristic such as first-fit decreasing
(FFD), which has a polynomial complexity. Thus our second approach uses FFD
to pack the items P \Items(Ng) into bins g+1, ..., d. The drawback of heuristics
such as FFD is that it is not guaranteed to find a packing of the items into the
bins even if one exists. However the symmetry check is still admissible – path-
symmetry using a FFD check to test condition (2) may sometimes fail to prune
a node that a BT check would have pruned, but will never prune a node that a
BT check will not prune.

Another way to approximate the full check for condition (2) for path-symmetry
is to limit the set of items that can be swapped among the bins. That is, instead
of repacking all of the items P \ Items(Ng) into bins g + 1, ..., d, we can “lock”
some of the items into their current bins and only consider packing the unlocked
items. We consider a limited packing problem (as opposed to the full packing
problem without locked items) where we (a) assign the items from the current
path items corresponding to the items of Ng(Items(Ng) ⊂ P) to bin g, and (b)
pack the items P \ Items(Ng) into bins g + 1, ..., d, but in contrast to the full

2 In the decision version of bin packing, we are given m bins and n items, and the
problem is to determine whether all n items can be packed into m bins such that
the capacity constraints on all of the bins are not violated.

88 A.S. Fukunaga

packing problem, we lock all of the items in P \Items(Ng) except for the items in
bin g. In Fig. 3, the unlocked items would be the 7 and 4 from bin 1. The limited
packing problem is to pack the 7 and 4 into three bins: bin #2 with remaining
capacity 1 (the 10 is locked), bin #3 with remaining capacity 9 (the 8 is moved
to bin #1, the original capacity is c3 = 12, and there is a 3 which is locked,
so the remaining capacity is 12-3=9), and bin #4 with remaining capacity 2
(one of items with weight 2 has moved to bin 1, but the remaining 6 and 2 are
locked). In this case, the packing fails, so limited packing is insufficient, but a
full packing (where all current path items were unlocked) would have enabled
path symmetry detection. The choice of BT vs. FFD, and the choice of full vs.
limited packing are orthogonal choices. Thus, full packing using BT will give us
the full pruning power of path-symmetry (albeit at highest cost per node), while
limited packing using FFD gives us a weaker (but cheaper) pruning test.

A more restricted version of this test was previously considered in [6]: Given
a bin assignment Bd for the bin at depth d, we can prune Bd if there is a nogood
Ng with respect to Bd such that (1) Bd includes all the items in Ng, and (2)
if we swap the items in Ng from Bd with the items that are currently assigned
to the bin at depth g, both resulting bin assignments are feasible. We call this
strategy 2-swap-path-symmetry, because it only considers symmetries that can
be detected by swapping items between two particular bins.

3.2 Path-Dominance

Path-dominance is a generalization of path-symmetry. Consider the search tree
shown in Figure 4 for an instance where the bin capacities for bins 1-3 are 11,
12, and 13, respectively. Assume that we have already exhaustively searched the
subtree under (8, 2)1, and we have generated the current path in the search tree,
(7, 4)1, (5, 6)2, (9, 2)3. By rearranging the items in bins 1-3, we can obtain a new
set of bin assignments: (7, 2)1, (5, 6)2, (9, 4)3. This is a symmetric rearrangement,
since the optimal solution under the first sequence of bin assignments must be
the same as the optimal solution the latter sequence of assignments. Thus, we
can prune the node (9, 2)3, since (8, 2)1 dominates (7, 2)1. More generally:

Definition 3 (Path-Dominance). Let Ng be a nogood with respect to candi-
date bin assignment Bd, and let P be the current path items from depth g to
d. We say that there is a path-dominance symmetry with respect to nogood Ng

�

�� ��
(8, 2)1

...

(7, 4)1

(5, 6)2

(9,2)3

Fig. 4. The bin assignment (9, 2)3 can be pruned by Path-Dominance (c1 = 11, c2 =
12, c3 = 13)

Integrating Symmetry, Dominance, and Bound-and-Bound 89

established at depth g if there exists some s ⊂ P such two conditions hold: (1)
s is dominated by Ng according to the MKP dominance criterion and (2) it is
possible to (a) assign s to bin g, and (b) assign the remaining items (P \ s) to
bins g + 1, ..., d such that all bins g, ..., d are feasible.

If there is a path-dominance symmetry between Bd and some nogood Ng as
defined above, Bd can be pruned. This follows from the definition nogoods and
Proposition 1.

Our current implementation of path-dominance works as follows. We enumer-
ate subsets of the current path items such that each such subset s is dominated
by Ng and is maximal, i.e., there is no other item which can be packed into
the Ng. For each such s, we test whether condition (2) of the path-dominance
symmetry definition (Definition 3 is satisfied. If so, then a path-dominance has
been detected, so the current node can be pruned. The test for condition (2) is
the same as the corresponding test for path-symmetry in the previous section.
Thus, the same four implementations of the check are possible: (a) full packing
with BT, (b) full packing with FFD, (c) limited packing with BT, and (d) lim-
ited packing with FFD. In the worst case, this check is executed for each subset
s that satisfies condition (1) of Definition 3, so checking for path-dominance can
be quite expensive.

The following, highly restricted form of Path-Dominance was proposed by
Fukunaga and Korf [6]. Given a bin assignment Bd for depth d, we can prune
Bd if there is a nogood Ng with respect to Bd such that (1) Ng dominates B
according to the MKP dominance criterion (Proposition 1), and (2) The items
in Bd can be swapped with the current items in bin g, such that the resulting
bin assignments are both feasible. In other words, this is a restricted Path-
Dominance test where all bins are frozen except for the bin at depth d. We call
this strategy 2-swap-path-dominance.

3.3 Combining Symmetry Breaking Strategies

We have defined a spectrum of symmetry-breaking techniques above, ranging
from the weakest, 2-swap-path-symmetry, to the strongest, full path-dominance
with BT. Path-dominance, using the full packing with backtracking implemen-
tation, clearly subsumes all of the other criteria. For example, every node which
can be pruned by path symmetry will also be pruned by path-dominance (but
not vice versa). However, there is a trade-off between the amount of pruning
enabled by a symmetry relation and the amount of overhead incurred at each
node in order to detect the symmetry. To alleviate this trade-off, we combine the
strategies by chaining a set of tests so that the cheapest, least powerful symme-
try is applied first. If this prunes the node, then the cost of applying the more
powerful (but costly) symmetries is not incurred. However, if the node is not
pruned, then we apply another, more powerful symmetry, and so on.

A preliminary study presented at a workshop reported results on 11 different
configurations of symmetry-checking tests [5]. While we have found that path-
symmetry (including 2-swap-path-symmetry) and 2-swap-path-dominance are

90 A.S. Fukunaga

relatively efficient and often offer a favorable trade-off between search reduction
and increased cost per node, we have not yet found a way to reduce the cost of the
more powerful variants (full/limited path dominance using either backtracking
or FFD) sufficiently to justify their use. The specific configurations used this
paper are described in Section 5.

3.4 Relationship to Previous Work on Symmetry Detection

Our MKP symmetry breaking mechanisms are domain-specific instances of the
symmetry breaking via dominance detection (SBDD) approach [2; 3]. A signifi-
cant difference is that in addition to detecting equivalences to previously explored
subtrees (2-swap-path-symmetry and path-symmetry), our 2-swap-path-
dominance and path-dominance algorithms also detect partial solutions which
are dominated by previously explored subtrees (according to Proposition 1).

Our work is also similar to the pruning technique proposed by Focacci and
Shaw [4] for constraint programming, which was applied to the TSP with time
windows. Both methods attempt to prune the search by proving that the cur-
rent node at depth j, which represents a partial j-variable (bin3) solution x, is
dominated by some previously explored i-variable (bin) partial solution (nogood
bin assignment) q, where i < j.

The main difference between our method and Focacci and Shaw’s method is
the approach used to test for dominance. Focacci and Shaw’s method extends q
to a j-variable partial solution q′ which dominates x. They apply a local search
procedure to find the extension q′. In contrast, our methods start with a partial,
j-bin solution x and try to transform it to a partial solution x′ such that x̄′i, the
subset of x′ including the first i bins, is dominated by the i-bin partial solution
q. We do this by transforming (via item swaps) the contents of bins i, i + 1, ..., j
in x to derive a feasible partial solution x′ such that x̄′i is dominated by q.

4 Bound and Bound

A powerful technique for solving the MKP is bound-and-bound, which was origi-
nally implemented in Martello and Toth’s MTM solver for the MKP [10]. In stan-
dard branch-and-bound, an upper bound U is computed at each node in the search
tree. If U ≤ L, L, where L is a lower bound, e.g., the best (highest) objective func-
tion score found so far by branch-and-bound, then exploring the node further is
futile, so the node can be pruned. On the other hand, if U > L, then standard
branch-and-bound does not prune the node. Bound-and-bound extends this by
applying some heuristic technique to attempt to validate the upper bound: When
U > L, bound-and-bound attempts to prove that the upper bound U can be
achieved somehow in the current subtree – if so, then we have found the value
of the optimal subsolution under the current node and can backtrack.

The most powerful implementation of this idea is in Pisinger’s Mulknap solver
[12]. Mulknap is an item-oriented branch-and-bound algorithm. The items are
3 Our analogues of CP variables and values are bins and bin assignments, respectively.

Integrating Symmetry, Dominance, and Bound-and-Bound 91

ordered according to non-increasing efficiency (ratio of profit to weight), so that
the next item selected by the variable-ordering heuristic for the item-oriented
branch-and-bound is the item with highest efficiency that was assigned to at
least one container by a greedy bound-and-bound procedure (see below). The
branches assign the selected item to each of the containers, in order of non-
decreasing remaining capacity.

At each node, an upper bound is computed using a relaxation of the MKP
called the surrogate relaxed MKP (SMKP), which is obtained by combining all
of the remaining m containers in the MKP into a single container with aggregate
capacity C =

∑m
i=1 ci, resulting in the single-container, 0-1 knapsack problem:

where the items are the remaining items and the knapsack has the capacity of
the aggregate container. The SMKP, which is currently the most effective upper
bound for the MKP [8], can be solved by applying any algorithm for optimally
solving the 0-1 Knapsack problem.

At each node, Mulknap attempts to validate the SMKP upper bound by
showing that there exists a partition of the SMKP 0-1 Knapsack solution into
the remaining empty spaces in the m bins of the original MKP instance. This
is done by solving a series of m subset-sum problems which allocate the items
from the SMKP solution to each bin, minimizing the unused capacity in each bin
(without exceeding capacity). If this partition is successful then the SMKP upper
bound can be achieved by partitioning the SMKP solution into the remaining
spaces in the bins, so we have validated the upper bound possible under the
current branch-and-bound node (and thus, we can backtrack).

Bound-and-bound can be extremely powerful for solving the MKP. In fact, for
many random benchmarks with a relatively large ratio of items to bins (n/m >
5), bound-and-bound can often validate the SMKP upper bound at the root
node of the search tree, which means that the instance is solved at the root node
without requiring any branch-and-bound search.

We implemented Pisinger’s bound-and-bound mechanism into our bin-
completion solver: at each node, we attempt to validate the SMKP upper bound
by partitioning the SMKP solution into the remaining bins (recall that in bin-
completion, at depth b, m−b bins are empty). Our implementation of the SMKP
bound is a straightforward, primal branch-and-bound. Our implementation of
the splitting procedure uses a standard branch-and-bound procedure using the
max-cardinality bound [8].

5 Experimental Results

We compared the following bin-completion based MKP solver configurations:

– PureBC: bin completion with no symmetry checking and no bound-and-
bound.

– 2-Dom: Apply 2-swap-path-symmetry first, and if the node is not pruned,
then try applying 2-swap-path-dominance. This corresponds to the “Bin-
completion with nogood dominance pruning” algorithm reported in [6].

92 A.S. Fukunaga

– PathSym: First, try 2-swap-path-symmetry, then try 2-swap-path-
dominance, and finally, apply path-symmetry, using the limited packing with
FFD implementation described above.

– 2-Dom-BB: Same as 2-Dom, with bound-and-bound.
– PathSym-BB: Same as PathSym, with bound-and-bound.

All of our algorithms were implemented in Common Lisp and compiled using
the CMUCL compiler version 19d. In addition, we also compared our algorithms
with Pisinger’s Mulknap algorithm (using Pisinger’s C implementation, compiled
using gcc version 4.12 with the -O3 option.

We evaluated the various solver configurations using the following four stan-
dard classes of problems from the MKP literature.

– uncorrelated instances, where the profits pj and weights wj are uniformly
distributed in [min, max].

– weakly correlated instances, where the wj are uniformly distributed in
[min,max] and the pj are randomly distributed in [wj −(max−min)/10, wj+
(max − min)/10] such that pj ≥ 1,

– strongly correlated instances, where the wj are uniformly distributed in
[min,max] and pj = wj + (max − min)/10, and

– multiple subset-sum instances, where the wj are uniformly distributed in
[min, max] and pj = wj .

In our experiments, min = 1, max = 1000. The first m − 1 bin capacities ci

were uniformly distributed in [0.4
∑n

j=1 wj/m, 0.6
∑n

j=1 wj/m] for 1 ≤ i < m.
The last capacity cm is chosen as cm = 0.5

∑n
j=1 wj −

∑m−1
i=1 ci to ensure that

the sum of the capacities is half of the total weight sum. Degenerate instances
were discarded as in Pisinger’s experiments [12].

We used instances where the ratio of items to bins (n/m) ranged from 2
to 10. This is because for n/m ≥ 10, Mulknap frequently finds a solution at
the root node by succeeding in validating the SMKP upper bound with the
subset-sum based bound-and-bound. For example, we generated 1000 instances
each of the uncorrelated, weakly-correlated, strongly-correlated, and multiple
subset-sum instances with 10 bins and 100 items, where [min, max] = [1,1000].
Mulknap solved all 4000 instances at the root node (i.e., without search) in less
than 0.01 seconds per instance (see [12] for related results). On the other hand,
for n/m ≤ 5, the bound-and-bound at the root node usually fails, and Mulknap
is forced to branch. It is therefore the instances with smaller n/m ratios that are
in some sense the most difficult random MKP instances that can be generated
using the model described above, so we focus on these problems.

The results are shown in Table 1. All experiments were run on a 2.4 GHz Intel
Core2 Duo. Each experiment was run on 20 instances per (# bins, # items) pair
(all configurations were run on the same instances), so a total of 480 instances
were used. The fail column indicates the number of instances (out of 20) that
were not solved within the time limit (300 seconds/instance). The time and nodes
show average time spent and nodes searched on the successful runs, excluding

Integrating Symmetry, Dominance, and Bound-and-Bound 93

the failed runs. Thus, in the experiments where there were timeouts, the fail
column is the most significant result.

There are several clear trends in the results. First, symmetry-based pruning is
most effective for low n/m, and becomes less effective for high n/m. For n/m < 5,
the variants that use some form of symmetry (2-Dom, 2-Dom-BB,PathSym,
PathSym-BB) clearly search significantly less nodes than PureBC, and using
less runtime. The only exception was for uncorrelated 12-bin, 48-item instances.
For n/m ≥ 5, the savings in nodes searched is insufficient to offset the cost of
symmetry-based pruning. The % of nodes pruned due to symmetry techniques is
highest for less correlated instances. This is because the dominance criterion is
most powerful when item weights and profits are highly correlated, which means
that most candidate bin assignments are pruned by the dominance criterion
during generate dominated (Fig 2, line 14), and are never considered.

Second, bound-and-bound becomes more effective as n/m increases, and the
overhead associated with bound-and-bound decreases as n/m increases. For
n/m = 2 (30-bin, 60-item instances), the overhead of bound-and-bound is suf-
ficiently large enough that there is a significant performance degradation in
2-Dom-BB and PathSym-BB compared to 2-Dom and PathSym, respectively.
However, for larger values of n/m, the relative overhead of bound-and-bound
becomes less significant, and for n/m ≥ 5, bound-and-bound is significantly
enhancing the performance of the bin-completion variants.

The search behavior of Mulknap and bin-completion variants with bound and
bound (2-Dom-BB and PathSym-BB) are similar when n/m ≥ 5. In principle,
when Mulknap can solve a problem at the root node without search, the bin-
completion variants should also solve the same problem at the root node. Below
the root node, the search behaviors of Mulknap and bin-completion with bound-
and-bound can diverge, because Mulknap branches on individual items, using
a variable ordering based on decreasing item efficiency (p/w ratio), while bin-
completion is branching on undominated bin assignments, where the variable
ordering is based on minimal cardinality, using profit as a tie-breaker.

The performance differences between Mulknap and our 2-Dom-BB/PathSym-
BB variants on the strongly-correlated and multiple subset-sum instances for 10
bins/60 items, and 10 bins/100 items can be explained by a differences in the
implementation of the 0-1 Knapsack solver used to compute the SMKP (lower
bound) solution. There are cases where there exist multiple optimal solutions to
the SMKP 0-1 Knapsack instance, all with the same total profit, but with dif-
fering total weight (such cases more common for multiple-subset sum instances
and strongly correlated instances). Mulknap implements a specialized 0-1 Knap-
sack solver which is biased to find solutions with the smallest weight sum (which
makes it more likely that the solution is splittable by the bound-and-bound sub-
set sum solver) Our current 0-1 Knapsack solver did not implement this bias, and
as a consequence, missed opportunities to successfully apply bound-and-bound.
Thus, Mulknap performed significantly better than 2-Dom-BB and PathSym-BB
for the strongly-correlated and multiple subset-sum instances for n/m ≥ 5, even
though in principle (with a better implementation of the SMKP 0-1 Knapsack

94 A.S. Fukunaga

U
n
c
o
r
r
e
la

t
e
d

I
n
s
t
a
n
c
e
s

30
b
in

s,
60

it
em

s
15

b
in

s,
45

it
em

s
12

b
in

s,
48

it
em

s
15

b
in

s,
75

it
em

s
10

b
in

s,
60

it
em

s
10

b
in

s,
10

0
it

em
s

fa
il

ti
m

e
n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
M

u
lk

n
ap

20
n
/a

n
/a

20
n
/a

n
/a

10
42

.9
5

12
02

51
6

13
0.

01
3

0
1.

84
41

27
1

0
<

0.
01

1

P
u
re

B
C

20
n
/a

n
/a

14
12

5.
38

17
59

39
90

3
3
8
.6

9
4
1
3
5
9
5
9

3
41

.6
1

75
40

25
0

21
.3

0
41

56
63

20
n
/a

n
/a

2-
D

om
10

91
.4

9
41

80
50

5
10

62
.2

0
37

25
74

7
3

61
.2

9
19

30
29

6
4

72
.2

9
60

02
77

0
53

.3
4

41
42

49
20

n
/a

n
/a

2-
D

om
-B

B
12

79
.9

87
23

84
74

1
10

74
.3

6
37

23
60

5
3

62
.8

4
18

93
53

9
2

6.
65

38
42

1
0

1
.0

4
7
9
8
1

0
<

0.
01

1

P
at

h
S
ym

3
4
0
.3

0
7
5
2
9
9
0

8
3
1
.4

4
9
0
8
6
7
7

3
48

.3
6

57
20

37
4

78
.0

7
55

63
27

0
56

.6
3

39
52

54
20

n
/a

n
/a

P
at

h
S
ym

-B
B

4
37

.1
6

54
97

04
8

36
.2

8
90

75
31

3
48

.8
9

55
57

86
2

6
.5

0
3
5
9
0
7

0
1.

11
75

53
0

<
0.

01
1

W
e
a
k
ly

C
o
r
r
e
la

t
e
d

I
n
s
t
a
n
c
e
s

30
b
in

s,
60

it
em

s
15

b
in

s,
45

it
em

s
12

b
in

s,
48

it
em

s
15

b
in

s,
75

it
em

s
10

b
in

s,
60

it
em

s
10

b
in

s,
10

0
it

em
s

fa
il

ti
m

e
n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
M

u
lk

n
ap

20
n
/a

n
/a

20
n
/a

n
/a

20
n
/a

n
/a

20
n
/a

n
/a

11
11

6.
11

20
11

53
9

0
<

0.
01

1

P
u
re

B
C

20
n
/a

n
/a

13
11

0.
76

50
08

82
5

5
83

.0
8

45
96

50
3

1
9

2
7
8
.4

4
1
0
5
5
4
7
7
6

1
46

.5
0

77
01

59
20

n
/a

n
/a

2-
D

om
6

70
.2

6
16

28
33

1
9

65
.2

7
20

43
28

5
4

79
.9

5
23

37
02

0
20

n
/a

n
/a

2
59

.9
6

65
03

87
20

n
/a

n
/a

2-
D

om
-B

B
7

72
.1

4
14

18
03

4
9

71
.2

9
20

43
12

3
4

83
.1

4
23

35
93

0
20

n
/a

n
/a

1
37

.0
8

54
60

95
0

<
0.

01
69

P
at

h
S
ym

1
5
2
.3

1
8
2
2
1
8
8

6
5
7
.6

7
1
3
8
7
7
5
3

4
4
3
.3

6
7
9
9
5
5
5

19
29

7.
59

23
88

08
7

2
56

.8
6

36
79

94
20

n
/a

n
/a

P
at

h
S
ym

-B
B

1
52

.5
8

61
49

72
6

62
.5

3
13

87
62

5
4

45
.1

2
79

85
71

19
29

7.
13

23
49

92
1

1
3
3
.3

8
2
7
6
4
2
0

0
<

0.
01

69
S
t
r
o
n
g
ly

C
o
r
r
e
la

t
e
d

I
n
s
t
a
n
c
e
s

30
b
in

s,
60

it
em

s
15

b
in

s,
45

it
em

s
12

b
in

s,
48

it
em

s
15

b
in

s,
75

it
em

s
10

b
in

s,
60

it
em

s
10

b
in

s,
10

0
it

em
s

fa
il

ti
m

e
n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
M

u
lk

n
ap

20
n
/a

n
/a

20
n
/a

n
/a

3
97

.5
0

96
22

23
0

14
.2

8
13

74
95

0
<

0.
01

1
0

<
0.

01
1

P
u
re

B
C

17
12

9.
07

29
18

10
8

5
62

.6
1

10
26

43
4

2
31

.3
9

60
98

82
1

39
.5

2
21

99
95

1
45

.6
5

25
15

84
20

n
/a

n
/a

2-
D

om
1

31
.0

1
44

07
18

3
36

.9
3

67
61

54
0

48
.2

3
66

08
30

1
59

.5
2

21
98

58
1

69
.7

4
25

14
95

20
n
/a

n
/a

2-
D

om
-B

B
1

39
.2

3
44

07
18

3
41

.2
9

67
60

14
1

37
.0

9
54

01
83

0
4.

61
17

56
0

0
0.

59
28

50
3

<
0.

01
1

P
at

h
S
ym

0
1
1
.6

5
1
4
3
8
8
6

1
4
6
.2

6
7
9
8
7
9
1

0
2
9
.2

3
3
2
1
2
5
5

1
62

.4
1

21
80

49
1

71
.5

1
24

91
79

20
n
/a

n
/a

P
at

h
S
ym

-B
B

0
15

.2
0

14
38

86
2

36
.1

3
53

72
65

0
30

.3
7

31
85

12
0

4
.6

8
1
7
5
4
3

0
0.

61
28

46
3

<
0.

01
1

M
u
lt
ip

le
S
u
b
s
e
t
-S

u
m

I
n
s
t
a
n
c
e
s

30
b
in

s,
60

it
em

s
15

b
in

s,
45

it
em

s
12

b
in

s,
48

it
em

s
15

b
in

s,
75

it
em

s
10

b
in

s,
60

it
em

s
10

b
in

s,
10

0
it

em
s

fa
il

ti
m

e
n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
fa

il
ti

m
e

n
od

es
M

u
lk

n
ap

20
n
/a

n
/a

14
11

1.
11

78
36

53
2

25
.5

2
16

84
55

0
0
.0

1
2

0
0.

01
1

0
<

0.
01

1

P
u
re

B
C

16
12

2.
46

27
15

57
1

4
34

.5
4

98
94

28
0

4.
20

10
62

43
0

7.
51

18
05

0
0

14
.1

1
24

83
0

15
0.

54
10

2-
D

om
1

9.
40

22
52

08
2

20
.4

1
53

26
74

0
3.

13
64

77
5

0
8.

91
17

99
3

0
16

.6
0

24
80

3
15

0.
54

10
2-

D
om

-B
B

1
11

.4
8

22
52

08
2

21
.6

7
53

26
71

0
3.

13
64

76
4

0
5.

83
17

99
3

0
6.

19
24

33
9

14
0.

36
8

P
at

h
S
ym

0
5
.5

1
1
0
6
5
5
1

1
2
7
.9

2
5
6
5
1
9
6

0
2
.8

2
4
5
6
7
1

0
8.

82
17

90
2

0
16

.8
1

24
66

8
15

0.
55

10
P
at

h
S
ym

-B
B

0
6.

88
10

65
51

1
29

.9
1

56
51

93
0

2.
85

45
66

0
0

5.
76

17
90

2
0

6.
27

24
21

3
14

0.
36

8

T
ab

le
1.

C
o
m

p
a
ri
so

n
o
n

ra
n
d
o
m

in
st

a
n
ce

s
fo

r
2
≤

n
/
m

≤
1
0
.
It

em
w

ei
g
h
ts

w
er

e
in

[1
,1

0
0
0
].

T
h
e

fa
il

co
lu

m
n

in
d
ic

a
te

s
th

e
n
u
m

b
er

o
f

in
st

a
n
ce

s
(o

u
t

o
f
2
0
)

th
a
t

w
er

e
n
o
t

so
lv

ed
w

it
h
in

th
e

ti
m

e
li
m

it
(3

0
0

se
co

n
d
s/

in
st

a
n
ce

).
T

h
e

ti
m

e
a
n
d

n
o
d
e
s

sh
ow

av
er

a
g
e

ru
n
ti

m
es

a
n
d

n
o
d
es

se
a
rc

h
ed

o
n

th
e

su
cc

es
sf

u
l
ru

n
s,

ex
cl

u
d
in

g
th

e
fa

il
ed

ru
n
s.

Integrating Symmetry, Dominance, and Bound-and-Bound 95

solver), the performances should have been identical, as both algorithms could
have solved all of these instances at the root node.

To highlight the performance differences between the various symmetry prun-
ing techniques, we describe some experiments with smaller problem instances,
where all bin-completion based configurations were more likely to find a solution
within the time limit. For uncorrelated instances with 10 bins, 30 items, PureBC
solves all instances in an average of 9.13 seconds and 1,662,504 nodes. In compar-
ison, 2-Dom solves all instances in 0.57 seconds and 47,193 nodes, and PathSym
solves all instances in 0.28 seconds and 9,432 nodes. Thus, 2-Dom and PathSym
are searching 2 and 3 orders of magnitudes fewer nodes than PureBC, respec-
tively. Finally, we consider another configuration, PathDom, which first applies
the same sequence of symmetry tests as PathSym, and finally applies the full
path-dominance test using backtracking – thus, PathDom applies our most pow-
erful pruning criterion and searches the fewest number of nodes. PathDom solves
all of these instances in 0.78 seconds and 5031 nodes. Thus, exploiting the most
powerful dominance criterion can yield almost another factor of 2 reduction in
nodes searched for these instances, but the additional cost per node results in an
overall 3x slowdown. We have not found any configuration using path dominance
(other than the highly restricted 2-Dom case) where the search reduction was
sufficient to offset the additional cost per node.

Overall, PathSym significantly reduced the size of the branch-and-bound tree
compared to 2-Dom, the previous state of the art [6] algorithm for MKP prob-
lems with low n/m ratios. The results in Table 1 show that exploiting symmetry
is a very effective technique for hard MKP instances with low n/m ratio. Fur-
thermore, integrating bound-and-bound was shown to significantly improve per-
formance on instances with higher n/m ratios, while modestly penalizing perfor-
mance on instances with lower n/m ratios. Thus, the PathSym-BB configuration,
which successfully integrates bin-completion, symmetry-based pruning (a combi-
nation of 2-swap-path-symmetry, 2-swap-path-dominance and path-symmetry),
and Pisinger’s bound-and-bound technique, can be considered a new, state-of-
the-art algorithm for instances for low n/m ratios.

6 Conclusions

This paper presented an algorithm for the multiple knapsack problem which
integrates techniques from constraint programming (symmetry-based pruning),
operations research (bound-and-bound, as well as the SMKP upper bound and
other techniques borrowed from Mulknap and earlier MKP solvers from the
OR literature), and the AI literature (the bin-completion search space [6]). We
proposed two new, symmetry breaking mechanisms (path symmetry and path
dominance) which are generalizations of previously studied strategies (2-swap-
path-symmetry and 2-swap-path-dominance). We showed that integrating path-
symmetry resulted in a new solver which significantly outperformed the previous
state of the art, 2-swap dominance based bin-completion solver reported in [6].

96 A.S. Fukunaga

We further showed that integrating bound-and-bound could significantly im-
prove the performance on problems with higher n/m ratios.

There are several directions for future work. Although path-dominance is our
most powerful symmetry relation, the current implementation is not competitive
with path symmetry due to the large overhead incurred at each node. We are
currently investigating improved implementations and approximate detection
strategies to make path-dominance more viable. Likewise, our current imple-
mentation of bound-and-bound uses naive branch-and-bound algorithms for the
SMKP upper bound and subset sum computation for bound validation. As dis-
cussed in Section 5, integration with more sophisticated algorithms is likely to
result in significant performance improvements. Finally, the symmetry detection
techniques described in this paper are not limited to the MKP. For example, it
is straightforward to apply the symmetry techniques to improve the search effi-
ciency of any of the bin-completion based solvers for bin packing, bin covering,
and min-cost covering problems described in [6].

References

1. Eilon, S., Christofides, N.: The loading problem. Management Science 17(5), 259–
268 (1971)

2. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Proceedings of
the International Conference on Constraint Programming, pp. 93–107 (2001)

3. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Pro-
ceedings of the International Conference on Constraint Programming, pp. 77–92
(2001)

4. Focacci, F., Shaw, P.: Pruning sub-optimal search branches using local search. In:
Proc. CPAIOR, pp. 181–189 (2002)

5. Fukunaga, A.: Exploiting symmetry in multiple knapsack problems. In: Proc. Sev-
enth International Workshop on symmetry and constraint satisfaction problems,
pp. 39–46 (2007)

6. Fukunaga, A., Korf, R.: Bin-completion algorithms for multicontainer packing,
knapsack, and covering problems. Journal of Artificial Intelligence Research 28,
393–429 (2007)

7. Kalagnanam, J.R., Davenport, A.J., Lee, H.S.: Computational aspects of clear-
ing continuous call double auctions with assignment constraints and indivisible
demand. Electronic Commerce Research 1, 221–238 (2001)

8. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

9. Labbé, M., Laporte, G., Martello, S.: Upper bounds and algorithms for the max-
imum cardinality bin packing problem. European Journal of Operational Re-
search 149, 490–498 (2003)

10. Martello, S., Toth, P.: A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics 3, 275–288 (1981)

11. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons, Chichester (1990)

12. Pisinger, D.: An exact algorithm for large multiple knapsack problems. European
Journal of Operational Research 114, 528–541 (1999)

Cost Propagation – Numerical Propagation for

Optimization Problems

Birgit Grohe and Dag Wedelin�

Department of Computer Science and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden

Abstract. We investigate cost propagation for solving combinatorial
optimization problems with finite domain variables, expressed as an addi-
tive component model. Cost propagation combines ideas from both con-
straint programming and integer programming into a single approach,
where problems are iteratively solved by numerical propagation, with
updates for single constraint terms in the component model.

We outline a theory of propagation in terms of equivalent problems
with notions of consistency, local optimality, convergence and bounds.
We define several different updates and analyze their properties.

Finally, we outline computational experiments on the simple assign-
ment problem, the set partitioning problem, and a crossword puzzle. The
experiments illustrate that even without a top level search, cost prop-
agation can by itself solve non-trivial problems, and also be attractive
compared to standard methods.

1 Introduction

Combinatorial optimization problems are often modelled as integer linear pro-
gramming (ILP) problems and solved with standard ILP methods. This works
well for many problems, but the model cannot easily handle non-linear cost func-
tions and constraints that may require many variables and constraints. With
constraint programming (CP), many kinds of constraints can be modelled in a
constraint satisfaction problem (CSP), and the structure of the problem can be
exploited with efficient propagation algorithms. On the other hand, it is non-
trivial to model an objective function or costs in general.

Cost propagation can be described as a numerical optimization method with a
CP-like structure for the model and the computations. Building on the previous
work of Wedelin [14,15,17], the contribution of this paper consists of a formal-
ization and extension of the theory (in particular non-conflicting updates are
new), as well as some computational experiments. For more difficult problems,
cost propagation may be combined with search, or can be used heuristically to
ensure convergence and integer solutions (see [15]).

Our starting point is a component model (in [1] also called nonserial uncon-
strained problems)

max
x

f(x) =
∑

k

gk(xk) (1)

� Corresponding author.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 97–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 B. Grohe and D. Wedelin

where x is an array of finite domain variables and where the terms gk(xk) ∈ R

are distinct arbitrary functions over subsets xk of x. Let these terms be called the
components of the objective function and let them be expressed e.g. as tables. We
distiguish between variable-components with only one variable and constraint–
components with two or more variables. We can use binary variables to efficiently
represent discrete finite domain variables, so we can without loss of generality
restrict the theory to this case. An upper bound can be obtained for any compo-
nent model by simply adding the largest value of each component. We call this
the component bound.

A CSP can be described by modelling constraints as constraint-components
with the values 0 and −∞ to express feasible and infeasible assignments, and
we can say that a solution is feasible if it has an objective value greater than
−∞, and infeasible otherwise. A binary ILP can be translated into our model
by additionally introducing a variable-component for each variable and its cost.
For example, the problem

max { 2x1 + 3x2 + 2x3 | x1 + x2 = 1, x2 + x3 = 1, xj binary} (2)

can be expressed as follows:

max
x∈{0,1}3

g1(x1) + g2(x2) + g3(x3) + g4(x1, x2) + g5(x2, x3),

where the components have values as shown in figure 1.

0

0

0

0

0

0

0

0 0 00 00 00

0

0

0

0

0

1
1

111 11

11

1

1

22 3

−∞ −∞

−∞−∞

−∞

−∞

x1 x2
g1(x1) g2(x2) g3(x3)g4(x1, x2) g5(x2, x3)

(a) (b)

Fig. 1. (a) Component cost tables for the ILP example. (b) Alternative representation
of g4(x1, x2).

A possible problem with this representation is that explicit tables grow ex-
ponentially with the number of variables in a constraint. However, for many
common constraints the components can be represented implicitly, and as in CP
it is possible to design efficient specialized update algorithms.

Any component model can in principle be translated into a binary ILP by
introducing additional binary variables for each feasible entry in the component
tables and linear constraints for consistency between all the variables. The re-
sulting ILP is linear in the size of an explicit representation of the component
model. While mostly of theoretical interest, such a translation can be used to
link properties of this approach with well known results in optimization.

Cost Propagation – Numerical Propagation for Optimization Problems 99

To illustrate the relationship between cost propagation and propagation in
CP we will express the standard CP domain reduction operation (that we call
the CP-update) numerically. Let g1(x1), g2(x2), g3(x3) be variable–components
representing the current domains for three finite domain variables, x1, x2, and
x3. Let g4(x1, x2, x3) be a constraint-component representing a constraint over
these variables. Now when T and F is represented by 0 and −∞, the logical
operator AND can be represented by addition and OR by maximization. The
CP-update can then be described as follows:

1. Input to the update are the current domains represented by the components
g1(x1), g2(x2), g3(x3).

2. Combine the constraint and the current domains to form an intermediate
table

h(x1, x2, x3) = g1(x1) + g2(x2) + g3(x3) + g4(x1, x2, x3).

3. Calculate updated variable-components g′1(x1), g′2(x2), g′3(x3) by maximizing
the intermediate table over the other variables:

g′1(x1) = max
x2,x3

h(x1, x2, x3),

g′2(x2) = max
x1,x3

h(x1, x2, x3),

g′3(x3) = max
x1,x2

h(x1, x2, x3).

The updated variable-components will show which variable values are feasible
(component value 0) and infeasible (component value −∞), just as for the CP-
update.

So, from the perspective of CP, cost propagation can be seen as an explo-
ration of a richer set of models and methods by using arbitrary numbers rather
than just 0 and −∞. There are within CP a number of approaches to using
the objective function as a constraint, and different methods to use cost infor-
mation and optimization in filtering algorithms, see e.g. [11,3,12,6,7]. It is our
understanding however, that the propagation between constraints through the
variable domains is still non-numerical and none of these approaches actually
try to find the optimal solution to the problem with the propagation mechanism
itself. Our approach is much closer to the kind of propagation used in AI for
inference in graphical models or belief networks, although there the goal is not
optimization but to calculate marginal probabilities, see e.g. [10,14]. Another
source of inspiration is relaxation labeling, see e.g. [5].

From the perspective of ILP, we can in principle translate the entire compo-
nent model into an ILP, where cost propagation can be seen as an iterative dual
decomposition method. However, depending on the kind of update used, it may
or may not be described in terms of maximization of the dual. Some characteris-
tic properties of our approach are that we start from the component model (1),
adopting a CP-style approach in defining the problem and the subproblems, we
rely on constraint level update algorithms and propagation rather than on an
LP-solver, and we treat the variable values 0 and 1 symmetrically.

100 B. Grohe and D. Wedelin

Finally, the component model (1) is investigated by Bertelè and Brioschi [1]
using nonserial dynamic programming. This kind of model is also commonly
approached by dynamic programming algorithms such as the Viterbi algorithm
[13] for Markov chains.

For space reasons, proofs and some derivations have been omitted, and the
computational experiments are sketched. For a more complete account, we kindly
refer the reader to [4].

2 Cost Propagation

Propagation will proceed as an iterative sequence of updates, considering one
constraint-component at a time, with the aim to find an optimal solution, im-
prove the bound and reduce domains. This is done by iteratively changing the
values of the components, which are seen as variables in a computer program.
Any changes to the components must preserve equivalence, i.e. the sum of all
components in the problem must always be equal to the original objective func-
tion f(x).

At any time, we have a current solution determined from the variable-compo-
nents, defined as follows:

Definition 1. The current solution is the solution to the trivial problem

max
x

∑

j

gj(xj). (3)

The normal case is that the current solution is unique, otherwise we consider it
as undefined.

Note that this is the same as maximizing each variable-component separately.
We also need to define subproblems consisting of a single constraint-compo-

nent and its associated variable-components:

Definition 2. Let the subproblem with respect to the constraint–component gi(xi)
be the following maximization problem:

max
x

gi(xi) +
∑

j∈v(i)

gj(xj). (4)

Here, v(i) is the index set of variables involved in constraint–component gi(xi),
but it is a formal matter if the sum is extended to all variables. Figure 2 (a)
shows an example of the components involved in a two-variable subproblem.

Components will be changed iteratively by cost updates defined as follows:

Definition 3. A cost update for a subproblem is a transformation into an equiv-
alent problem by changing only the components of the subproblem.

For example, figure 2 (a) illustrates a subproblem with two variables. In figure 2
(b) the variable-components have been moved in, i.e. added to the constraint-
component (the values of the variable-components are then 0 to preserve equiv-
alence). The solution to the subproblem is found by identifying the maximum

Cost Propagation – Numerical Propagation for Optimization Problems 101

(a) (b) (c) (d)

4

2

− 7

− −∞

4 −

2 −∞

5 8

2

8

5 8

−5 −∞

−8 −8 4

2 4

− −∞

− 0

0

0

1

11

1

1

1

1

1

Fig. 2. (a) Original subproblem, (b) Intermediate table with the sum of all subproblem
components, (c) After DP-update, (d) A non-conflicting update

value of this table. In figure 2 (c) and (d) new values for the variable-components
have been moved out, i.e. subtracted from (b). Thus all cases (a)-(d) preserve
equivalence.

Updates can be designed in different ways, e.g. to give the results in figure 2 (c)
or (d). To characterize two different desirable properties of updates we will use
the following definitions. The first is our version1 of generalized arc-consistency
in CP (see e.g. [2]):

Definition 4. A variable-component is consistent with a subproblem if its fea-
sible values can be extended to a feasible solution of the subproblem, i.e. with
an objective value greater than −∞. An update is consistent if it makes the
variable-components of the subproblem consistent.

Thus, a consistent update will place −∞ in the variable-component if a value is
determined to be infeasible. For optimization the following property is important:

Definition 5. The current solution is locally optimal for a subproblem if it is an
optimal solution to the subproblem. An update is locally optimal if it makes the
current solution locally optimal. (If there are several solutions to the subproblem,
this should be reflected by ties in the affected variable domains.)

For example, in figure 2 (a) the current solution is not locally optimal, but in 2
(c) and (d) it is.

2.1 Cost Updates

We will now describe two different updates. The first one is a generalization of
the CP-update which we call the DP-update because of its connection to dynamic
programming, see Section 2.2.

Before giving a general definition we will illustrate the DP-update with the
simple example of figure 2 (a)-(c). The first step of the DP-update is to move
in the variable components into the constraint component, resulting in 2 (b).
The new variable components are then computed as the maximum values of
the rows and columns of 2 (b). Finally, the new variable components are moved

1 We have changed the definition compared to [4].

102 B. Grohe and D. Wedelin

out from the constraint component, resulting in 2 (c). After the update, the
current solution will be both consistent and locally optimal with respect to this
subproblem.

In the following general definition, let g denote the current components, and
g′ the updated components. The table h(xi) can be seen as an intermediate table
holding the data after the variable components have been moved in.

Definition 6. For a subproblem, the following operations define the DP-update:

h(xi) = gi(xi) +
∑

j∈v(i)

gj(xj), (5)

g′j(xj) = max
x\xj

h(xi), (6)

g′i(x
i) = gi(xi) −

∑

j∈v(i)

(g′j(xj) − gj(xj)). (7)

The second update will be an example of an update for a component correspond-
ing to the single linear constraint ax = 1 (we will call this a set partitioning con-
straint), where the subproblem can be described as the optimization problem

max{cx | ax = 1, x binary}, (8)

and where the vector a is also binary. According to LP-theory, the vector c can
be replaced by c̄ = c− ya for any y without changing the optimal solution. If we
want to find an y so that the current solution is feasible, y can be chosen in the
interval l ≤ y ≤ h where h and l are the largest and the second largest entries of
the vector c̄. By choosing y = 1

2 (l + h), we receive the LP-update defined below.
We here identify c with the cost differences Gj = gj(1) − gj(0).

Definition 7. For a subproblem, the following operations define the LP-update:

g′j(1) = gj(1) − 1
2 (l + h), g′j(0) = gj(0), (9)

g′i(x
i) = gi(xi) −

∑

j∈v(i)

(g′j(xj) − gj(xj)), (10)

where the values h and l are the largest and the second largest among the values
gj(1) in the subproblem.

This update is consistent and locally optimal.
Efficient implementations of the DP- and LP-updates may perform actual cal-

culations quite differently from the descriptions above. First, explicit use of large
tables should be avoided, especially for constraints with many variables, where
these tables may become exponentially large. Secondly, it is always sufficient

Cost Propagation – Numerical Propagation for Optimization Problems 103

to use the cost differences Gj , although the full variable-components gj(xj) are
useful for the theory. To express the LP-update with the Gj only, we write
(9) as

G′j = Gj − 1
2
(l + h), (11)

where h and l are the largest and the second largest among the values Gj . The
values l and h can be obtained in linear time, and an explicit use of gi(xi)
is avoided. For a fully efficient update, the explicit change of the constraint-
component in (10) needs to be avoided. Instead, we can implicitly remember
the change of constraint-component i by keeping the differences Si

j = G′j − Gj

corresponding to the second part of equation (10).
To see how also the DP-update for the set partitioning constraint can be

calulated using the cost differences, let m be the index of the variable with the
cost h. The DP-update, i.e. equations (5) and (6) can then be written as

G′m = Gm − l,
G′j = Gj − h for j �= m.

(12)

As in the case of the LP-update, explicit computation of (7) can be avoided by
remembering the values Si

j .
We conclude that for this particular constraint both the DP- and the LP-

update can be performed with a fast and simple linear time algorithm.

2.2 Propagation with Cost Updates

We now consider propagation to find solutions to an entire problem. Here, the
two updates presented in the previous section have very different properties. For
the example (2), we show in table 1 the first few steps of propagation with the
DP-update and the LP-update. First constraint 1 is updated, then constraint 2,
and this is repeated.

We can see that for the DP-update the variable-components gj(xj) converge
after only two iterations (as do the constraint-components which are not shown

Table 1. Example of propagation using the DP-update and the LP-update

DP g1(x1) g2(x2) g3(x3)
0 1 0 1 0 1

0 2 0 3 0 2
constr 1 3 2 2 3 0 2
constr 2 3 2 4 3 3 4
constr 1 3 4 4 3 3 4
constr 2 3 4 4 3 3 4
constr 1 3 4 4 3 3 4
constr 2 3 4 4 3 3 4

LP g1(x1) g2(x2) g3(x3)
0 1 0 1 0 1

0 2 0 3 0 2
constr 1 0 −0.5 0 0.5 0 2
constr 2 0 −0.5 0 −0.75 0 0.75
constr 1 0 0.125 0 −0.125 0 0.75
constr 2 0 0.125 0 −0.4375 0 0.4375
constr 1 0 0.28125 0 −0.28125 0 0.4375
constr 2 0 0.28125 0 −0.359375 0 0.359375

104 B. Grohe and D. Wedelin

in the table). In the LP-update the numbers are different and do not converge
in the same way. However, after a few iterations, there are no more sign changes
of the values gj(1), and consequently of the Gj , so the current solution has
converged, and it is also optimal. We note that it is possible to consider the cost
differences Gj instead of both values in the variable-components gj(xj).

Depending on the kind of update used, the analysis of the iterative propaga-
tion process varies significantly. Note that while any locally optimal update gives
the same current solution from the same numerical input, propagation with dif-
ferent updates will typically give different current solutions along the way (the
example is an exception because it is so simple). We here restrict ourselves to
some observations.

For locally optimal updates, the following theorem can be used to detect
feasibility:

Theorem 1. The current solution is feasible if it is unique, i.e. if all Gj �= 0,
and if every subproblem has been updated with a locally optimal update at least
once without changing the current solution.

With respect to convergence, it is common for locally optimal updates that if the
situation in Theorem 1 has occurred, the current solution has converged and will
not change during subsequent updates, although the numbers in the components
continue to change. For more difficult problems a common situation is however
that the current solution oscillates for some variables where numerically the
differences Gj tend towards 0. For the LP-update, Theorem 1 in [15] provides a
partial explanation for this kind of convergence problems:

Theorem 2. A dual vector y such that the Lagrangian relaxation of the corre-
sponding ILP problem gives a unique solution to the LP-relaxation exists if and
only if the LP-relaxation has a unique integer solution.

In other words, the existence of a unique integer solution is a necessary condition
for finding a solution with the LP-update. An oscillating behavior may also be
caused by infeasibility of the problem.

Turning to the question of optimality, one cannot generally expect that a
solution that is locally optimal for every subproblem is also globally optimal.
However, there are cases where optimality can be guaranteed. For example, the
LP-update is designed to never give a suboptimal feasible solution, a fact that
follows from LP-theory, see also section 3.

We finally discuss propagation with the DP-update, which can be interpreted
as a dynamic programming algorithm if the constraint graph (hypergraph rep-
resenting the sets xi) of the problem is acyclic. From [15] we have the following
result (in an adapted version):

Theorem 3. If the constraint graph is acyclic, propagation with the DP-update
converges to the optimal solution in d steps, where d is the diameter of the graph.

All components have then converged numerically. For more details see [15].
If the constraint graph contains cycles, then the DP-update does not generally

give the optimal solution, and convergence cannot be guaranteed. The reason is

Cost Propagation – Numerical Propagation for Optimization Problems 105

that the numerical values of a variable-component may then influence themselves
through a cycle. However, the behavior is dependent on the numerical values of
the components and in some cases, feasible, good or even optimal results can
be achieved despite of cycles, see [17] for a discussion. We note that the CP-
update, as a special case of the DP-update, works independently of cycles in the
constraint graph, since once a variable-component entry becomes −∞, it will
never change again.

3 Non-conflicting Updates

We will now investigate a particular kind of update that under certain conditions
can guarantee globally optimal solutions.

Definition 8. The current solution is non-conflicting if it corresponds to a
largest entry in the constraint–component table. An update is non-conflicting
if it makes the current solution non-conflicting. (If there are several solutions to
the subproblem, this should be reflected by ties in the affected variable domains.)

The definition is illustrated in figure 2 (d). For both the DP-update of 2 (c) and
the non-conflicting update of 2 (d), the current solution is locally optimal for
the subproblem. But additionally, also the constraint-component has the largest
value for the optimal combination, which is not the case for the DP-update in
2 (c).

A non-conflicting solution is clearly always locally optimal, since the current
solution will maximize the value of each term in (4).

The following theorem describes the relation between a non-conflicting solu-
tion and global optimality:

Theorem 4. If the current solution is unique and non-conflicting with all sub-
problems, then the current solution is globally optimal.

Global optimality can be detected during propagation using the theorem below.

Theorem 5. The current solution is optimal if it is unique, and if each sub-
problem has been updated with a non-conflicting update at least once without
changing the current solution.

Theorems 4 and 5 do not imply that propagation with non-conflicting updates
will find a solution, just that a solution, if found, will have certain properties.

3.1 Analysis of Non-conflicting Updates

We begin with the relationship between a non-conflicting update and the com-
ponent bound:

Theorem 6. A non-conflicting update minimizes the component bound for the
subproblem, so that the bound becomes equal to the solution to the subproblem.
In propagation, the component bound is therefore non-increasing in every step.

106 B. Grohe and D. Wedelin

For example, in figure 2 (a) the component bound for the subproblem is 13, in (c)
it is 11, and in (d) it is 8, i.e. the same as the optimal solution to the subproblem.
We note that this aspect of non-conflicting updates is easily explained in a LP
interpretation, where the bound, i.e. the dual objective, is locally minimized.

From the definition and the examples of figure 2 (c) and (d) one can see
that the non-conflicting property limits how much may be moved out from each
constraint. A full analysis of this is complicated and we restrict ourselves to a few
observations. It is here relevant to analyze differences directly, so let Dj = g′j(1)−
g′j(0) be the differences given by the DP-update in equation (6). For example, in
figure 2 (b), D1 = 6 and D2 = 3. Assume without loss of generality that the Dj

are all non-negative and in decreasing order, which can be achieved by permuting
variables and their values appropriately. Further let Tj be the corresponding
differences in g′j(xj) for a non-conflicting update. Our first observation is that

Tj ≤ Dj , (13)

i.e. that each Dj is an upper bound for the respective Tj of the non-conflicting
update, since moving out a difference greater than Dj would destroy the non-
conflicting property. Thus, we can in a non-conflicting update always move out
Dj to one of the the variables, but depending on h(xi) all other Tj may then
have to be 0 to keep the update non-conflicting. For example in figure 2, setting
T1 = D1 = 6 would force T2 = 0. By reasoning along these lines, one can draw
the conclusion that the following inequalities ensure that the non-conflicting
property is satisfied (see [4] for details):

∑
k≥j

Tk ≤ Dj ,

Tj ≥ 0
(14)

These inequalites are weak, in the sense that for a particular constraint it may
very well be possible to move out more, but it is the best that can be accom-
plished by using the Dj as the only source of information about h(xi).

3.2 The Fractional DP-Update

We are still left with a number of design decisions, since there are many ways to
choose the Tj in a non-conflicting update. We wish to achieve Tj > 0, to ensure
a unique current solution. Also, it is intuitively desirable to move out as much as
possible from the constraint–components to the variable–components. Finally,
the update should be easy to compute. One way of doing this is by letting Tj be
proportional to Dj :

Definition 9. The fractional DP-update is given by

Tj = αDj , α > 0. (15)

This fractional DP-update is not much more difficult to compute than the DP-
update, and all Tj > 0 if all Dj > 0. The fractional DP-update will be non-
conflicting for sufficiently low values of α, but not for higher. Based on (14) we
can derive the following theorem:

Cost Propagation – Numerical Propagation for Optimization Problems 107

Theorem 7. A fractional DP-update with α according to

α ≤ min
j

{1,
Dj∑

k≥j Dk
} (16)

is a non-conflicting update. Also, α = 1
n , where n is the number of variables in

the constraint, is always a non-conflicting update.

We note that the fractional DP-update does not move out as ’much as possible’.
However, it appears to be non-trivial to formulate such a notion in a useful way.
We also note that it can be possible to move out more by iteratively applying
the fractional DP-update to the same subproblem.

We end this section by mentioning that a stronger analysis can be carried
out for special constraints. For example for the set partitioning constraint, it is
possible to show that α = 1/2 always gives a non-conflicting update. Finally, the
LP-update, while not a fractional DP-update, is non-conflicting. This can be seen
by noting that after this update, all feasible entries in the constraint-component
have the same value.

4 Propagation Experiments

4.1 The Simple Assignment and Set Partitioning Problems

The formulation of the assignment problem in the component model is straight-
forward from the traditional binary ILP formulation. For our experiments we
have used randomly generated assignment problems, and some from Beasley’s
OR-library [9]. For the propagation we used a linear-time implementation of the
fractional DP-update (α = 0.5). In summary, the result was that all tested prob-
lems with unique solutions coverged to optimality. The random problems were
tight with sizes up to n=300, and were done within one minute on a Sun SunFire
280R with 900Mhz UltraSparc III+. When using CPLEX, which surely uses some
specialized method, the instances can be solved in a few seconds each. Neverthe-
less, we were able to solve a number of instances of substantial size in reasonable
time with propagation only. Finally, we note that CP’s constraint propagation
(domain reduction) would be unable even to approach a problem like this with-
out a top level search. It should be noted that also from an LP-perspective this
is not an entirely trivial result, since it is the symmetrical treatment of the val-
ues of 0 and 1 (rather than seeking complementary slackness), that avoids that
the propagation gets stuck. We can therefore find a solution without any global
control such as that required in the otherwise similar Hungarian algorithm.

The set partitioning problem is NP-hard and we therefore do not expect it
to be solved by cost propagation only, and this was confirmed by running a
couple of problems from Beasley’s OR-library. In this case therefore, propagation
needs to be combined with search. Alternatively, as done in Wedelin [15,16], the
propagation can be augmented with a heuristic, for solving the set partitioning
problem suboptimally.

108 B. Grohe and D. Wedelin

4.2 A Crossword Puzzle

We now consider a crossword puzzle in a rectangle consisting of coded letters
and black areas. The problem is to substitute the coded letters with uncoded
letters in a one-to-one mapping so that English words are formed horizontally
and vertically. To formally define the problem we let the set A be the letters in
the alphabet and a special symbol �, used to indicate the beginning and end of
words, in total 27 symbols.

We now state our mathematical model for the crossword puzzle. We employ a
Markov chain based language model where Pj denotes the probability of letter j
and Pjl the probability of letter j followed by letter l, i.e. monogram and bigram
statistics for ordinary text. Further let fi be the frequency of the coded letter i
in the crossword and let fik be the frequency of the coded bigram ik in the text.
The problem can then be stated as finding a permutation φ of the letters and
symbols in A, maximizing the probability

P (φ) =
∏

i∈A
P fi

φ(i)

∏

(i,k)∈A×A
(

Pφ(i)φ(k)

Pφ(i)Pφ(k)
)fik (17)

The first product of (17) reflects the probability of a permutation based only
on monogram statistics. If the crossword was just a linear sequence, the entire
model (17) would be a Markov chain.

Translation to the component model is straightforward, and we outline the
approach. We represent the permutation with a square of binary variables xij ,
i, j ∈ A where

xij =
{

1 if the coded letter i represents the uncoded letter j,
0 otherwise. (18)

The components are:

– Components ensuring a feasible assignment. A coded letter must rep-
resent exactly one uncoded letter and vice versa, this is in the square of
variables expressed by horizontal and vertical set partitioning constraints
just as in the simple assignment problem.

– Components for single letters. For every variable we introduce a variable-
component g(xij = 1) = fi · log(Pj), g(xij = 0) = 0. Together these compo-
nents correspond to the first product in (17).

– Components for adjacent letters. For each pair of neighboring coded
letters i, k in the crossword, we have a constraint-component corresponding
to a factor in the second product in (17). The involved variables are those in
rows i and k in the square of variables, ie in total 54 binary variables. Since
only one variable in each row can be equal to 1, there can be no more than
27 ∗ 27 = 729 feasible solutions to the component, out of 254 possible. When
these variables are xij and xkl, the value of the component is log Pjl

PjPl
. All

other values are −∞. The frequency fik is handled implicitly since we have
one component for every bigram in the crossword, so if the same bigram

Cost Propagation – Numerical Propagation for Optimization Problems 109

occurs several times, there will be several constraint-components. We chose
to use a simplified constraint for the special case that i = k.

Note that this problem is easy to formulate as a component model but not
as convenient to model directly in a CP or ILP framework. The example also
illustrates how we can easily represent finite domain variables variables such as
letters, with binary variables.

We have tested on four small (15 × 15), two medium size (15 × 30) and three
large crossword problems (15 × 45). We have analyzed the problems, and the
used Markov chain based model is sufficient for finding the correct solution for
the large and medium size problems but not for all the small ones.

Table 2. Solution of crossword with cost propagation

name Correct CostP UB t

cw15.1 -340.38 -340.42 (17) -282.2 140
cw15.2 -320.2 -319.2 (21) -273.6 143
cw15.3 -334.2 -331.6 (19) -274.5 141
cw15.4 -328.5 -350.4 (19) -283.0 143
cw30.1 -674.5 -668.2 (23) -601.7 392
cw30.2 -731.7 -731.7(26) -663.0 441
cw45.1 -1013.9 -1020.9 (24) -918.5 582
cw45.2 -1018.5 -1030.2 (24) -912.1 588
cw45.3 -1165.3 -1202.5 (24) -1040.5 655

Table 2 reports the results for cost propagation, using the fractional DP-
update with α = 0.5 for all constraints. The column CostP shows the value of
the best objective function value that the numerical propagation achieved within
a fixed number of iterations. Since none of the crossword instances had unique
integer solutions, propagation did not fully converge and was aborted after a
maximum of 550 iterations reporting the best solution found. The number in
parenthesis next to the value in column CostP is the number of correct letters
in the solution. Column UB shows the value of the component bound, after a
fixed number of iterations. Column t shows the time in seconds.

In summary, the results show that the propagation finds correct or almost
correct solutions to the large and medium size problem. To compare, we have
also modelled the problem as an ILP in the straightforward way mentioned in
Section 1 and used CPLEX to solve it. For the LP-relaxation, with highly frac-
tional solutions, running times are at least 100 times longer, and ILP times are
considerably longer than that. This is because the component model in a natu-
ral way captures the structure of the problem. In the components for adjacent
letters the binary ILP model has to introduce a variable for every feasible entry,
which we in contrast easily handle with a standard implementation of the DP-
update. The difference would be even more significant if trigram statistics had
been used.

110 B. Grohe and D. Wedelin

5 Conclusions

Starting from the component model, we have formalized the use of cost propa-
gation, and characterized several different updates and their properties. In sum-
mary, we think that cost propagation in a single approach captures some signif-
icant properties of both CP and ILP. We also hope that cost propagation can
be useful in combination with search, providing in one mechanism both domain
reduction, as well as direct optimization and bounds.

Our experiments illustrate that it is to a certain extent possible for propaga-
tion on its own to solve non-trivial problems, e.g. the simple assignment problem
and the crossword puzzle. The simple assignment problem cannot be solved by
constraint propagation only; a potentially costly top level search has to be em-
ployed. This is also the case for the crossword puzzle. On the other hand, word
puzzles usually cannot be modelled efficiently by LP/ILP models because of the
restriction to linear constraints, and the explosion of the number of variables in
the models. In this case, cost propagation can be considered to give solutions of
acceptable quality much faster.

It is natural that an investigation like this generates many new questions, of
which we list some here:

– Properties of different updates can be analyzed further, in order to better un-
derstand their relation to special problem classes, convergence during propa-
gation, and optimality. We also want to design as good updates as possible.
We here note that while updates such as the DP-update do not in general give
globally optimal solutions, they can on the other hand speed up convergence
and also solve large integer problems by propagation only, see [15,16].

– Algorithm libraries with fast updates for different kinds of special constraints
including so called global constraints can be developed as in CP.

– By combining cost propagation with search, one would have a complete
method applicable to a much wider range of problems. It would also be easier
to compare with corresponding approaches in ILP and CP. One obvious
possibility is to use non-conflicting updates and a branch & bound search,
another possibility is to explore branching in order to break cycles when
using e.g. a DP-update.

Acknowledgements

We wish to thank Mattias Grönkvist for discussions regarding this work. We are
also grateful to the reviewers for useful and detailed comments.

References

1. Bertelè, U., Brioschi, F.: Nonserial Dynamic Programming, Mathematics in Science
and Engineering. Academic Press, London (1972)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

Cost Propagation – Numerical Propagation for Optimization Problems 111

3. Focacci, F., Lodi, A., Milano, M.: Cost-Based Domain Filtering. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, Springer, Heidelberg (1999)

4. Grohe, B.: Cost Propagation - Numerical Propagation for Optimization Problems,
Licenciate thesis, Chalmers University of Technology (2007)

5. Hummel, R.A., Zucker, S.W.: On the Foundations of Relaxation Labeling Pro-
cesses. IEEE Trans. on Pattern Analysis and Machine Intelligence 3 (1983)

6. Khemmoudj, M.O.I., Bennaceur, H., Nagih, A.: Combining Arc-Consistency and
Dual Lagrangean Relaxation for Filtering CSPs. In: Barták, R., Milano, M. (eds.)
CPAIOR 2005. LNCS, vol. 3524, Springer, Heidelberg (2005)

7. Larrosa, J., Schiex, T.: Artificial Intelligence 159 (2004)
8. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.S.: Global constraints: When

Constraint Programming meets Operations Research. INFORMS Journal on Com-
puting, Special Issue on the Merging of Mathematical Programming and Constraint
Programming (2001)

9. Beasley, J.E.: OR-library, http://people.brunel.ac.uk/mastjjb/jeb/orlib/
assigninfo.html

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Network of Plausible In-
ference. Morgan Kaufmann, San Francisco (1988)

11. Régin, J.-C.: Cost based Arc Consistency for Global Cardinality Constraints. Con-
straints, an International Journal 7(3-4) (2002)

12. Sellmann, M.: Solving weighted CSP by maintaining are consistency. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004)

13. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory 13(2) (1967)

14. Wedelin, D.: Probabilistic Inference, Combinatorial Optimization and the Dis-
covery of Causal Structure from Data, PhD thesis, Dept. of Computing Science,
Chalmers University of Technology (1993)

15. Wedelin, D.: An algorithm for large scale 0-1 integer programming with application
to airline crew scheduling. Annals of Operations Research 57 (1995)

16. Wedelin, D.: The design of a 0-1 integer optimizer and its application in the Carmen
system. European Journal of Operations Research 87 (1995)

17. Wedelin, D.: Cost Propagation: A generalization of constraint programming for
optimization problems. In: Proceedings of CPAIOR 2002 (2002)

http://people.brunel.ac.uk/mastjjb/jeb/orlib/assigninfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/assigninfo.html

Fitness-Distance Correlation and Solution-Guided
Multi-point Constructive Search for CSPs

Ivan Heckman1 and J. Christopher Beck1,2

1 Department of Computer Science
2 Department of Mechanical & Industrial Engineering

University of Toronto
{iheckman,jcb}@mie.utoronto.ca

Abstract. Solution-Guided Multi-Point Constructive Search (SGMPCS) is a
complete, constructive search technique that has been shown to out-perform stan-
dard constructive search techniques on a number of constraint optimization and
constraint satisfaction problems. In this paper, we perform a case study of the ap-
plication of SGMPCS to a constraint satisfaction model of the multi-dimensional
knapsack problem. We show that SGMPCS performs poorly. We then develop a
descriptive model of its performance using fitness-distance analysis. It is demon-
strated that SGMPCS search performance is partially dependent upon the corre-
lation between the heuristic evaluation of the guiding solutions and their distance
to the nearest satisfying solution. This is the first work to develop a descriptive
model of SGMPCS search behavior. The descriptive model points to a clear di-
rection in improving the performance of constructive search for constraint satis-
faction problems: the development of heuristic evaluations for partial solutions.

1 Introduction

An important line of research over the past 15 years in combinatorial optimization has
been the empirical study of average algorithm behavior: there has been significant study
of phase transition phenomena [7,18], work on heavy-tailed distributions [8,13], and
detailed models developed for tabu search for job shop scheduling [20]. In this paper,
we build on this work to begin to develop an understanding of the search behavior of
a recently proposed constructive search technique, Solution-Guided Multi-Point Con-
structive Search (SGMPCS) [2].

We examine the performance of SGMPCS on a set of benchmark instances of a con-
straint satisfaction version of the multi-dimensional knapsack problem. We show that
both randomized restart and SGMPCS perform poorly on these instances. The core of
the paper is the investigation of the conjecture that SGMPCS performance is partially
affected by the quality of the heuristic that is used to select the guiding partial solu-
tions. When we artificially control the quality of the heuristic evaluation, we observe
substantial performance differences. We then investigate two new heuristics. The better
heuristic results in significant gain in search performance and, more importantly, the
observed performance differences among the three heuristics are consistent with the
descriptive model. Approximately 44% of the variation in search performance can be
accounted for by the quality of the heuristic.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 112–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fitness-Distance Correlation and Solution-Guided Search 113

This is the first work which demonstrates that SGMPCS exploits the heuristic eval-
uation of its guiding solutions. Given that standard constructive search techniques do
not directly exploit this information, we believe that SGMPCS embodies a promising
direction for improving constructive search performance.

In the next section, we present SGMPCS, briefly discuss the literature on empirical
models of search behavior, and introduce the multi-dimensional knapsack problem. In
Section 3, we present and discuss the initial empirical studies, demonstrating the poor
performance of SGMPCS. Section 4 develops our descriptive model of SGMPCS per-
formance. Section 4.4 proposes two new heuristic evaluation functions and empirically
evaluates them. We discuss the implications and limitations of our study in Section 5.

2 Background

In this section, we present the Solution-Guided Multi-Point Constructive Search al-
gorithm, previous work on building descriptive models for search performance, and
introduce the multi-dimensional knapsack problem.

2.1 Solution-Guided Multi-point Constructive Search

Solution-Guided Multi-Point Constructive Search (SGMPCS) [2,1] is a constructive
search technique originally proposed for optimization problems. For clarity, we present
the basic approach in the optimization context before discussing the changes necessary
for constraint satisfaction problems.

SGMPCS for Optimization. The primary novelty of SGMPCS is that it is guided
by sub-optimal solutions that it has found earlier in the search. As with randomized
restart techniques [8], the overall search consists of a series of tree searches limited by
a computational resource bound. When the resource bound is reached, search restarts
and may be guided by an elite solution. An elite solution is a high-quality, sub-optimal
solution found earlier in the search.

Pseudocode for SGMPCS is shown in Algorithm 1. The algorithm initializes a set,
e, of elite solutions and then enters a while-loop. In each iteration, with probability
p, search is started from an empty solution (line 5) or from a randomly selected elite
solution (line 10). In the former case, if the best solution found during the search, s, is
better than the worst elite solution, s replaces the worst elite solution. In the latter case,
s replaces the starting elite solution, r, if s is better than r. Each individual search is
limited by a fail bound: a maximum number of fails that can be incurred. The entire
process ends when the problem is solved, proved insoluble within one of the iterations,
or when some overall bound on the computational resources (e.g., CPU time, number
of fails) is reached.

Elite Solution Initialization The elite solutions can be initialized by any search tech-
nique. For each problem in our experiments, we use independent runs of standard
chronological backtracking with a random variable and value ordering. The search ef-
fort is limited by a maximum number of fails for each run.

114 I. Heckman and J.C. Beck

Algorithm 1. SGMPCS: Solution-Guided Multi-Point Constructive Search
SGMPCS():

initialize elite solution set e1

while not solved and termination criteria unmet do2

if rand[0, 1) < p then3

set fail bound, b4

s := search(∅, b)5

if s is better than worst(e) then6

replace worst(e) with s7

else
r := randomly chosen element of e8

set fail bound, b9

s := search(r, b)10

if s is better than r then11

replace r with s12

Bounding the Search Each individual search is bounded by an evolving fail bound: a
single search (lines 5 and 10) will terminate, returning the best solution encountered,
after it has failed the corresponding number of times.

Searching from an Empty Solution With some probability, p, search is started from
an empty solution (line 5). Searching from an empty solution simply means using any
standard constructive search with a randomized heuristic and a bound on the number
of fails. In our experiments, the search from an empty solution uses the same search
techniques used to initialize elite solutions.

Searching from an Elite Solution To search from an elite solution, we create a search
tree using any variable ordering heuristic and specifying that the value assigned to a
variable is the one in the elite solution, provided it is still in the domain of the variable.
Otherwise, any other value ordering heuristic can be used to choose a value. Formally,
given a constraint satisfaction problem (CSP) with n variables, a solution, s, is a set
of variable assignments, {〈V1 = x1〉, 〈V2 = x2〉, . . . , 〈Vm = xm〉}, m ≤ n. When
m = n, the solution is complete, but possibly infeasible; when m < n, s is a partial
solution. A search tree is created by asserting a series of choice points of the form:
〈Vi = x〉 ∨ 〈Vi �= x〉 where Vi is a variable and x the value that is assigned to Vi.
The variable ordering heuristic has complete freedom to choose a variable, Vi, to be
assigned. If 〈Vi = xi〉 ∈ s and xi ∈ dom(Vi), the choice point is made with x = xi.
Otherwise any value ordering heuristic can be used to choose x ∈ dom(Vi). The only
difference between starting search from an empty solution and from an elite solution is
that the latter uses the assignments of the elite solution as a value ordering heuristic.

Adapting SGMPCS for CSPs. To apply SGMPCS to constraint satisfaction problems,
it is necessary to define what an elite solution is and how one is evaluated. The elite so-
lutions are used as value ordering heuristics and the evaluation of a solution determines

Fitness-Distance Correlation and Solution-Guided Search 115

whether it will be used to guide subsequent search. Therefore, the evaluation of a po-
tential elite solution is a heuristic evaluation. Since the only purpose of an elite solution
is to provide value-ordering guidance, we want our evaluation function to choose elite
solutions likely to guide the search to a satisfying assignment.1 We experiment with
three different heuristic evaluation functions as described in Sections 3.1 and 4.4.

We define elite solutions as dead-ends: either an assignment to a proper subset of
the variables that results in a domain wipe-out or a complete assignment for which one
or more constraints is broken. The solver may visit a complete assignment of variables
that is not a solution to the problem. Consider a situation where n − 2 variables have
been assigned in lexicographical order and vn−1 and vn both have non-empty, non-
singleton domains. The assignment of vn−1 may trigger the reduction of the domain of
vn to a singleton, followed by its immediate assignment, while there are still constraints
in the propagation queue. If one of these other constraints is not satisfied by the now-
complete assignment, we have a complete assignment that fails to satisfy all constraints.
The rating of a dead-end is done, as noted above, with a heuristic evaluation function.

We identify the dead-ends that are candidates for the elite set by modifying the be-
havior of the solver to keep track of the highest rated dead-end found during a single
search (i.e., during the calls at lines 5 and 10 of Algorithm 1). At the end of a single
search that has not found a satisfying solution, the best dead-end is returned and is
considered for insertion into the elite set.

An alternative approach is to adopt a soft constraint framework where each potential
elite solution is a complete assignment that breaks one or more constraints and the
evaluation is an aggregation of the cost of the broken constraints. This is an interesting
area for future work, but we do not consider it here for a number of reasons.

– We are motivated by simplicity and the desire to modify the behavior of standard
(crisp) constraint solvers as little as possible.

– A soft constraint approach cannot fully exploit the strong constraint propagation
techniques that are one of the core reasons for the success of CP.

– It is unclear a priori which cost models for various global constraints [4,19] is
appropriate for the purposes of providing a heuristic evaluation.

We return to the question of a soft constraint model in Section 5.

2.2 Descriptive Models of Algorithm Behavior

A descriptive model of algorithm behavior is a tool used to understand why an algo-
rithm performs as it does on a particular class or instance of a problem. There has been
considerable work over the past 15 years in developing models of problem hardness
[7,18] as well as work that has focused more directly on modeling the behavior of
specific algorithms or algorithm styles. The work on heavy-tailed phenomenon [8,13]
models the dynamic behavior of constructive search algorithms while local search has
been addressed in a number of models–see [11] for a detailed overview.

1 This is true for optimization contexts as well. However, the existence of a cost function ob-
scures the fact that guiding the search with sub-optimal solutions is only helpful for finding
the optimal solution if such guidance is likely to lead the search to lower cost solutions.

116 I. Heckman and J.C. Beck

In this paper, we develop a static cost model with the goal of correlating problem
instance features to algorithm performance. Our primary interest is to understand why
SGMPCS outperforms or, as we will see below, fails to outperform, other construc-
tive search techniques. The approach we adopt is fitness-distance analysis [11], an a
posteriori approach traditionally applied to local search algorithms. Local search algo-
rithms move through the search space based on an evaluation of the quality of (subopti-
mal) “solutions” in the neighborhood of the current solution. Neighboring solutions are
evaluated and, typically, the lowest cost solution is selected to be the next solution. In
fitness-distance analysis, the quality of a solution (i.e., its fitness) is compared against its
distance to the nearest optimal solution. Distance is measured as the minimum number
of steps it would take to move from the solution in question to the nearest optimal solu-
tion. In problem instances where the search space and neighborhood function induce a
high fitness-distance correlation (FDC), the standard behavior of moving to a solution
with higher fitness will also tend to move the search closer to an optimal solution.

Standard constructive search techniques such as chronological backtracking, limited
discrepancy search, and randomized restart do not exploit the fitness of sub-optimal
solutions that are found during search. Even when there is a notion of sub-optimal
solution, as in optimization problems, these techniques do not attempt to search in the
“neighborhood” of high quality solutions. There are, however, some algorithms that are
based on constructive search such as ant colony optimization [5] and adaptive probing
[17] that have been shown to be sensitive to FDC on optimization problems [3].

We test the hypothesis that SGMPCS is sensitive to fitness-distance correlation and
that, therefore, its search performance can be partially understood by the FDC of a
problem instance. Note that the FDC is a function of both the heuristic used to evaluate
states and a measure of distance in the search space.

2.3 The Multi-dimensional Knapsack Problem

Given n objects and a knapsack with m dimensions such that each dimension has ca-
pacity, c1, . . . , cm, a multi-dimensional knapsack problem requires the selection of a
subset of the n objects such that the profit, P =

∑n
i=1 xipi, is maximized and the m di-

mension constraints,
∑n

i=1 xirij ≤ cj for j = 1, . . . , m, are respected. Each object, i,
has a individual profit, pi, a size for each dimension, rij , and a binary decision variable,
xi, specifying whether the object is included in the knapsack (xi = 1) or not (xi = 0).

There has been significant work on such problems in the operations research and
artificial intelligence literature [14,6]. Our purpose is not to compete with these ap-
proaches but to develop an understanding of the behavior of SGMPCS. We selected the
multi-dimensional knapsack problem because previous work has indicated that SGM-
PCS performs particularly poorly on such problems and we want to understand why
[10].

Because we are solving a constraint satisfaction problem, we adopt the approach of
[16] and pose the problem as a satisfaction problem by constraining P to be equal to
the known optimal value, P ∗. In addition to the constraints defined above, we therefore
add P = P ∗.

Fitness-Distance Correlation and Solution-Guided Search 117

3 Initial Experiment

In this section, we present the details and results of our initial experiments.

3.1 Experimental Details

We compare three search techniques: chronological backtracking (chron), randomized
restart (restart) [8], and SGMPCS. In all algorithms, the variable ordering is random.
The value ordering for each algorithm, when not being guided by an elite solution, is
also random. Any restart-based technique needs some randomization. The use of purely
random variable and value ordering serves to simplify the experimental set-up.

Restart follows the same fail sequence as SGMPCS (see below) and initializes and
maintains a set of elite solutions. However, it always searches from an empty solution
(i.e., it is equivalent of SGMPCS with p = 1). Therefore, it has a small run time over-
head to maintain the elite set as compared with standard randomized restart.

All algorithms were implemented in ILOG Solver 6.3 and run on a 2GHz Dual Core
AMD Opteron 270 with 2GB RAM running Red Hat Enterprise Linux 4.

Parameter Values for SGMPCS Previous work has examined the impact of different
parameter settings [2,1]. Here, we are interested in SGMPCS performance in general,
and, therefore, adopt the following parameters for all experiments.

– Probability of searching from an empty solution: p = 0.5.
– Elite set size: |e| = 8.
– Backtrack method: chronological. For a single search, we have a choice as to how

the tree search should be performed at lines 5 and 10.
– Fail sequence: Luby [15]. The fail sequence sets the number of fails allowed for

each tree search. The Luby sequence corresponds to the optimal sequence when
there is no knowledge about the solution distribution: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,
.... Following [12], we multiply each limit by a constant, in our case 32.

– Number of initial solutions: 20. At line 1, we generate 20 partial solutions and then
choose the |e| best to form the initial elite set.

– Initialization fail bound: 1. The effort spent in finding a good initial solution is
controlled by the fail bound on the search for each initial solution. We simply stop
at the first dead-end found.

These parameters were chosen based on previous work and some preliminary exper-
iments that showed little performance variation for SGMPCS for different settings on
multi-dimensional knapsack problems [10].

Problem Instances Two sets of six problems from the operations research library2 are
used. The instances range from 15 to 50 variables and 2 to 30 dimensions.

For each problem instance, results are averaged over 1000 independent runs with
different random seeds and a limit of 10,000,000 fails per run. For each run of each
problem instance, we search for a satisfying solution.

2 http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/mknapinfo.html

118 I. Heckman and J.C. Beck

Heuristic Evaluation for SGMPCS Following the idea of trying simple approaches
before more complex ones, our initial heuristic evaluation is the number of unassigned
variables. Recall that our elite solution candidates are dead-ends (Section 2) that either
have one or more variables with an empty domain or break a constraint. When the
solver encounters a dead-end, we simply count the number of unassigned variables and
use that as the heuristic evaluation: the fewer unassigned variables, the better the dead-
end. We make no attempt at a dead-end to assign any of the unassigned variables that
have non-empty domains. We refer to this heuristic evaluation as H1. This heuristic has
shown strong performance on quasigroup-with-holes completion problems [1].

3.2 Results

Table 1 compares the performance of chronological backtracking, randomized restart,
and SGMPCS as defined above. Both SGMPCS and randomized restart perform poorly
when compared to chronological backtracking. There does not seem to be a large dif-
ference between the performance of SGMPCS and randomized restart.

Table 1. Comparison of multi-dimensional knapsack results for chronological backtracking
(chron), randomized restart (restart) and SGMPCS using the H1 heuristic evaluation function

chron restart SGMPCS-H1

%sol fails time %sol fails time %sol fails time
mknap1-0 100 1 0.0 100 2 0.0 100 3 0.0
mknap1-2 100 26 0.0 100 42 0.0 100 41 0.0
mknap1-3 100 523 0.0 100 1062 0.0 100 924 0.0
mknap1-4 100 15123 0.4 100 54635 1.5 100 44260 1.2
mknap1-5 100 3271555 67.2 54.5 6885489 167.2 70.8 5573573 137.0
mknap1-6 0.2 9990291 279.9 0.0 10000000 337.2 0.8 9958245 340.9

mknap2-PB1 100 15223 0.3 100 42651 0.8 100 28770 0.6
mknap2-PB2 100 3088092 54.1 80.3 4970049 102.0 88.1 3741187 77.8
mknap2-PB4 100 10167 0.1 100 38474 0.5 100 28406 0.4
mknap2-PB5 100 7011 0.1 100 16178 0.4 100 15077 0.3
mknap2-PB6 100 16050 1.9 100 28964 3.8 100 25954 3.4
mknap2-PB7 100 1472499 138.7 76.0 5374900 551.4 85.9 4113704 423.6

Previous results showed SGMPCS out-performing randomized restart and chrono-
logical backtracking on optimization problems [2] and quasigroup-with-holes con-
straint satisfaction problems [1].

4 Building a Descriptive Model

Beck [2] speculates that three, non-mutually exclusive, factors may have an impact on
the performance of SGMPCS: the exploitation of heavy-tails, the impact of revisiting
elite solutions, and the use of multiple elite solutions to diversify the search. Here we
focus on developing a descriptive model based on the second factor. The intuition be-
hind this factor is that each time a good solution is revisited with a different variable

Fitness-Distance Correlation and Solution-Guided Search 119

ordering, a different set of potential solutions (i.e., a different “neighborhood”) will be
visited upon backtracking. If good solutions tend to be near other good solutions in the
search space, revisiting a solution is likely to result in finding another good solution.

In this section, we develop a descriptive model of SGMPCS performance based on
the fitness-distance correlation. We first define the measure of distance used and then
present a deeper analysis of the SGMPCS results in the above table. We then build on
the methodology of Beck & Watson [3], to create an artificial heuristic evaluation func-
tion that allows us to completely control the fitness-distance correlation of the problem
instances. Experiments with this artificial heuristic demonstrate a strong interaction be-
tween FDC and search performance. Finally, we develop two new heuristic evaluation
functions and examine their performance.

4.1 A Measure of Distance

A complete solution to a multi-dimensional knapsack problem can be represented by
a binary vector (x1, ..., xn) of the decision variables. The representation lends itself
to using the Hamming distance as a measure of the distance between two (complete)
assignments. This is the standard definition in fitness-distance analysis.3

Our elite solutions are dead-ends and so may not be complete assignments. There-
fore, we must adapt the Hamming distance to account for unassigned variables. A given
dead-end with m assigned variables, m < n, represents a set of 2n−m points in the
search space with varying distances from the nearest satisfying solution. If we assume a
single satisfying solution to a problem instance (see below), then the distribution of dis-
tances for the sub-vector of unassigned variables follows a binomial distribution with a
minimum sub-distance of 0 and maximum sub-distance of n−m. The mean of this dis-
tribution is n−m

2 . We therefore calculate the distance from a dead-end to the satisfying
solution as the mean distance of the points represented by the dead-end: the Hamming
distance for the assigned variables plus one-half the number of unassigned variables.
More formally, for a given elite solution candidate S = (x1, ..., xm) and a satisfying
solution S∗ = (x∗1, ..., x∗n), m ≤ n, the distance is calculated as follows:

D(S, S∗) =
∑

1≤i≤m

|xi − x∗i | +
n − m

2
(1)

The normalized distance is ND(S, S∗) = D(S,S∗)
n .

4.2 Analysis of the Initial Experiments

Traces of SGMPCS-H1 runs show that early in the search all the elite solutions have
a heuristic evaluation of 0: all the variables are assigned but the solution does not sat-
isfy all constraints. The uniformity of the heuristic evaluation suggests that our simple
heuristic evaluation is too coarse to provide useful guidance.

3 SGMPCS does not move in the search space with the freedom of local search as it is con-
strained by a search tree. A different definition of distance that takes into account the search
tree may be more appropriate. We leave the investigation of such a distance function for future
work.

120 I. Heckman and J.C. Beck

0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Normalized distance

N
or

m
al

iz
ed

 c
os

t

0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Normalized distance

N
or

m
al

iz
ed

 c
os

t

Fig. 1. Plots of the heuristic evaluation (fitness) of each elite solution vs. its normalized distance
from the unique satisfying solution for two of the multi-dimensional knapsack problem instances:
Left: mknap1-5; Right: mknap2-PB7. A small noise component is added to the fitness and dis-
tance for purposes of visibility in the plot–this noise is not present in the data.

To quantify this observation, we calculate the heuristic evaluation and distance of
each elite solution encountered during the search. In order to do this, we must first find
all satisfying solution to each instance. We did this using a small modification to the
chronological backtracking algorithm. Each instance has a single satisfying solution,
justifying our definition of D above.

Figure 1 presents plots of the distance vs. the fitness for two of the problem instances.
The plots for the other problem instances are almost identical. It is clear, that the heuris-
tic evaluation provides almost no real heuristic information. These data were gathered
by instrumenting the SGMPCS solver to record the fitness and distance from the known
satisfying solution of each new entry to the elite set.

4.3 Manipulating the Fitness-Distance Correlation

Figure 1 is consistent with our conjecture that fitness-distance correlation may have
a role in a descriptive model of SGMPCS performance. It provides, however, rather
weak support: the absence of an FDC accompanies poor performance. A stronger test
of the conjecture is to directly manipulate the FDC and observe the performance of
SGMPCS. To do this, we adopt the technique introduced in [3] to artificially set the
heuristic evaluation based on knowledge of the distance to the satisfying solution.

Let D(S, S∗) be defined as in Equation (1). We define the heuristic evaluation of the
satisfying solution, S∗, to be h(S∗) = 0. We set the heuristic evaluation, hFDC+(S),
of an elite solution S under perfect FDC equal to D(S, S∗). Similarly, we set the
heuristic evaluation hFDC−(S) of an elite solution with perfect negative FDC to be
(n − D(S, S∗)). To generate instances with intermediate FDC, we interpolate between
these two extremes as follows:

h(S) =

⎧
⎨

⎩

0 if S = S∗

�α × hFDC+(S) + (1 − α) × RAND(S)	 if S �= S∗ ∧ β = 0
�α × hFDC−(S) + (1 − α) × RAND(S)	 if S �= S∗ ∧ β = 1

(2)

Fitness-Distance Correlation and Solution-Guided Search 121

where α ∈ [0, 1], β ∈ {0, 1}, and RAND(S) ∈ [0, n]; the latter value is uniformly
generated from the interval, using the bit vector S as the random seed. The random
component is added to achieve more realism in our model, while still manipulating
the FDC. Clearly, when α = 0, the heuristic evaluation is purely random. While α
determines the strength of the FDC, β is a two-valued parameter governing its direction:
β = 0 and β = 1 induce positive and negative FDC, respectively.

The only difference with our initial experiments is that the heuristic evaluation is
changed to Equation (2). For a single instance and each pair of values for α and β,
we solve the instance 1000 times with different random seeds. Following Watson [20]
we compare FDC against the log of search cost, in our case, the log of the number of
dead-ends to find a satisfying solution. Since our problems are of various sizes, the log
of the mean number of fails of instance p with α = a, β = b, F̄p,a,b, is normalized with
the log of the search cost of chron on the same problem (Cp) as follows:

Np,a,b =
log(F̄p,a,b) − log(Cp)

log(Cp)

For each problem and setting of α and β, FDC values are measured by collecting
every unique elite solution over the 1000 iterations and taking the correlation between
the evaluation function for each entry and its distance to the one known satisfying so-
lution as defined in Equation 1. Even though we are artificially defining the heuristic
based on knowledge of the optimal solution, we are sampling the FDC as we would in
a non-artificial setting.

Figure 2 shows that the manipulation of the FDC has a significant impact on the
search performance of SGMPCS. The graph does not contain results for mknap1-0 and
mknap1-2. As shown in Table 1, these are easily solved during the initialization phase
of SGMPCS and so display no correlation with FDC. There is considerable noise for
high negative values of FDC due to the fact that SGMPCS could not find a solution on
a number of problem instances with high negative FDC, within the fail limit.

4.4 Toward Better Heuristic Evaluations

Figures 1 and 2 show that one possible explanation for the poor performance of SG-
MPCS-H1 is the low fitness-distance correlation. The results of the experiment that
manipulated the FDC demonstrated that the performance of SGMPCS is sensitive to
the FDC, at least in an artificial setting. In this section, we develop two new heuristic
evaluation functions. Our primary goal is to demonstrate that in a less artificial set-
ting the FDC induced by the heuristic evaluation function has an impact on the search
performance of SGMPCS.

The intuition behind both of the new heuristic evaluation functions is to include
additional knowledge about the quality of the solution. In particular, we wish to create
a finer heuristic evaluation that is able to better distinguish among the elite solutions
(i.e., we would like fewer of the elite solutions to have a heuristic evaluation of zero
than with the H1 function). Our main goal in proposing these heuristics is to evaluate

122 I. Heckman and J.C. Beck

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

FDC of elite solutions

N
or

m
al

iz
ed

 lo
g

of
 s

ea
rc

h
co

st

mknap1−3
mknap1−4
mknap1−5
mknap1−6
mknap2−PB1
mknap2−PB2
mknap2−PB4
mknap2−PB5
mknap2−PB6
mknap2−PB7

Fig. 2. A scatter-plot of the measured fitness-distance correlation versus the normalized log of
search cost for the artificial heuristic evaluation in Equation (2). The low positive values of search
cost for high negative FDC stem from problem instances (and settings of α and β) for which
SGMPCS could not find a solution. The graph does not contain the results for problem instances
mknap1-0 and mknap1-2 as they are trivially solved.

the relationship between FDC and search performance. We expect that these heuristics
will have a different FDC and wish to test if this leads to a difference in performance.4

H2. Recall (Section 2.3) that our CSP model of the multi-dimensional knapsack as-
sumed that the value of the most profitable knapsack, P ∗, is known. This knowledge
is used in the constraint, P = P ∗, but not otherwise exploited above. Here, we define
H2 = |P ∗ − P |.

H3. Some preliminary experiments showed that even with H2, the elite pool often
stagnated on a set of elite solutions with a zero heuristic evaluation that break one
or more constraints. Therefore, in order to further refine the heuristic evaluation, we
choose to use the number of broken constraints as a tie-breaker: H3 = H2 + |V | where
|V | is the number of constraints violated by the (partial) assignment.

It should be noted that the only difference among the H1, H2, and H3 models is the
heuristic evaluation function. In particular, the constraint model is identical in for all
three heuristics. We now solve each of the problem instances 1000 times (with different
random seeds) with each heuristic evaluation function. The other experimental details
are the same as in Section 4.3.

4 It does not seem likely that either of these heuristics will be useful, in general, for solving
multi-dimensional knapsack problems because both make use of knowledge of the value of
the most profitable knapsack.

Fitness-Distance Correlation and Solution-Guided Search 123

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

FDC of elite solutions

N
or

m
al

iz
ed

 lo
g

of
 s

ea
rc

h
co

st
SGMPCS−H1
SGMPCS−H2
SGMPCS−H3

Fig. 3. A scatter-plot of the measured fitness-distance correlation versus the normalized log of
search cost for three heuristic evaluation functions: H1, H2, H3. The graph does not contain the
results for problem instances mknap1-0 and mknap1-2 as they are trivially solved.

Results. Figure 3 displays the scatter plot of the normalized search performance ver-
sus FDC for all of our heuristic evaluation functions together with the minimum mean
squared error line. As above, we do not include mknap1-0 and mknap1-2. Although
limited by our small number of instances, the plot shows a trend of better search cost
with higher FDC values. The r2 value is 0.438 (r = −0.662).

Table 2 displays the performance of each SGMPCS variation. For completeness we
repeat the results for chronological backtracking and SGMPCS-H1 from Table 1. While
not clearly superior, SGMPCS-H3 is competitive with chron overall. For the harder
instances (i.e., mknap1-5, mknap2-PB2, mknap2-PB6,and mknap2-PB7 where chron
has a high number of fails) SGMPCS-H3 is 1.5 to 8 times better than chron in terms of
the number of fails.

Table 2. Comparison of multi-dimensional knapsack results for chronological backtracking
(chron), and SGMPCS using the three heuristic evaluation functions H1, H2, H3

chron SGMPCS-H1 SGMPCS-H2 SGMPCS-H3

%sol fails time %sol fails time %sol fails time %sol fails time
mknap1-4 100 15123 0.4 100 44260 1.2 100 29895 0.9 100 11349 0.5
mknap1-5 100 3271555 67.2 71 5573573 137.0 77 4839688 126.2 98 1824457 71.6

mknap2-PB1 100 15223 0.3 100 28770 0.6 100 28405 0.6 100 23445 0.7
mknap2-PB2 100 3088092 54.1 88 3741187 77.8 92 3191853 71.2 98 1933160 60.9
mknap2-PB4 100 10167 0.1 100 28406 0.4 100 24112 0.4 100 24370 0.5
mknap2-PB5 100 7011 0.1 100 15077 0.3 100 13747 0.3 100 11650 0.4
mknap2-PB6 100 16050 1.9 100 25954 3.4 100 26082 3.4 100 8554 1.8
mknap2-PB7 100 1472499 138.7 86 4113704 423.6 86 4287571 447.7 100 184443 32.8

124 I. Heckman and J.C. Beck

5 Discussion

In this paper, we addressed the question of developing an understanding of the per-
formance of SGMPCS on constraint satisfaction problems. We demonstrated that the
correlation between the heuristic evaluation of an elite solution and its distance to the
satisfying solution, is, itself, correlated with the search performance. Standard construc-
tive search approaches such as chronological backtracking, randomized restart, and lim-
ited discrepancy search make no explicit use of such heuristic information.

There are a number of limitations to the study in this paper. First, it is a case study of
12 problem instances of one type of problem. While we believe these results are likely
to be observed for other problems instances and types, a larger study is needed. Sec-
ond, the poor performance of randomized restart on the multi-dimensional knapsack
problems suggests that they do not exhibit heavy-tails. As a restart-based algorithm,
SGMPCS does exploit heavy-tails in the same way as randomized restart [9]. There-
fore, a full descriptive model of SGMPCS must address the impact of heavy-tailed
distributions. In fact, one of the reasons that the multi-dimensional knapsack problem
was chosen for this case study was precisely because we did not have to address the
impact of heavy-tailed distributions. Third, multi-dimensional knapsack problems are
strange CSPs since the underlying problem is an optimization problem and we exploit
this in formulating the new heuristic evaluation functions in Section 4.4. Our origi-
nal motivation for choosing to apply SGMPCS to a CSP version of multi-dimensional
knapsack was simply because Refalo [16] did so and showed poor performance for ran-
domized restart. Given the relationship between randomized restart and SGMPCS, this
appeared to be a fertile choice. There remains some uncertainty regarding the applica-
tion of the FDC-based descriptive model of SGMPCS performance on more “natural”
CSPs. Nonetheless, our model makes clear, testable hypotheses that can be evaluated
in future work. Finally, as a descriptive model, the work in this paper does not, on its
own, produce a clear benefit for constraint solvers. We have not demonstrated any im-
provement on the state-of-the-art for any problem classes. That was not our aim in this
paper. What we have done is provided a deeper understanding of the performance of
SGMPCS and a potential new source of search guidance for CP search.

It was noted in Section 2.1 that an alternative way to apply SGMPCS to constraint
satisfaction problems is to adopt a soft constraint framework. The work in this paper
makes the prediction that the success of such an approach depends, at least partially,
on achieving a high correlation between the “cost” of a solution that breaks some con-
straints and the distance of that solution from a satisfying (or optimal in the case of
MAX-CSP) solution. Such work is an important test of the generality of the results
presented here.

Another approach to the incorporation of soft constraints is to define the heuristic
evaluation function to be based on a soft constraint model while the primary search is
done within a crisp constraint model as above. That is, when the constructive search
finds a potential elite solution, the evaluation of that solution could be done using a
soft constraint model. The assignments of the elite solution could be extended to find
a complete assignment that minimizes the cost of the broken constraints. That cost is
then used as the heuristic evaluation of the corresponding elite solution. The results
above suggest that the success of such an approach will be at least partially dependent

Fitness-Distance Correlation and Solution-Guided Search 125

upon the correlation between the heuristic provided by the soft constraint model and
the distance to the nearest satisfying solution.

6 Conclusion

In this paper, the first steps were taken in understanding the search behaviour of
Solution-Guided Multi-Point Constructive Search (SGMPCS). Using a constraint sat-
isfaction model of the multi-dimensional knapsack problem, a descriptive model of
SGMPCS search behaviour was developed using fitness-distance analysis, a technique
common in the metaheuristic literature [11]. Empirical results, both in an artificial con-
text and using three different heuristic evaluation functions, demonstrated that the cor-
relation between the heuristic evaluation of a state and its proximity to the satisfying
solution has a strong impact on search performance of SGMPCS. This (partial) descrip-
tive model is important for three main reasons:

1. It makes testable predictions about the behaviour of SGMPCS on other constraint
satisfaction and optimization problems.

2. It provides a clear direction for improving SGMPCS search performance: the
creation of, perhaps domain-dependent, heuristic evaluation functions for partial
search states that are well-correlated with the distance to the nearest solution.

3. It re-introduces a heuristic search guidance concept to the constraint programming
literature. Though guidance by heuristic evaluation of search states is common in
metaheuristics, general AI search (e.g., A∗ and game playing), and best-first search
approaches, it does not appear to have been exploited in constructive, CP search.
We believe this is an important direction for further investigation.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada, the Canadian Foundation for Innovation, the Ontario Research
Fund, Microway, Inc., and ILOG, S.A..

References

1. Beck, J.C.: Multi-point constructive search. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
pp. 737–741. Springer, Heidelberg (2005)

2. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling. Journal
of Artificial Intelligence Research 29, 49–77 (2007)

3. Beck, J.C., Watson, J.-P.: Adaptive search algorithms and fitness-distance correlation. In:
Proceedings of the Fifth Metaheuristics International Conference (2003)

4. Beldiceanu, N., Petit, T.: Cost evaluation of soft global constraints. In: Régin, J.-C., Rueher,
M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 80–95. Springer, Heidelberg (2004)

5. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Arti-
ficial Life 5(2), 137–172 (1999)

6. Fekete, S.P., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-dimensional
orthogonal packing. Operations Research 55(3), 569–587 (2007)

126 I. Heckman and J.C. Beck

7. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), vol. 1,
pp. 246–252 (1996)

8. Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes across constrained-
ness regions. Constraints 10(4), 317–337 (2005)

9. Heckman, I.: Empirical Analysis of Solution Guided Multi-Point Constructive Search. PhD
thesis, Department of Mechanical & Industrial Engineering, University of Toronto (2007)

10. Heckman, I., Beck, J.C.: An empirical study of multi-point constructive search for constraint
satisfaction. In: Proceedings of the Third International Workshop on Local Search Tech-
niques in Constraint Satisfaction (2006)

11. Hoos, H.H., Stüzle, T.: Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann, San Francisco (2005)

12. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2318–
2323 (2007)

13. Hulubei, T., O’Sullivan, B.: The impact of search heuristics on heavy-tailed behaviour. Con-
straints 11(2-3), 159–178 (2006)

14. Korf, R.: Optimal rectangle packing: New results. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS 2004), pp. 142–149 (2004)

15. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Informa-
tion Processing Letters 47, 173–180 (1993)

16. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

17. Ruml, W.: Adaptive tree search. PhD thesis, Dept. of Computer Science, Harvard University
(2002)

18. Smith, B.M., Dyer, M.E.: Locating the phase transition in constraint satisfaction problems.
Artificial Intelligence 81, 155–181 (1996)

19. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based soft global
constraints. Journal of Heuristics 12(4-5), 347–373 (2006)

20. Watson, J.-P.: Empirical Modeling and Analysis of Local Search Algorithms for the Job-
Shop Scheduling Problem. PhD thesis, Dept. of Computer Science, Colorado State Univer-
sity (2003)

Leveraging Belief Propagation, Backtrack

Search, and Statistics for Model Counting�

Lukas Kroc, Ashish Sabharwal, and Bart Selman

Department of Computer Science
Cornell University, Ithaca NY 14853-7501, U.S.A.

{kroc,sabhar,selman}@cs.cornell.edu

Abstract. We consider the problem of estimating the model count
(number of solutions) of Boolean formulas, and present two techniques
that compute estimates of these counts, as well as either lower or upper
bounds with different trade-offs between efficiency, bound quality, and
correctness guarantee. For lower bounds, we use a recent framework for
probabilistic correctness guarantees, and exploit message passing tech-
niques for marginal probability estimation, namely, variations of Belief
Propagation (BP). Our results suggest that BP provides useful informa-
tion even on structured loopy formulas. For upper bounds, we perform
multiple runs of the MiniSat SAT solver with a minor modification, and
obtain statistical bounds on the model count based on the observation
that the distribution of a certain quantity of interest is often very close
to the normal distribution. Our experiments demonstrate that our model
counters based on these two ideas, BPCount and MiniCount, can provide
very good bounds in time significantly less than alternative approaches.

1 Introduction

The model counting problem for Boolean satisfiability or SAT is the problem of
computing the number of solutions or satisfying assignments for a given Boolean
formula. Often written as #SAT, this problem is #P-complete [21] and is widely
believed to be significantly harder than the NP-complete SAT problem, which
seeks an answer to whether or not the formula in satisfiable. With the amazing
advances in the effectiveness of SAT solvers since the early 90’s, these solvers
have come to be commonly used in combinatorial application areas like hardware
and software verification, planning, and design automation. Efficient algorithms
for #SAT will further open the doors to a whole new range of applications, most
notably those involving probabilistic inference [1, 4, 12, 14, 17, 19].

A number of different techniques for model counting have been proposed over
the last few years. For example, Relsat [2] extends systematic SAT solvers for
model counting and uses component analysis for efficiency, Cachet [18] adds
caching schemes to this approach, c2d [3] converts formulas to the d-DNNF form

� Research supported by IISI, Cornell University (AFOSR grant FA9550-04-1-0151),
DARPA (REAL Grant FA8750-04-2-0216), and NSF (Grant 0514429).

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 127–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 L. Kroc, A. Sabharwal, and B. Selman

which yields the model count as a by-product, ApproxCount [23] and SampleCount

[9] exploit sampling techniques for estimating the count, MBound [10] relies on the
properties of random parity or xor constraints to produce estimates with correct-
ness guarantees, and the recently introduced SampleMinisat [8] uses sampling of
the backtrack-free search space of systematic SAT solvers. While all of these ap-
proaches have their own advantages and strengths, there is still much room for
improvement in the overall scalability and effectiveness of model counters.

We propose two new techniques for model counting that leverage the strength
of message passing and systematic algorithms for SAT. The first of these yields
probabilistic lower bounds on the model count, and for the second we introduce
a statistical framework for obtaining upper bounds.

The first method, which we call BPCount, builds upon a successful approach for
model counting using local search, called ApproxCount. The idea is to efficiently
obtain a rough estimate of the “marginals” of each variable: what fraction of
solutions have variable x set to true and what fraction have x set to false?
If this information is computed accurately enough, it is sufficient to recursively
count the number of solutions of only one of F |x and F |¬x, and scale the count
up appropriately. This technique is extended in SampleCount, which adds ran-
domization to this process and provides lower bounds on the model count with
high probability correctness guarantees. For both ApproxCount and SampleCount,
true variable marginals are estimated by obtaining several solution samples using
local search techniques such as SampleSat [22] and computing marginals from the
samples. In many cases, however, obtaining many near-uniform solution samples
can be costly, and one naturally asks whether there are more efficient ways of
estimating variable marginals.

Interestingly, the problem of computing variable marginals can be formulated
as a key question in Bayesian inference, and the Belief Propagation or BP al-
gorithm [15], at least in principle, provides us with exactly the tool we need.
The BP method for SAT involves representing the problem as a factor graph
and passing “messages” back-and-forth between variable and factor nodes until
a fixed point is reached. This process is cast as a set of mutually recursive equa-
tions which are solved iteratively. From the fixed point, one can easily compute,
in particular, variable marginals.

While this sounds encouraging, there are two immediate challenges in ap-
plying the BP framework to model counting: (1) quite often the iterative pro-
cess for solving the BP equations does not converge to a fixed point, and (2)
while BP provably computes exact variable marginals on formulas whose con-
straint graph has a tree-like structure (formally defined later), its marginals
can sometimes be substantially off on formulas with a richer interaction struc-
ture. To address the first issue, we use a “message damping” form of BP which
has better convergence properties (inspired by a damped version of BP due to
[16]). For the second issue, we add “safety checks” to prevent the algorithm
from running into a contradiction by accidentally eliminating all assignments.1

1 A tangential approach for handling such fatal mistakes is incorporating BP as a
heuristic within backtrack search, which our results suggest has clear potential.

Leveraging Belief Propagation, Backtrack Search, and Statistics 129

Somewhat surprisingly, avoiding these rare but fatal mistakes turns out to be
sufficient for obtaining very close estimates and lower bounds for solution counts,
suggesting that BP does provide useful information even on highly structured
loopy formulas. To exploit this information even further, we extend the frame-
work borrowed from SampleCount with the use of biased coins during randomized
value selection.

The model count can, in fact, also be estimated directly from just one fixed
point run of the BP equations, by computing the value of so-called partition
function [24]. In particular, this approach computes the exact model count on
tree-like formulas, and appeared to work fairly well on random formulas. How-
ever, the count estimated this way is often highly inaccurate on structured loopy
formulas. BPCount, as we will see, makes a much more robust use of the informa-
tion provided by BP.

The second method, which we call MiniCount, exploits the power of mod-
ern DPLL [5, 6] based SAT solvers, which are extremely good at finding sin-
gle solutions to Boolean formulas through backtrack search.2 The problem of
computing upper bounds on the model count has so far eluded solution be-
cause of an asymmetry which manifests itself in at least two inter-related forms:
the set of solutions of interesting N variable formulas typically forms a mi-
nuscule fraction of the full space of 2N variable assignments, and the applica-
tion of Markov’s inequality as in SampleCount does not yield interesting upper
bounds. Note that systematic model counters like Relsat and Cachet can also
be easily extended to provide an upper bound when they time out (2N minus
the number of non-solutions encountered), but these bounds are uninteresting
because of the above asymmetry. To address this issue, we develop a statis-
tical framework which lets us compute upper bounds under certain statistical
assumptions, which are independently validated. To the best of our knowledge,
this is the first effective and scalable method for obtaining good upper bo-
unds on the model counts of formulas that are beyond the reach of exact model
counters.

More specifically, we describe how the DPLL-based solver MiniSat [7], with
two minor modifications, can be used to estimate the total number of solutions.
The number d of branching decisions (not counting unit propagations and failed
branches) made by MiniSat before reaching a solution, is the main quantity
of interest: when the choice between setting a variable to true or to false
is randomized,3 the number d is provably not any lower, in expectation, than
log2(model count). This provides a strategy for obtaining upper bounds on the
model count, only if one could efficiently estimate the expected value, E [d], of
the number of such branching decisions. A natural way to estimate E [d] is to
perform multiple runs of the randomized solver, and compute the average of d
over these runs. However, if the formula has many “easy” solutions (found with
a low value of d) and many “hard” solutions, the limited number of runs one can
perform in a reasonable amount of time may be insufficient to hit many of the

2 [8] have recently independently proposed the use of DPLL solvers for model counting.
3 MiniSat by default always sets variables to false.

130 L. Kroc, A. Sabharwal, and B. Selman

“hard” solutions, yielding too low of an estimate for E [d] and thus an incorrect
upper bound on the model count.

Interestingly, we show that for many families of formulas, d has a distribution
that is very close to the normal distribution. Under the assumption that d is
normally distributed, when sampling various values of d through multiple runs
of the solver, we need not necessarily encounter high values of d in order to
correctly estimate E [d] for an upper bound. Instead, we can rely on statistical
tests and conservative computations [20, 26] to obtain a statistical upper bound
on E [d] within any specified confidence interval.

We evaluated our two approaches on challenging formulas from several do-
mains. Our experiments with BPCount demonstrate a clear gain in efficiency,
while providing much higher lower bound counts than exact counters (which of-
ten run out of time or memory) and competitive lower bound quality compared
to SampleCount. For example, the runtime on several difficult instances from the
FPGA routing family with over 10100 solutions is reduced from hours for both
exact counters and SampleCount to just a few minutes with BPCount. Similarly, for
random 3CNF instances with around 1020 solutions, we see a reduction in com-
putation time from hours and minutes to seconds. With MiniCount, we are able
to provide good upper bounds on the solution counts, often within seconds and
fairly close to the true counts (if known) or lower bounds. These experimental
results attest to the effectiveness of the two proposed approaches in significantly
extending the reach of solution counters for hard combinatorial problems.

2 Notation

A Boolean variable xi is one that assumes a value of either 1 or 0 (true or
false, respectively). A truth assignment for a set of Boolean variables is a map
that assigns each variable a value. A Boolean formula F over a set of n such
variables is a logical expression over these variables, which represents a function
f : {0, 1}n → {0, 1} determined by whether or not F evaluates to true under
a truth assignment for the n variables. A special class of such formulas consists
of those in the Conjunctive Normal Form or CNF: F ≡ (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧
(lm1 ∨ . . . ∨ lmkm), where each literal llk is one of the variables xi or its negation
¬xi. Each conjunct of such a formula is called a clause. We will be working with
CNF formulas throughout this paper.

The constraint graph of a CNF formula F has variables of F as vertices
and an edge between two vertices if both of the corresponding variables appear
together in some clause of F . When this constraint graph has no cycles (i.e., it
is a collection of disjoint trees), F is called a tree-like or poly-tree formula.

The problem of finding a truth assignment for which F evaluates to true is
known as the propositional satisfiability problem, or SAT, and is the canonical
NP-complete problem. Such an assignment is called a satisfying assignment or a
solution for F . In this paper we are concerned with the problem of counting the
number of satisfying assignments for a given formula, known as the propositional
model counting problem. This problem is #P-complete [21].

Leveraging Belief Propagation, Backtrack Search, and Statistics 131

3 Lower Bounds Using BP Marginal Estimates

In this section, we develop a method for obtaining a lower bound on the solu-
tion count of a given formula, using the framework recently used in the SAT
model counter SampleCount [9]. The key difference between our approach and
SampleCount is that instead of relying on solution samples, we use a variant of
belief propagation to obtain estimates of the fraction of solutions in which a vari-
able appears positively. We call this algorithm BPCount. After describing the basic
method, we will discuss two techniques that improve the tightness of BPCount

bounds in practice, namely, biased variable assignments and safety checks.

3.1 Counting Using BP: BPCount

We begin by recapitulating the framework of SampleCount for obtaining lower
bound model counts with probabilistic correctness guarantees. A variable u will
be called balanced if it occurs equally often positively and negatively in all solu-
tions of the given formula. In general, the marginal probability of u being true in
the set of satisfying assignments of a formula is the fraction of such assignments
where u = true. Note that computing the marginals of each variable, and in
particular identifying balanced or near-balanced variables, is quite non-trivial.
The model counting approaches we describe attempt to estimate such marginals
using indirect techniques such as solution sampling or iterative message passing.

Given a formula F and parameters t, z ∈ Z
+, α > 0, SampleCount performs t

iterations, keeping track of the minimum count obtained over these iterations. In
each iteration, it samples z solutions of (potentially simplified) F , identifies the
most balanced variable u, uniformly randomly sets u to true or false, simplifies
F by performing any possible unit propagations, and repeats the process. The
repetition ends when F is reduced to a size small enough to be feasible for exact
model counters like Cachet. At this point, let s denote the number of variables
randomly set in this iteration before handing the formula to Cachet, and let M ′

be the model count of the residual formula returned by Cachet. The count for
this iteration is computed to be 2s−α×M ′ (where α is a “slack” factor pertaining
to our probabilistic confidence in the bound). Here 2s can be seen as scaling up
the residual count by a factor of 2 for every uniform random decision we made
when fixing variables. After the t iterations are over, the minimum of the counts
over all iterations is reported as the lower bound for the model count of F , and
the correctness confidence attached to this lower bound is 1 − 2−αt. This means
that the reported count is a correct lower bound with probability 1 − 2−αt.

The performance of SampleCount is enhanced by also considering balanced
variable pairs (v, w), where the balance is measured as the difference in the
fractions of all solutions in which v and w appear with the same sign vs. with
different signs. When a pair is more balanced than any single literal, the pair
is used instead for simplifying the formula. In this case, we replace w with v
or ¬v uniformly at random. For ease of illustration, we will focus here only on
identifying and randomly setting balanced or near-balanced variables.

132 L. Kroc, A. Sabharwal, and B. Selman

The key observation in SampleCount is that when the formula is simplified by
repeatedly assigning a positive or negative polarity to variables, the expected
value of the count in each iteration, 2s × M ′ (ignoring the slack factor α), is
exactly the true model count of F , from which lower bound guarantees follow.
We refer the reader to Gomes et al. [9] for details. Informally, we can think of
what happens when the first such balanced variable, say u, is set uniformly at
random. Let p ∈ [0, 1]. Suppose F has M solutions, F |u has pM solutions, and
F |¬u has (1 − p)M solutions. Of course, when setting u uniformly at random,
we don’t know the actual value of p. Nonetheless, with probability a half, we
will recursively count the search space with pM solutions and scale it up by a
factor of 2, giving a net count of pM.2. Similarly, with probability a half, we
will recursively get a net count of (1 − p)M.2 solutions. On average, this gives
1/2.pM.2 +1/2.(1 − p)M.2 = M solutions.

Interestingly, the correctness guarantee of this process holds irrespective of
how good or bad the samples are. However, when balanced variables are correctly
identified, we have p ≈ 1/2 in the informal analysis above, so that for both
coin flip outcomes we recursively search a space with roughly M/2 solutions.
This reduces the variance tremendously, which is crucial to making the process
effective in practice. Note that with high variance, the minimum count over t
iterations is likely to be much smaller than the true count; thus high variance
leads to poor quality lower bounds.

The idea of BPCount is to “plug-in” belief propagation methods in place of
solution sampling in the SampleCount framework, in order to estimate “p” in the
intuitive analysis above and, in particular, to help identify balanced variables.
As it turns out, a solution to the BP equations [15] provides exactly what we
need: an estimate of the marginals of each variable. This is an alternative to
using sampling for this purpose, and is often orders of magnitude faster. One
bottleneck, however, is that the basic belief propagation process is iterative and
does not even converge on most formulas of interest. We therefore use a “message
damping” variant of standard BP, very similar to the one introduced by [16]. This
variant is parameterized by κ ∈ [0, 1], and has the property that as κ decreases,
the dynamics of the equations go from standard BP (for κ = 1) to a damped
variant with assured convergence (for κ = 0). The equations are analogous to
standard BP for SAT (see e.g. [13] Figure 4 with ρ = 0 for a full description),
differing only in the added κ exponent in the iterative update equation as shown
in Figure 1. We use its output as an estimate of the marginals of the variables
in BPCount. Note that there are several variants of BP that assure convergence,
such as by [25] and [11]; we chose the “κ” variant because of its good scaling
behavior.

Given this process of obtaining marginal estimates from BP, BPCount works
almost exactly like SampleCount and provides the same lower bound guarantees.
Using Biased Coins. We can improve the performance of BPCount (and also
of SampleCount) by using biased variable assignments. The idea here is that
when fixing variables repeatedly in each iteration, the values need not be chosen
uniformly. The correctness guarantees still hold even if we use a biased coin

Leveraging Belief Propagation, Backtrack Search, and Statistics 133

ηa→i =
∏

j∈V (a)\i

⎡

⎣

(∏
b∈Cs

a(i)(1 − ηb→i)
)κ

(∏
b∈Cs

a(i)(1 − ηb→i)
)κ

+
(∏

b∈Cu
a (i)(1 − ηb→i)

)κ

⎤

⎦

Notation. V (a): all variables in clause a. Cu
a (i), i ∈ V (a): clauses where i appears

with the opposite sign than it has in a. Cs
a(i), i ∈ V (a): clauses where i appears

with the same sign as it has in a (except for a).

Fig. 1. BP (κ) update equation

and set the chosen variable u to true with probability q and to false with
probability 1 − q, for any q ∈ (0, 1). Using earlier notation, this leads us to
a solution space of size pM with probability q and to a solution space of size
(1 − p)M with probability 1 − q. Now, instead of scaling up with a factor of
2 in both cases, we scale up based on the bias of the coin used. Specifically,
with probability q, we go to one part of the solution space and scale it up by
1/q, and similarly for 1 − q. The net result is that in expectation, we still get
q.pM/q + (1 − q).(1 − p)M/(1 − q) = M solutions. Further, the variance is
minimized when q is set to equal p; in BPCount, q is set to equal the estimate of p
obtained using the BP equations. To see that the resulting variance is minimized
this way, note that with probability q, we get a net count of pM/q, and with
probability (1 − q), we get a net count of (1 − p)M/(1 − q); these balance out
to exactly M in either case when q = p. Hence, when we have confidence in
the correctness of the estimates of variable marginals (i.e., p here), it provably
reduces variance to use a biased coin that matches the marginal estimates of the
variable to be fixed.

Safety Checks. One issue that arises when using BP techniques to estimate
marginals is that the estimates, in some case, may be far off from the true
marginals. In the worst case, a variable u identified by BP as the most balanced
may in fact be a backbone variable for F , i.e., may only occur, say, positively in
all solutions to F . Setting u to false based on the outcome of the corresponding
coin flip thus leads one to a part of the search space with no solutions at all, so
that the count for this iteration is zero, making the minimum over t iterations
zero as well. To remedy this situation, we use safety checks using an off-the-shelf
SAT solver (Minisat or Walksat in our implementation) before fixing the value
of any variable. The idea is to simply check that u can be set both ways before
flipping the random coin and fixing u to true or false. If Minisat finds, e.g., that
forcing u to be true makes the formula unsatisfiable, we can immediately deduce
u = false, simplify the formula, and look for a different balanced variable. This
safety check prevents BPCount from reaching the undesirable state where there
are no remaining solutions at all.

In fact, with the addition of safety checks, we found that the lower bounds
on model counts obtained for some formulas were surprisingly good even when
the marginal estimates were generated purely at random, i.e., without actually

134 L. Kroc, A. Sabharwal, and B. Selman

running BP. This can perhaps be explained by the errors introduced at each
step somehow canceling out when several variables are fixed. With the use of
BP, the quality of the lower bounds was significantly improved, showing that BP
does provide useful information about marginals even for loopy formulas. Lastly,
we note that with SampleCount, the external safety check can be conservatively
replaced by simply avoiding those variables that appear to be backbone variables
from the obtained samples.

4 Upper Bound Estimation

We now describe an approach for estimating an upper bound on the solution
count. We use the reasoning discussed for BPCount, and apply it to a DPLL style
search procedure. There is an important distinction between the nature of the
bound guarantees presented here and earlier: here we will derive statistical (as
opposed to probabilistic) guarantees, and their quality may depend on the par-
ticular family of formulas in question. The applicability of the method will also
be determined by a statistical test, which succeeded in most of our experiments.

4.1 Counting Using Backtrack Search: MiniCount

For BPCount, we used a backtrack-less branching search process with a random
outcome that, in expectation, gives the exact number of solutions. The ability to
randomly assign values to selected variables was crucial in this process. Here we
extend the same line of reasoning to a search process with backtracking, and ar-
gue that the expected value of the outcome is an upper bound on the true count.
We extend the MiniSat SAT solver [7] to compute the information needed for
upper bound estimation. MiniSat is a very efficient SAT solver employing con-
flict clause learning and other state-of-the-art techniques, and has one important
feature helpful for our purposes: whenever it chooses a variable to branch on, it
is left unspecified which value should the variable assume first. One possibility is
to assign values true or false randomly with equal probability. Since MiniSat

does not use any information about the variable to determine the most promising
polarity, this random assignment in principle does not lower MiniSat’s power.

Algorithm MiniCount: Given a formula F , run MiniSat with no restarts, choos-
ing a value for a variable uniformly at random at each choice point (option
-polarity-mode=rnd). When a solution is found, output 2d where d is the num-
ber of choice points on the path to the solution (the final decision level), not
counting those choice points where the other branch failed to find a solution.

The restriction that MiniCount cannot use restarts is the only change to the
solver. This limits somewhat the range of problems MiniCount can be applied to
compared to the original MiniSat, but is a crucial restriction for the guarantee of
an upper bound (as explained below). We found that MiniCount is still efficient
on a wide range of formulas. Since MiniCount is a probabilistic algorithm, its
output, 2d, on a given formula F is a random variable. We denote this random

Leveraging Belief Propagation, Backtrack Search, and Statistics 135

variable by #FMiniCount, and use #F to denote the true number of solutions of
F . The following proposition forms the basis of our upper bound estimation.

Proposition 1. E [#FMiniCount] ≥ #F .

Proof. The proof follows a similar line of reasoning as for BPCount, and we give
a sketch of it. Note that if no backtracking is allowed (i.e., the solver reports 0
solutions if it finds a contradiction), the result follows, with strict equality, from
the proof that BPCount (or SampleCount) provides accurate counts in expectation.
We will show that the addition of backtracking can only increase the value of
E [#FMiniCount], by looking at its effect on any choice point. Let u be any choice
point variable with at least one satisfiable branch in its subtree, and let M
be the number of solutions in the subtree, with pM in the left branch (when
u =false) and (1 − p)M in the right branch (when u =true). If both branches
under u are satisfiable, then the expected number of solutions computed at u
is 1/2.pM.2 +1/2.(1 − p)M.2 = M , which is the correct value. However, if either
branch is unsatisfiable, then two things might happen: with probability half
the search process will discover this fact by exploring the contradictory branch
first and u will not be counted as a choice point in the final solution (i.e., its
multiplier will be 1), and with probability half this fact will go unnoticed and u
will retain its multiplier of 2. Thus the expected number of reported solutions at
u is 1/2.M.2 +1/2.M = 3

2M , which is no smaller than M . This finishes the proof.

The reason restarts are not allowed in MiniCount is exactly Proposition 1. With
restarts, only solutions reachable within the current setting of the restart thresh-
old can be found. This biases the search towards “easier” solutions, since they
are given more opportunities to be found. For formulas where easier solutions
lie on paths with fewer choice points, MiniCount with restarts could undercount
and thus not provide an upper bound in expectation.

With enough random sample outputs, #FMiniCount, obtained from MiniCount,
their average value will eventually converge to E [#FMiniCount] by the Law of
Large Numbers, thereby providing an upper bound on #F because of Proposi-
tion 1. Unfortunately, providing a useful correctness guarantee on such an upper
bound in a manner similar to the lower bounds seen earlier turns out to be
impractical, because the resulting guarantees, obtained using a reverse variant
of the standard Markov’s inequality, are too weak. Further, relying on the sim-
ple average of the obtained output samples might also be misleading, since the
distribution of #FMiniCount is often heavy tailed, and it might take very many
samples for the sample mean to become as large as the true solution count.

4.2 Estimating the Upper Bound

In this section, we develop an approach based on statistical analysis of the sample
outputs that allows one to estimate the expected value of #FMiniCount, and thus
an upper bound with statistical guarantees, using relatively few samples.

Assuming the distribution of #FMiniCount is known, the samples can be used
to provide an unbiased estimate of the mean, along with confidence intervals

136 L. Kroc, A. Sabharwal, and B. Selman

on this estimate. This distribution is of course not known and will vary from
formula to formula, but it can again be inferred from the samples. We observed
that for many formulas, the distribution of #FMiniCount is well approximated by
a log-normal distribution. Thus we develop the method under the assumption
of log-normality, and include techniques to independently test this assumption.
The method has three steps:

1. Generate n independent samples from #FMiniCount by running MiniCount n
times on the same formula.

2. Test whether the samples come from a log-normal distribution (or a distri-
bution sufficiently similar).

3. Estimate the true expected value of #FMiniCount from the samples, and cal-
culate the (1 −α)% confidence interval for it, using the assumption that the
underlying distribution is log-normal. We set the confidence level α to 0.01,
and denote the upper bound of the resulting confidence interval by cmax.

This process, some of whose details will be discussed shortly, yields an upper
bound cmax along with a statistical guarantee that cmax ≥ E [#FMiniCount] and
thus cmax ≥ #F :

Pr [cmax ≥ #F] ≥ 1 − α

The caveat in this statement (and, in fact, the main difference from the similar
statement for the lower bounds for BPCount given earlier) is that it is true only
if our assumption of log-normality holds.

Testing for Log-Normality. By definition, a random variable X has a log-
normal distribution if the random variable Y = log X has a normal distribution.
Thus a test whether Y is normally distributed can be used, and we use the
Shapiro-Wilk test [cf. 20] for this purpose. In our case, Y = log(#FMiniCount)
and if the computed p-value of the test is below the confidence level α = 0.05, we
conclude that our samples do not come from a log-normal distribution; otherwise
we assume that they do. If the test fails, then there is sufficient evidence that the
underlying distribution is not log-normal, and the confidence interval analysis
to be described shortly will not provide any statistical guarantees. Note that
non-failure of the test does not mean that the samples are actually log-normally
distributed, but inspecting the Quantile-Quantile plots (QQ-plots) often sup-
ports the hypothesis that they are. QQ-plots compare sampled quantiles with
theoretical quantiles of the desired distribution: the more the sample points align
on a line, the more likely it is that the data comes from the distribution.

We found that a surprising number of formulas had log2(#FMiniCount) very
close to being normally distributed. Figure 2 shows normalized QQ-plots for
dMiniCount = log2(#FMiniCount) obtained from 100 to 1000 runs of MiniCount on
various families of formulas (discussed in the experimental section). The top-left
QQ-plot shows the best fit of normalized dMiniCount (obtained by subtracting
the average and dividing by the standard deviation) to the normal distribution:
(normalized dMiniCount = d) ∼ 1√

2π
e−d2/2. The ‘supernormal’ and ‘subnormal’

lines show that the fit is much worse when the exponent of d is, for example,

Leveraging Belief Propagation, Backtrack Search, and Statistics 137

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Normal
’Supernormal’
’Subnormal’

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4
Fig. 2. Sampled and theoretical quantiles for formulas described in the experimental
section (top: alu2 gr rcs w8, lang19; bottom: 2bitmax 6, wff-3-150-525, ls11-norm)

1.5 or 2.5. The top-right plot shows that the corresponding domain (Langford
problems) is somewhat on the border of being log-normally distributed, which
is reflected in our experimental results to be described later.

Note that the nature of statistical tests is such that if the distribution of
E [#FMiniCount] is not exactly log-normal, obtaining more and more samples will
eventually lead to rejecting the log-normality hypothesis. For most practical
purposes, being “close” to log-normally distributed suffices.

Confidence Interval Bound. Assuming the output samples from MiniCount

{o1, . . . , on} come from a log-normal distribution, we use them to compute the
upper bound cmax of the confidence interval for the mean of #FMiniCount. The
exact method for computing cmax for a log-normal distribution is complicated,
and seldom used in practice. We use a conservative bound computation [26]: let
yi = log(oi), ȳ = 1

n

∑n
i=1 yi denote the sample mean, and s2 = 1

n−1

∑n
i=1(yi−ȳ)2

the sample variance. Then the conservative upper bound is constructed as

c̃max = ȳ +
s2

2
+

(
n − 1

χ2
α(n − 1)

− 1
)√

s2

2

(
1 +

s2

2

)

where χ2
α(n−1) is the α-percentile of the chi-square distribution with n−1 degrees

of freedom. Since c̃max ≥ cmax we still have Pr [c̃max ≥ E [#FMiniCount]] ≥ 1 − α.
The main assumption of the method described in this section is that the dis-

tribution of #FMiniCount can be well approximated by a log-normal. This, of
course, depends on the nature of the search space of MiniCount on a particular
formula. As noted before, the assumption may sometimes be incorrect. In par-
ticular, one can construct a pathological search space where the reported upper

138 L. Kroc, A. Sabharwal, and B. Selman

bound will be lower than the actual number of solutions. Consider a problem P
that consists of two non-interacting subproblems P1 and P2, where it is sufficient
to solve either one of them to solve P . Suppose P1 is very easy to solve (e.g.,
requires few choice points that are easy to find) compared to P2, and P1 has
very few solutions compared to P2. In such a case, MiniCount will almost always
solve P1 (and thus estimate the number of solutions of P1), which would leave
an arbitrarily large number of solutions of P2 unaccounted for. This situation vi-
olates the assumption that #FMiniCount is log-normally distributed, but it may
be left unnoticed. This possibility of a false upper bound is a consequence of
the inability to prove from samples that a random variable is log-normally dis-
tributed (one may only disprove this assertion). Fortunately, as our experiments
suggest, this situation is rare and does not arise in many real-world problems.

5 Experimental Results

We conducted experiments with BPCount as well as MiniCount, with the primary
focus on comparing the results to exact counters and the recent SampleCount

algorithm providing probabilistically guaranteed lower bounds. We used a cluster
of 3.8 GHz Intel Xeon computers running Linux 2.6.9-22.ELsmp. The time limit
was set to 12 hours and the memory limit to 2 GB.

We consider problems from five different domains, many of which have previ-
ously been used as benchmarks for evaluating model counting techniques: circuit
synthesis, random k-CNF, Latin square construction, Langford problems, and
FPGA routing instances from the SAT 2002 competition. The results are summa-
rized in Table 1. The columns show the performance of BPCount and MiniCount,
compared against the exact solution counters Relsat, Cachet, and c2d (we report
the best of the three for each instance; for all but the first instance, c2d exceeded
the memory limit) and SampleCount. The table shows the reported bounds on
the model counts and the corresponding runtime in seconds.

For BPCount, the damping parameter setting (i.e., the κ value) we use for
the damped BP marginal estimator is 0.8, 0.9, 0.9, 0.5, and either 0.1 or 0.2
for the five domains, respectively. This parameter is chosen (with a quick man-
ual search) as high as possible so that BP converges in a few seconds or less.
The exact counter Cachet is called when the formula is sufficiently simplified,
which is when 50 to 500 variables remain, depending on the domain. The lower
bounds on the model count are reported with 99% confidence. We see that a
significant improvement in efficiency is achieved when the BP marginal estima-
tion is used through BPCount, compared to solution sampling as in SampleCount

(also run with 99% correctness confidence). For the smaller formulas considered,
the lower bounds reported by BPCount border the true model counts. For the
larger ones that could only be counted partially by exact counters in 12 hours,
BPCount gave lower bound counts that are very competitive with those reported
by SampleCount, while the running time of BPCount is, in general, an order of
magnitude lower than that of SampleCount, often just a few seconds.

For MiniCount, we obtain n = 100 samples of the estimated count for each for-
mula, and use these to estimate the upper bound statistically using the steps

Leveraging Belief Propagation, Backtrack Search, and Statistics 139

T
ab

le
1.

P
er

fo
rm

an
ce

of
BP
Co
un
t

an
d
Mi
ni
Co
un
t.

[R
]
an

d
[C

]
in

d
ic

at
e

p
ar

ti
al

co
u
n
ts

ob
ta

in
ed

fr
om

Ca
ch
et

an
d
Re
ls
at

,
re

sp
ec

ti
ve

ly
.

c2
d

w
as

sl
ow

er
fo

r
th

e
fi
rs

t
in

st
an

ce
an

d
ex

ce
ed

ed
th

e
m

em
or

y
li
m

it
of

2
G

B
fo

r
th

e
re

st
.
R

u
n
ti

m
e

is
in

se
co

n
d
s.

C
a
c
h
e
t

/
R
e
l
s
a
t

/
c
2
d

S
a
m
p
l
e
C
o
u
n
t

B
P
C
o
u
n
t

M
i
n
i
C
o
u
n
t

#
of

T
ru

e
C

ou
nt

(e
xa

ct
co

u
nt

er
s)

(9
9%

co
n
fi
d
en

ce
)

(9
9%

co
n
fi
d
en

ce
)

S
-W

(9
9%

co
n
fi
d
en

ce
)

In
st

an
ce

va
rs

(i
f
kn

ow
n
)

M
od

el
s

T
im

e
LW

R
-b

ou
n
d

T
im

e
LW

R
-b

ou
n
d

T
im

e
T
es

t
A

ve
ra

ge
U

P
R

-b
ou

n
d

T
im

e

C
IR

C
U

IT
S
Y

N
T

H
.

2b
it

m
ax

6
25

2
2.

1
×

10
29

2.
1
×

10
29

2
se

c[
C

]
≥

2.
4
×

10
28

29
se

c
≥

2
.8
×

1
0
2
8

5
se

c
√

3.
5
×

10
30

≤
4
.3
×

1
0
3
2

2
se

c

R
A

N
D

O
M

k
-C

N
F

w
ff
-3

-3
.5

15
0

1.
4
×

10
14

1.
4
×

10
14

7
m

in
[C

]
≥

1.
6
×

10
13

4
m

in
≥

1
.6
×

1
0
1
1

3
se

c
√

4.
3
×

10
14

≤
6
.7
×

1
0
1
5

2
se

c
w

ff
-3

-1
.5

10
0

1.
8
×

10
21

1.
8
×

10
21

3
h
rs

[C
]
≥

1.
6
×

10
20

4
m

in
≥

1
.0
×

1
0
2
0

1
se

c
√

1.
2
×

10
21

≤
4
.8
×

1
0
2
2

2
se

c
w

ff
-4

-5
.0

10
0

—
≥

1.
0
×

10
14

12
h
rs

[C
]
≥

8.
0
×

10
15

2
m

in
≥

2
.0
×

1
0
1
5

2
se

c
√

2.
8
×

10
16

≤
5
.7
×

1
0
2
8

2
se

c

L
A
T

IN
S
Q

U
A

R
E

ls
8-

n
or

m
30

1
5.

4
×

10
11
≥

1.
7
×

10
8

12
h
rs

[R
]
≥

3.
1
×

10
10

19
m

in
≥

1
.9
×

1
0
1
0

1
2

se
c
√

6.
4
×

10
12

≤
1
.8
×

1
0
1
4

2
se

c
ls

9-
n
or

m
45

6
3.

8
×

10
17
≥

7.
0
×

10
7

12
h
rs

[R
]
≥

1.
4
×

10
15

32
m

in
≥

1
.0
×

1
0
1
6

1
1

se
c
√

6.
9
×

10
18

≤
2
.1
×

1
0
2
1

3
se

c
ls

10
-n

or
m

65
7

7.
6
×

10
24
≥

6.
1
×

10
7

12
h
rs

[R
]
≥

2.
7
×

10
21

49
m

in
≥

1
.0
×

1
0
2
3

2
2

se
c
√

4.
3
×

10
26

≤
7
.0
×

1
0
3
0

7
se

c
ls

11
-n

or
m

91
0

5.
4
×

10
33
≥

4.
7
×

10
7

12
h
rs

[R
]
≥

1.
2
×

10
30

69
m

in
≥

6
.4
×

1
0
3
0

1
m

in
√

1.
7
×

10
34

≤
5
.6
×

1
0
4
0

3
5

se
c

ls
12

-n
or

m
12

21
—

≥
4.

6
×

10
7

12
h
rs

[R
]
≥

6.
9
×

10
37

50
m

in
≥

2
.0
×

1
0
4
1

7
0

se
c
√

9.
1
×

10
44

≤
3
.6
×

1
0
5
2

4
m

in
ls

13
-n

or
m

15
96

—
≥

2.
1
×

10
7

12
h
rs

[R
]
≥

3.
0
×

10
49

67
m

in
≥

4
.0
×

1
0
5
4

6
m

in
√

1.
0
×

10
54

≤
8
.6
×

1
0
6
9

4
2

m
in

ls
14

-n
or

m
20

41
—

≥
2.

6
×

10
7

12
h
rs

[R
]
≥

9.
0
×

10
60

44
m

in
≥

1
.0
×

1
0
6
7

4
m

in
√

3.
2
×

10
63

≤
1
.3
×

1
0
8
6

7
.5

h
rs

L
A

N
G

F
O

R
D

P
R

O
B

S
.

la
n
g-

2-
12

57
6

1.
0
×

10
5

1.
0
×

10
5

15
m

in
[R

]
≥

4.
3
×

10
3

32
m

in
≥

2
.3
×

1
0
3

5
0

se
c
×

5.
2
×

10
6

≤
1.

0
×

10
7

2.
5

se
c

la
n
g-

2-
15

10
24

3.
0
×

10
7
≥

1.
8
×

10
5

12
h
rs

[R
]
≥

1.
0
×

10
6

60
m

in
≥

5
.5
×

1
0
5

1
m

in
√

1.
0
×

10
8

≤
9
.0
×

1
0
8

8
se

c
la

n
g-

2-
16

10
24

3.
2
×

10
8
≥

1.
8
×

10
5

12
h
rs

[R
]
≥

1.
0
×

10
6

65
m

in
≥

3
.2
×

1
0
5

1
m

in
×

1.
1
×

10
10

≤
1.

1
×

10
10

7.
3

se
c

la
n
g-

2-
19

14
44

2.
1
×

10
11
≥

2.
4
×

10
5

12
h
rs

[R
]
≥

3.
3
×

10
9

62
m

in
≥

4
.7
×

1
0
7

2
6

m
in
×

1.
4
×

10
10

≤
6.

7
×

10
12

37
se

c
la

n
g-

2-
20

16
00

2.
6
×

10
12
≥

1.
5
×

10
5

12
h
rs

[R
]
≥

5.
8
×

10
9

54
m

in
≥

7
.1
×

1
0
4

2
2

m
in
√

1.
4
×

10
12

≤
9
.4
×

1
0
1
2

3
m

in
la

n
g-

2-
23

21
16

3.
7
×

10
15
≥

1.
2
×

10
5

12
h
rs

[R
]
≥

1.
6
×

10
11

85
m

in
≥

1
.5
×

1
0
5

1
5

m
in
×

3.
5
×

10
12

≤
1.

4
×

10
13

23
m

in
la

n
g-

2-
24

23
04

—
≥

4.
1
×

10
5

12
h
rs

[R
]
≥

4.
1
×

10
13

80
m

in
≥

8
.9
×

1
0
7

1
8

m
in
×

2.
7
×

10
13

≤
1.

9
×

10
16

25
m

in

F
P
G

A
ro

u
ti

n
g

(S
A
T

20
02

)

ap
ex

7
*

w
5

19
83

—
≥

4.
5
×

10
47

12
h
rs

[R
]
≥

8.
8
×

10
85

20
m

in
≥

3
.0
×

1
0
8
2

3
m

in
√

7.
3
×

10
95

≤
5
.9
×

1
0
1
0
5

2
m

in
9s

ym
m

l
*

w
6

26
04

—
≥

5.
0
×

10
30

12
h
rs

[R
]
≥

2.
6
×

10
47

6
h
rs
≥

1
.8
×

1
0
4
6

6
m

in
√

3.
3
×

10
58

≤
5
.8
×

1
0
6
4

2
4

se
c

c8
80

*
w

7
45

92
—

≥
1.

4
×

10
43

12
h
rs

[R
]
≥

2.
3
×

10
27

3
5

h
rs
≥

7
.9
×

1
0
2
5
3

1
8

m
in
√

1.
0
×

10
26

4
≤

6
.3
×

1
0
3
2
6

2
6

se
c

al
u
2

*
w

8
40

80
—

≥
1.

8
×

10
56

12
h
rs

[R
]
≥

2.
4
×

10
22

0
14

3
m

in
≥

2
.0
×

1
0
2
0
5

1
6

m
in
√

1.
4
×

10
22

0
≤

7
.2
×

1
0
2
5
8

1
6

se
c

vd
a

*
w

9
64

98
—

≥
1.

4
×

10
88

12
h
rs

[R
]
≥

1.
4
×

10
32

6
11

h
rs
≥

3
.8
×

1
0
2
8
9

5
6

m
in
√

1.
6
×

10
30

5
≤

2
.5
×

1
0
3
9
9

4
2

se
c

140 L. Kroc, A. Sabharwal, and B. Selman

described earlier. The test for log-normality of the sample counts is done with a
rejection level 0.05, that is, if the Shapiro-Wilk test reports p-value below 0.05, we
conclude the samples do not come from a log-normal distribution, in which case no
upper bound guarantees are provided (MiniCount is “unsuccessful”). When the test
passed, the upper bound itself was computed with a confidence level of 99% using
the computation of [26]. The results are summarized in the last set of columns in
Table 1. We reportwhether the log-normality test passed, the average of the counts
obtained over the 100 runs, the value of the statistical upper bound cmax, and the
total time for the 100 runs. We see that the upper bounds are often obtained within
seconds or minutes, and are correct for all instances where the estimation method
was successful (i.e., the log-normality test passed) and true counts or lower bounds
are known. In fact, the upper bounds for these formulas (except lang-2-23) are cor-
rect w.r.t. the best known lower bounds and true counts even for those instances
where the log-normality test failed and a statistical guarantee cannot be provided.
The Langford problem family seems to be at the boundary of applicability of the
MiniCount approach, as indicated by the alternating successes and failures of the
test in this case. The approach is particularly successful on industrial problems
(circuit synthesis, FPGA routing), where upper bounds are computed within sec-
onds. Our results also demonstrate that a simple average of the 100 runs provides
a very good approximation to the number of solutions. However, simple averaging
can sometimes lead to an incorrect upper bound, as seen in wff-3-1.5, ls13-norm,
alu2 gr rcs w8, and vda gr rcs w9, where the simple average is below the true count
or a lower bound obtained independently. This justifies our statistical framework,
which as we see provides more robust upper bounds.

6 Conclusion

This work brings together techniques from message passing, DPLL-based SAT
solvers, and statistical estimation in an attempt to solve the challenging model
counting problem. We show how (a damped form of) BP can help significantly
boost solution counters that produce lower bounds with probabilistic correct-
ness guarantees. BPCount is able to provide good quality bounds in a fraction
of the time compared to previous, sample-based methods. We also describe the
first effective approach for obtaining good upper bounds on the solution count.
Our framework is general and enables one to turn any state-of-the-art complete
SAT/CSP solver into an upper bound counter, with very minimal modifications
to the code. Our MiniCount algorithm provably converges to an upper bound,
and is remarkably fast at providing good results in practice.

References

[1] Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: 44nd FOCS, pp. 340–351 (October 2003)

[2] Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components.
In: 17th AAAI, Austin, TX, July 2000, pp. 157–162 (2000)

Leveraging Belief Propagation, Backtrack Search, and Statistics 141

[3] Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: 16th ECAI, Valencia, Spain, August 2004, pp. 328–332 (2004)

[4] Darwiche, A.: The quest for efficient probabilistic inference. In: IJCAI 2005 (July
2005) Invited Talk

[5] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
CACM 5, 394–397 (1962)

[6] Davis, M., Putnam, H.: A computing procedure for quantification theory.
CACM 7, 201–215 (1960)

[7] Eén, N., Sörensson, N.: MiniSat: A SAT solver with conflict-clause minimization.
In: 8th SAT, St. Andrews, U.K. (June 2005)

[8] Gogate, V., Dechter, R.: Approximate counting by sampling the backtrack-free
search space. In: 22th AAAI, Vancouver, BC, July 2007, pp. 198–203 (2007)

[9] Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model
counting. In: 20th IJCAI, Hyderabad, India, January 2007, pp. 2293–2299 (2007)

[10] Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy for
obtaining good bounds. In: 21th AAAI, Boston, MA, July 2006, pp. 54–61 (2006)

[11] Hsu, E.I., McIlraith, S.A.: Characterizing propagation methods for boolean satis-
fiabilty. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 325–338.
Springer, Heidelberg (2006)

[12] Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean satisfiability. J.
Auto. Reas. 27(3), 251–296 (2001)

[13] Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and
its generalizations. J. Assoc. Comput. Mach. 54(4), 17 (2007)

[14] Park, J.D.: MAP complexity results and approximation methods. In: 18th UAI,
Edmonton, Canada, August 2002, pp. 388–396 (2002)

[15] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

[16] Pretti, M.: A message-passing algorithm with damping. J. Stat. Mech. P11008
(2005)

[17] Roth, D.: On the hardness of approximate reasoning. AI J. 82(1-2), 273–302 (1996)
[18] Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component

caching and clause learning for effective model counting. In: 7th SAT (2004)
[19] Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted

model counting. In: 20th AAAI, Pittsburgh, PA, July 2005, pp. 475–482 (2005)
[20] Thode, H.C.: Testing for Normality. CRC Press, Boca Raton (2002)
[21] Valiant, L.G.: The complexity of computing the permanent. Theoretical Comput.

Sci. 8, 189–201 (1979)
[22] Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting random

walk strategies. In: 19th AAAI, San Jose, CA, July 2004, pp. 670–676 (2004)
[23] Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh,

T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005)
[24] Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations

and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51(7),
2282–2312 (2005)

[25] Yuille, A.L.: CCCP algorithms to minimize the Bethe and Kikuchi free energies:
Convergent alternatives to belief prop. Neural Comput. 14(7), 1691–1722 (2002)

[26] Zhou, X.-H., Sujuan, G.: Confidence intervals for the log-normal mean. Statistics
In Medicine 16, 783–790 (1997)

The Accuracy of Search Heuristics:
An Empirical Study on Knapsack Problems�

Daniel H. Leventhal and Meinolf Sellmann

Brown University
Department of Computer Science

115 Waterman Street, P.O. Box 1910
Providence, RI 02912

{dlev,sello}@cs.brown.edu

Abstract. Theoretical models for the evaluation of quickly improving search
strategies, like limited discrepancy search, are based on specific assumptions re-
garding the probability that a value selection heuristic makes a correct prediction.
We provide an extensive empirical evaluation of value selection heuristics for
knapsack problems. We investigate how the accuracy of search heuristics varies
as a function of depth in the search-tree, and how the accuracies of heuristic pre-
dictions are affected by the relative strength of inference methods like pruning
and constraint propagation.

1 Motivation

The modern understanding [13] of systematic solvers for combinatorial satisfaction and
optimization problems distinguishes between two fundamentally different principles.
The first regards the intelligent reasoning about a given problem or one of its subprob-
lems. In an effort to reduce the combinatorial complexity, solvers try to assess whether
a part of the solution space can contain a feasible or improving solution at all. More-
over, when there is no conclusive evidence with respect to the global problem, solvers
try to eliminate specific variable assignments that can be shown quickly will not lead
to improving or feasible solutions. The principle of reasoning about a problem is called
inference and is comprised of techniques like relaxation and pruning, variable fixing,
bound strengthening, and, of course, constraint filtering and propagation. To strengthen
inference, state-of-the-art solvers also incorporate methods like the computation of valid
inequalities and, more generally, no-good learning and redundant constraint generation,
as well as automatic model reformulation.

While inference can be strengthened to a point where it is capable of solving combi-
natorial problems all by itself (consider for instance Gomory’s cutting plane algorithm
for general integer problems [11] or the concept of k-consistency in binary constraint
programming [8,3]), today’s most competitive systematic solvers complement the rea-
soning about (sub-)problems with an active search for solutions. The search principle
is in some sense the opposite of inference (see [13]): When reasoning about a problem
we consider the solution space as a whole or even a relaxation thereof (for example
by considering only one constraint at a time or by dropping integrality constraints). In

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 142–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Accuracy of Search Heuristics 143

search, on the other hand, we actually zoom into different parts of the space of potential
solutions. Systematic solvers derive their name from the fashion in which this search
is conducted. Namely, the space of potential solutions is partitioned and the different
parts are searched systematically. This is in contrast to non-systematic solvers that are
based on, for example, local search techniques. The main aspects of systematic solvers
are how the solution space is partitioned, and in what order the different parts are to be
considered. Both choices have an enormous impact on solution efficiency.

From an intellectual standpoint, we have every right to distinguish between search
and inference in the way we described before. They are two different principles and
constitute orthogonal concepts that each can be applied alone or in combination with
the other. However, it has long been observed that (when applied in combination as
practically all successful systematic solvers in constraint programming, satisfiability,
and mathematical programming do) inference and search need to be harmonized to
work together well (see, e.g. [2]).

Information provided by inference techniques can also be used to organize and guide
the search process. For example, in integer linear programming fractional solution val-
ues are often used to determine whether a variable should be rounded up or down first.
Such heuristics are commonly compared with each other based on some specific effi-
ciency measure that is global to the specific approach, such as total time for finding
and proving an optimal solution, or the best solution quality achieved after some hard
time-limit.

However, to our knowledge very little research has been conducted which investi-
gates how accurate information taken from inference algorithms actually is, or how
this accuracy evolves during search. This is quite surprising given that many theoret-
ical studies need to make certain assumptions about the relative correctness of search
heuristics or the dependency of heuristic accuracy and, for instance, the depth in the
search tree. The theoretical model that is considered in [20] to explain and study heavy-
tailed runtime distributions, for example, is based on the assumption that the heuristic
determining how the solution space is to be partitioned has a fixed probability of choos-
ing a good branching variable. Moreover, Harvey and Ginsberg’s limited discrepancy
search (LDS) [12] is based on the assumption that the probability that the value selection
heuristic returns a good value is constant (whereby, at the same time, they also assume
that heuristics are marginally more likely to fail higher up in the tree than further below).
Walsh’s depth-bounded discrepancy search (DDS) [19], on the other hand, is implicitly
based on the assumption that value selection heuristics are relatively uninformed at the
top of the tree while the error probability (as a function of depth) converges very quickly
to zero. Moreover, theoretical models for both LDS and DDS assume that there is a con-
stant probability throughout search that the heuristic choice matters at all (which it does
not when all subtrees contain (best) solutions that are equally good).

1.1 A Disturbing Case Study

Commonly, heuristics are evaluated on their overall performance in the context of a
specific algorithm. In the following example, we show what can happen when heuristic
accuracy is inferred from global efficiency.

Assume that we need to quickly compute high-quality solutions to knapsack prob-
lems. We have several heuristics and compare their performance when employed within

144 D.H. Leventhal and M. Sellmann

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 400 800 1200 1600 2000 2400 2800 3200

Pe
rc

en
t o

f
O

pt
im

al

Nodes Expanded

Momentum
Random

Anti-Momentum
Rounding

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 400 800 1200 1600 2000 2400 2800 3200

Pe
rc

en
t o

f
O

pt
im

al

Nodes Expanded

Random
Exclusion
Best-First
Inclusion

Fig. 1. Average optimality gap over number of search nodes when running PA with different
heuristics on 500 almost strongly correlated instances with 50 items each. The curves are split
into two graphs for better readability.

a depth-first search (DFS). Figure 1 shows how the average optimality gap, that is, the
gap between current best solution and the optimal solution value, evolves when exe-
cuting the algorithm with different heuristics on almost strongly correlated knapsack
instances. (We will explain the heuristics and what strongly correlated knapsack in-
stances are later - for now their exact definition is not important.) We see a clear sep-
aration: Heuristics inclusion, rounding, and best-first make very rapid improvements,
while exclusion and momentum offer no significant gains over a random choice, or
perform even worse.

In order to find a high-quality solution quickly, we clearly cannot afford a complete
search. Therefore, we need to decide which parts of the search space we want to con-
sider. LDS was developed exactly for this purpose. The strategy tries to guide the search
to those parts of the search space that are most likely to contain feasible (in case of con-
straint satisfaction) or very good (in case of constraint optimization) solutions. Based
on our findings in Figure 1, our recommendation would be to combine LDS with the
inclusion heuristic.

The depressing result of this recommendation is shown in Figure 2: The choice of
using the inclusion heuristic, whose predictions we so trusted, is the worst we could
have made!

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600

Pe
rc

en
t o

f
O

pt
im

al

Nodes Expanded

Momentum
Anti-Momentum

Rounding

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600

Pe
rc

en
t o

f
O

pt
im

al

Nodes Expanded

Inclusion
Exclusion
Best-First

Fig. 2. Average optimality gap over number of search nodes when running PA with limited dis-
crepancy search and different heuristics on 500 almost strongly correlated instances with 50 items
each

The Accuracy of Search Heuristics 145

1.2 A Case for the Direct Assessment of Heuristic Accuracy

Clearly, we lack some fundamental understanding of heuristic decision making. Obvi-
ously, it is not enough to design a heuristic that makes intuitive sense and to evaluate it
within one specific algorithm. In this paper, we argue that direct measurement is needed
on how accurate heuristic predictions are, how their accuracy differs with respect to the
state of the search, and how it is affected by inference. One of the few examples of such
research was presented in [10]: On the maximum satisfiability problem, Gomes et al.
compare the accuracy of value selection heuristics based on a linear relaxation on one
hand or a semi-definite relaxation on the other in correlation to the level of constrained-
ness of the given instances. Another example is given in [16] where the accuracy of
relaxation-based search heuristics is found to depend on the sparsity of the linear pro-
gram. We firmly believe that the first step towards the development of superior search
algorithms must be a thorough empirical study how the accuracy of search heuristics
depends on the current state of the search and how they interact with the inference
mechanisms that are being used. With this paper, we wish to make a first step in that
direction.

In the following section, we review the knapsack problem and describe a complete
algorithm to tackle it. Before we present the results of our extensive experimentation
that amounts to roughly 12,000 CPU hours on a dual-core 64-bit 2.8GHz Intel-Xeon
processor, in Section 3 we introduce two performance measures for value selection
heuristics. In Section 4, we investigate how the accuracies of different value selection
heuristics behave as a function of depth in the search tree. Finally, we study how infer-
ence mechanisms like cutting plane generation and constraint propagation can influence
the accuracy of those heuristics in Section 5.

2 Knapsack Problems

We begin our presentation by introducing the knapsack problem that will serve as the
basis of our experimentation.

Definition 1 (Knapsack Problem). Given a natural number n ∈ IN, we denote by
p1, . . . , pn the profits, and by w1, . . . , wn the weights of n items. Furthermore, given a
knapsack capacity C ∈ IN, the knapsack problem consists in finding a subset of items
S ⊆ {1, . . . , n} such that the total weight of the selection does not exceed the knapsack
capacity, i.e.

∑
i∈S wi ≤ C, and the total profit of the selection

∑
i∈S pi is maximized.

We chose the knapsack problem as our target of investigation as it has some very desir-
able properties.

– First, the problem has a simple structure and is yet NP-hard [9].
– The knapsack problem is of great practical relevance as it can be viewed as a re-

laxation of very many real-world problems. Whenever we maximize some additive
profit while a limited resource is exhausted linearly, knapsacks are somewhere hid-
den in the problem.

– Moreover, there exist many value selection heuristics for the problem so that we
are in a position to base our study on more than just one special heuristic.

146 D.H. Leventhal and M. Sellmann

– Finally, for our experiments we need a large set of problem instances so that we can
gather meaningful statistics. There exist knapsack generators that create instances
in different classes that are well-documented and well-studied in the literature.

With respect to our last reason for considering knapsacks, we will exploit the following
four benchmark classes of knapsack instances that are widely used in the knapsack
literature [15]. In all cases, profits and weights are limited to the interval [1, 106]. When
the procedure below results in an assignment of a value outside of this interval, we set
the corresponding weight or profit to the closest interval bound.

– In uncorrelated instances, profits and weights of all items are drawn uniformly in
[1, 106] and independently from one another.

– Weakly correlated instances are generated by choosing profits uniformly in a lim-
ited interval around the corresponding weights. More precisely, after choosing a
random weight for each item, we select the profit pi uniformly from the interval
[wi − 105, wi + 105].

– Instances are strongly correlated when all profits equal their item’s weight plus
some constant. In our algorithm, we set pi = wi + 105.

– In almost strongly correlated instances, profits are chosen uniformly from a very
small interval around the strongly correlated profit. Precisely, we choose pi uni-
formly in [wi + 105 − 103, wi + 105 + 103].

2.1 Branch and Bound for Knapsacks

Knapsacks with moderately large weights or profits are most successfully solved by dy-
namic programming approaches [14]. Once both profits and weights become too large,
however, excessive memory requirements make it impossible to employ a dynamic pro-
gram efficiently. Then, it becomes necessary to solve the problem by standard branch-
and-bound techniques. As is common in integer linear programming, the bound that
is used most often is the linear continuous relaxation of the problem. According to
Dantzig, for knapsacks it can be computed very quickly [5]: First, we arrange the items
in non-increasing order of efficiency, i.e., p1/w1 ≥ · · · ≥ pn/wn. Then, we greedily
select the most efficient item, until doing so would exceed the capacity of the knapsack,
i.e., until we have reached the item s such that

∑s−1
i=1 wi ≤ C and

∑s
i=1 wi > C. We

say that s is the critical item for our knapsack instance. We then select the maximum
fraction of item s that can fit into the knapsack, i.e., C −

∑s−1
j=1 wj weight units of item

s. The total profit of this relaxed solution is then P̃ :=
∑s−1

j=1 pj + ps

ws
(C −

∑s−1
j=1 wj).

Pruning the Search
Based on the relaxation, we can terminate the search early whenever we find that one of
the following conditions holds [17]: Optimality: If no fractional part of the critical item
can be added, then the optimal relaxed solution is already integral and therefore solves
the given (sub-)problem optimally. Insolubility: If the capacity C of the (remaining)
knapsack instance is negative, then the relaxation has no solution. Dominance: If the
profit of the relaxed solution is not bigger than the value of any lower bound on the best
integer solution, then the (sub-)tree under investigation cannot contain any improving
solution. In all three cases, we may backtrack right away and thereby prune the search
tree of branches that do not need explicit investigation.

The Accuracy of Search Heuristics 147

For the sake of dominance detection, we need a lower bound, and the better (i.e.
larger) that bound, the stronger our ability to prune the search. Obviously, every time
we find an improving knapsack solution, we will update that lower bound. To speed up
the search, however, we can do a little more: At the root-node, we compute an initial
lower bound by taking all the profit of all non-fractional items of the initial relaxed
solution. To strengthen this bound, we fill the remaining capacity with the remaining
items (the ones after the critical item in the efficiency ordering), skipping subsequent
items that fit only fractionally, until we either run out of capacity or items.

Organization of Search
We have outlined our approach in regard to inference. Now, with respect to search: At
every search node, we choose to either include or exclude the critical item. This choice
of the branching variable ensures that the upper bound that we compute has a chance of
tightening in both children that are generated simultaneously. Note that this would not
be the case if we would branch over any other item. Then, for at least one of the two
child-nodes the upper bound would stay exactly the same as before. The value selection
heuristics that we will study empirically are the following:

– Random Selection Heuristic: Choose at random the subtree that is investigated
first. The reason why we may believe in this strategy may be that we feel that there
are no good indicators for preferring one child over the other.

– Inclusion Heuristic: Always choose to insert the critical item first. A justification
to consider this heuristic is that solutions with high total profits must include items.

– Exclusion Heuristic: Always choose to exclude the critical item first. This heuris-
tics makes sense as it assures that no item with greater efficiency needs to be ex-
cluded to make room for the critical item.

– Rounding Heuristic: Consider the fractional value of the critical item: If it is at
least 0.5, then include the critical item, otherwise try excluding it first. This heuristic
makes intuitive sense when we trust the linear continuous relaxation as our guide.

– Momentum Heuristic: See whether the fractional value of the critical item is larger
or lower than what its value was at the root-node. If the value has decreased, then
exclude the item first, otherwise include it first. This heuristic is motivated by ob-
serving that the history of fractional values builds up a kind of momentum with
respect to the “correct” value of the branching variable.

– Anti-Momentum Heuristic: The exact opposite of the momentum heuristic.
– Best-First Heuristic: Compute the relaxation value of both children and then con-

sider the one with the higher value first. The intuition behind it is that, in a complete
method, we will need to consider the better child anyway as there is no chance for
the worse child to provide a lower bound that allows us to prune the better child.

2.2 Stronger Inference: Knapsack Cuts and Knapsack Constraints

The previous paragraphs sketch the baseline branch-and-bound algorithm that we will
employ to study the different value selection heuristics. One question that we are inter-
ested in answering with this paper is how inference influences search heuristics. To this
end, we consider two ways of strengthening inference for knapsacks.

The first is to compute a stronger upper bound. By adding valid inequalities known
as “knapsack cuts,” we can strengthen the linear continuous relaxation and thereby

148 D.H. Leventhal and M. Sellmann

obtain a tighter bound for pruning [4]. The redundant constraints are based on the
following observation: When computing the upper bound, we find a subset of items
S := {1, . . . , s} out of which it is infeasible to include more than s−1 in the knapsack,
because this would exceed the limited capacity. As a matter of fact, out of the set of
items S′ := S ∪ {i > s | wi ≥ wj , ∀ j ∈ S}, we can select at most s − 1 items.
Therefore, it is legitimate to add the inequality

∑
i∈S′ Xi ≤ s − 1, where Xi is a bi-

nary variable which is 1 iff item i is included in the knapsack. We can add more such
redundant constraints by adding one of them for each item skipped during the lower
bound computation, because for each of these items we find a new set of items that,
when added as a whole, would overload the knapsack.

The second way to strengthen inference for knapsacks is to add filtering to our base-
line approach. That is, on top of the pruning based on upper and lower bound, we can
also try to determine that certain items must be included in (or excluded from) any im-
proving solution. For a given lower bound B, the corresponding constraint is true if and
only if

∑
i wiXi ≤ C while simultaneously

∑
i piXi > B. Achieving generalized arc-

consistency for this global constraint is naturally NP-hard. However, we can achieve
relaxed consistency with respect to Dantzig’s bound in amortized linear time [6].

Now, adding solely the knapsack constraint that directly corresponds to the given
knapsack instance is only of limited interest as constraint filtering draws its real strength
from constraint propagation, i.e. the exchange of information between constraints that
reflect different views of the problem. By exploiting the knapsack inequalities that we
just discussed, we can add a couple of other knapsack constraints. At the root node, we
compute the linear relaxation of the knapsack instance augmented by knapsack cuts.
For the constraint

∑
i wiXi ≤ C we obtain a dual multiplier π0. The same holds for

the redundant constraints: For each cutting plane
∑

i∈Ir
Xi ≤ sr, 1 ≤ r ≤ R, we

obtain a dual multiplier πr. As suggested in [7], we use those multipliers to coalesce
the different constraints into one new knapsack constraint

∑

i

pi > B and
∑

i

(π0wi +
∑

r|i∈Ir

πr)Xi ≤ π0C +
∑

r

πrsr.

Finally, as was suggested in [18], we generate more redundant constraints by choos-
ing a multiplier λ ∈ IN and combining the different constraints: We multiply each
constraint with a new multiplier that is a factor λ larger than the previous one (i.e., the
first constraint is multiplied with 1, the next multiplier is λ, the next λ2, and so on) and
then we sum them all up. As this would quickly lead to knapsacks with extremely large
item weights, we restrict ourselves to random selections of at most m out of the R + 1
inequalities, whereby an inequality is added to the selection with a probability that is
proportional to the optimal dual multiplier at the root-node. For our experiments, we
chose λ = 5 and m = 5, and we generate ten constraints in this way.

So with the original knapsack constraint and the knapsack based on the optimal dual
multipliers, we have a total of twelve constraints that we filter and propagate at every
choice point until none of the constraints can exclude or include items anymore.

In summary, to evaluate how different inference techniques can influence the perfor-
mance of search heuristics, we consider four different approaches in our experiments:

– Pure Approach (PA): Our baseline approach conducts branch and bound based on
the simple linear continuous upper bound of the knapsack problem computed by

The Accuracy of Search Heuristics 149

Dantzig’s efficiency sorting procedure. The critical item determines the branching
variable, the value selection heuristic is given as a parameter.

– Valid Inequality Approach (VIA): A variant of PA where we use the linear con-
tinuous relaxation augmented by knapsack cuts to determine upper bounds which
is computed by the simplex algorithm. The branching variable is determined as
the fractional variable that corresponds to the item with greatest efficiency (that is,
profit over weight).

– Constraint Programming Approach (CPA): A variant of PA where, on top of
pruning the search tree by means of the simple linear relaxation, we also perform
knapsack constraint filtering and propagation at every search node.

– Full Inference Approach (FIA): The combination of VIA and CPA.

3 Two Performance Measures for Value Selection Heuristics

When evaluating value selection heuristics, the question arises how we should measure
their quality. As mentioned in the introduction, for satisfiability problems theoretical
models have been considered where assumptions were made regarding the probability
with which a heuristic would guide us to a feasible solution. For optimization problems
like knapsack, the mere existence of a feasible solution is not interesting. What actu-
ally matters is the quality of the best solution that can be found in the subtree that the
heuristic tells us should be considered first.

This leads us directly to the first performance measure that we will study empirically
in our experiments. The probability measure assesses the probability that the heuristic
steers us in the direction of the subtree which contains the better solution, whenever that
choice matters. That is to say that we consider only those cases where making a correct
heuristic decision makes a difference. This is the case when at least one subtree contains
an improving solution, and when the quality of the best solutions in both subtrees is
different. To see how this relevance probability evolves in practice, in our experiments
we keep track of how many search nodes are being considered at every depth level, and
for how many of those choice points the heuristic decision to favor one child over the
other makes a difference.

The second measure that we consider is the accuracy measure which takes a quan-
titative view of the heuristic choices by comparing the actual solution quality of the
best solutions in both subtrees. Rather than measuring the actual difference in objective
value (which would artificially increase the impact of instances with larger optimal so-
lutions), we measure the difference relative to the current gap between upper and lower
bound. Therefore, when we find that the average accuracy of a value selection heuristic
at some depth is 40%, then this means that, by following the heuristic, we are guided to
a subtree whose best solution closes on average 40% more of the current gap than the
best solution in the subtree whose investigation was postponed.

4 Heuristic Accuracy as a Function of Depth

We specified the approaches that we use to solve different benchmark classes of knap-
sack instances, we introduced several value selection heuristics for the problem, and we
described two different performance measures for these heuristics. In this section, we

150 D.H. Leventhal and M. Sellmann

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40 45
 0

 10

 20

 30

 40

 50

 60

 70

 80
Pr

ob
ab

ili
ty

 o
f

C
or

re
ct

 D
ec

is
io

n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50 60 70 80 90
 10

 20

 30

 40

 50

 60

 70

 80

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
vg

 #
 N

od
es

 E
xp

an
de

d

%
 R

un
s

R
ea

ch
in

g
D

ep
th

Depth

Reached
Total

Relevant
 1

 10

 100

 0 10 20 30 40 50 60 70 80 90
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
vg

 #
 N

od
es

 E
xp

an
de

d

%
 R

un
s

R
ea

ch
in

g
D

ep
th

Depth

Reached
Total

Relevant

Fig. 3. Top: Average development of the probability and accuracy measure over depth for the
rounding heuristic on 500 uncorrelated knapsack instances with 50 items (left) or 100 items
(right). The solid line (‘Probability’) goes with the left vertical axis and depicts the probability
that the heuristic makes the correct choice. The dashed line (‘Accuracy’) goes with the right verti-
cal axis and depicts the average gap-closing percentile by which the heuristic choices outperform
their opposites. Bottom: On the same benchmark sets, we show the percentage of instances that
reach a certain depth (solid line, right vertical axis, ‘Reached’). The dashed and dotted lines go
with the left vertical axis (log-scale) and measure the average number of search nodes (‘Total’)
on each depth level and the average number of nodes for which the heuristic choice is relevant
(‘Relevant’), respectively.

now investigate how the different heuristics perform in comparison. We implemented
the algorithms presented earlier in Java 5, and we used Ilog Cplex 10.1 to compute lin-
ear continuous relaxations in algorithms VIA and FIA. Moreover, we implemented our
own constraint propagation engine for algorithms CPA and FIA.

Note that our code is not tuned for speed as it has to gather and maintain all kinds
of statistical information during search anyway. Fortunately, computational efficiency
does not influence our performance measures for search heuristics or how that perfor-
mance depends on the current state of the search or the inference mechanisms that are
employed. Furthermore, within the branch-and-bound framework that we consider, the
different knapsack heuristics all cause comparable overhead which is why a count of
the number of search nodes gives us a very good estimate of the total time needed as
well. However, note that this argument does not hold for the different inference methods
that we will employ in Section 5.

To get a first insight into typical heuristic behavior, in Figure 3 we assess accuracy
and probability of the rounding heuristic (that performs well with DFS and LDS, see
Figures 1 and 2) when we run our baseline algorithm PA on uncorrelated instances.
We see that the heuristic performs really well: Although it is rather uninformed at the

The Accuracy of Search Heuristics 151

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50
 10

 20

 30

 40

 50

 60

 70

 80

 90
Pr

ob
ab

ili
ty

 o
f

C
or

re
ct

 D
ec

is
io

n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100
 10

 20

 30

 40

 50

 60

 70

 80

 90

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

Fig. 4. The average probability and accuracy of the best-first heuristic on 500 weakly correlated
knapsack instances with 50 (left) and 100 items (right)

beginning, it quickly becomes better and better. At depth 10, it already favors branches
that close, on average, about 40% more of the current gap between upper and lower
bound, and it steers us in the right direction in about 87% of the relevant cases.

Moreover, we observe a very distinct behavior with respect to the probability that
the rounding heuristic makes the right choice when we ignore the extent to which the
choice is better: The probability of favoring the subtree that contains the better solution
is almost random (close to one half) at the very beginning of the search. Then, the
probability of moving to the better subtree grows very quickly until it levels out at
about 89% roughly at depth level 15. From then on, the probability stays pretty much
constant. (We observe another brief increase to almost perfect prediction when we are
very close to the maximum depth in the tree, but given the few runs that reach this
depth and the few search-nodes on this depth this is not statistically significant.) This
description holds for both the 50 and the 100 items benchmark, whereby for the latter
the probability levels out only slightly later. Although we cannot show all our data here,
we observe this same basic curve on the other classes of knapsack instances (including
the one considered in Figures 1 and 2) and also for other “good” heuristics like best-first
or exclusion. To give two more examples, in Figures 4 and 7, we depict the best-first
and the exclusion heuristics, this time on weakly correlated knapsack instances.

To draw a first conclusion, our data suggests that a good value selection heuristic for
knapsack has a much larger probability of misleading us higher up in the tree. Moreover,
good heuristics become more accurate quickly and then keep their performance pretty
much constant. Note that this behavior is addressed by neither LDS nor DDS: LDS
has only a slight tendency to reconsider discrepancies higher up a little bit earlier than
further down below, but only as far as leaves with the same number of discrepancies are
concerned. Consequently, it wastes a lot of time reconsidering heuristic choices that are
made deep down in the tree which are probably quite accurate, instead of putting more
effort into the investigation of the more questionable decisions. DDS, on the other hand,
does very well by quickly reconsidering choices that were made early in the search.
However, it is not justified to assume that perfect predictions are already achieved at
some rather shallow search-depth. From a certain depth-level on, simply minimizing
the total number of discrepancies appears to be much better.

In the bottom part of Figure 3, we can see the number of choice points where the
heuristic choice makes a difference is an order of magnitude lower than the total number
of search nodes. This is caused by the fact that a good part of our search consists in a

152 D.H. Leventhal and M. Sellmann

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45 50
-100

-80

-60

-40

-20

 0

 20
Pr

ob
ab

ili
ty

 o
f

C
or

re
ct

 D
ec

is
io

n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100
-100

-80

-60

-40

-20

 0

 20

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

Fig. 5. The average probability and accuracy of the momentum heuristic on 500 strongly corre-
lated knapsack instances with 50 (left) and 100 items (right)

proof of optimality. In this part of the search, the value selection heuristic is immaterial,
just as it would be when considering an unsatisfiable instance.

It is interesting to note that, once the search has reached a sufficient depth, the
probability that good value selection is relevant at some choice point is more or less
independent of the depth level. We observe that the distance between the line depicting
the average total number of choice points per level and the number of relevant choice
points is almost constant. As we use a logarithmic scale, this indicates that the ratio of
the number of relevant nodes over the total number of nodes does not change very much
from some depth level on. In [12], the assumption is made that the relevance of value
selection was constant. As with the accuracy of good heuristic value selection, this as-
sumption appears only valid after we reached some critical depth in the tree. On very
high levels, making good choices is much more of a gamble and at the same time much
more likely to be important. Both are indications that a good search strategy ought to
reconsider very early search decisions much more quickly than LDS does.

Thus far we have only studied heuristics that perform well. In Figure 5, we depict
the performance of the momentum heuristic on strongly correlated instances. We see
clearly that the heuristic performs poorly. On second thought, this is hardly surprising as
it has a strong tendency to exclude high efficiency items and to include lower efficiency
items. What our graph shows, however, is that making the general assumption that all
heuristics ought to perform better as we dive deeper into the tree is quite wrong. As a
matter of fact, for bad heuristics, performance may even decay.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40 45 50
-100

-80

-60

-40

-20

 0

 20

 40

 60

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0 5 10 15 20 25 30 35 40 45 50
-1000

 0

 1000

 2000

 3000

 4000

 5000

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

N

od
es

 D
if

fe
re

nc
e

Depth

Probability
Workload

Fig. 6. Accuracy and probability measure for the inclusion heuristic on 500 almost strongly cor-
related knapsack instances with 50 items each

The Accuracy of Search Heuristics 153

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

Fig. 7. The average probability and accuracy of the best-first (top) and the exclusion heuristic
(bottom) on 1000 weakly correlated knapsack instances with 50 (left) and 100 items (right)

Now, what about the inclusion heuristic? We plot its performance in Figure 6. We see
that the inclusion heuristic makes increasingly worse predictions where better solutions
can be found as we dive deeper into the tree. This explains, of course, why inclusion is
bound to perform poorly in combination with LDS as we saw in Figure 2. But why did
it do so well in combination with DFS (see Figure 1)? The answer to this riddle is found
in the right plot in Figure 6: Here, we assess the quality of inclusion while performing
DFS by comparing the workload (that is, the total number of nodes) when exploring the
subtree the heuristic chooses first. Again, we show the quantitative dependency of depth
as the average number of nodes that the heuristic needs to investigate less (see the curve
denoted “workload”), and a qualitative comparison which shows how often the heuristic
investigates the subtrees in the right order (see the curve denoted “probability”). We see
that, by including items first, the inclusion heuristic guides the search to more shallow
subtrees first as the inclusion of items obviously has to be paid for by a reduction in
remaining capacity. In those shallow subtrees, we quickly find a no-good (a new lower
bound) which can be exploited when searching the second branch where better solutions
can be found more quickly. When combining inclusion with LDS, however, we never get
to searching those other branches, and while no-goods are helpful, we cannot afford to
pay for them by excluding from our search the most interesting parts of the search space.

This example shows impressively that the accuracy of heuristic predictions can be
abysmal even when a heuristic works well when combined with one specific search
strategy (compare with Figure 1). In particular, even when a heuristic performs well
with one search strategy, this is no indication that it is also suited to guide an incom-
plete search that is terminated early under hard time constraints. If one is to avoid that
a heuristic like inclusion is combined with LDS to form an algorithm that is expected
to provide good solutions quickly, then there is but one alternative: The performance
of heuristics must be studied much more carefully than by a simple evaluation based
on a global performance measure like best quality after some time-limit within a spe-
cific approach. Instead, a direct assessment of the accuracy of heuristic decisions as we
provide it here is necessary. Otherwise, when designing algorithms, we are bound to a
trial-and-error methodology that is far from the standards of scientific engineering.

Our direct assessment of the accuracy of heuristic decision making has allowed us
to identify that there exists an interplay of heuristic decisions and no-goods that are
learned during search – a matter which we have never seen discussed when heuristics
for a problem are designed. What is more, we have shown that the belief that heuristics
would generally become more accurate with increasing depth is wrong. This raises the

154 D.H. Leventhal and M. Sellmann

question why good heuristics are actually getting more accurate! An important insight
here is that a heuristic like exclusion, which plainly sets the critical item to zero first,
is of course not getting any “smarter” deeper down in the tree. Compare the accuracy
at depth level 50 of the 100 item benchmark and the accuracy at level 0 in the 50 item
benchmark in Figure 7. Actually, one should expect the accuracies to be the same. The
reason why they differ is of course not that exclusion got more “experienced” while
branching to depth-level 50 in the 100 item instances. The reason why the accuracy
is higher than at the root-node level in the 50 item case can only lie in the different
distribution of instances where the heuristic choices matter at depth-level 50 in the 100
item case. That is, exclusion (and the other heuristics for that matter) is getting more and
more accurate because it is in some way self-enforcing: the decisions made higher up
in the search tree result in problems for which the heuristic is more accurate. Inclusion,
on the other hand, is not a good guide where good solutions will be found because
it is self-weakening (which becomes clear when considering the repeated use of the
inclusion heuristic which always trades the higher efficiency of an item to the left of the
critical item for the efficiency of the latter).

We are not aware that self-enforcement has been noted before as an important aspect
when designing value-selection heuristics. There exists, however, some work that tries
to integrate different heuristics rather than sticking slavishly to the same one. For exam-
ple, in [1], Balas et al. found that randomly combining different heuristics at each step
of a greedy algorithm for set-covering actually produces better solutions than sticking
to the single best heuristic for each instance throughout the algorithm.

5 How Inference Affects the Robustness of Search Heuristics

The final aspect that we are interested in is to what extent inference methods can influ-
ence the accuracy and the relevance of search heuristics. In this section, we therefore
show how search heuristics perform when used with our different algorithm variants
PA, VIA, CPA, and FIA (see Section 2).

Consider Figure 8, where we compare the accuracy of the rounding heuristic when
used in combination with inference mechanisms of different strengths. On the left we
consider algorithms PA and CPA that do not use knapsack cuts. The latter are used
for the plots on the right that show the performance of rounding in combination with
VIA and FIA. Analogously, at the top we show algorithms PA and VIA that do not use
constraint filtering, whereas at the bottom we consider algorithms CPA and FIA that
both propagate knapsack constraints. The results look very counter-intuitive: The more
inference we perform, the worse the heuristic predictions become!

However, a look at the corresponding relevance data in Figure 9 reveals that, in re-
ality, inference makes heuristic predictions far more robust: By adding just knapsack
cuts, we already prevent searches from exploring deeper nodes. It is very impressive
how constraint propagation (both in combination with knapsack cuts or alone) boosts
this trend dramatically: Without constraint filtering, 50% of all searches reach a depth
of 85, while with knapsack constraints, they only reach a depth of 20. On top of that,
the maximum average number of relevant nodes per depth level is reduced to only 2.7!1

1 Note that this drastic reduction is also the reason why the curves in Figure 8 make such a
ragged impression. There are simply far fewer sample points to average over.

The Accuracy of Search Heuristics 155

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
Pr

ob
ab

ili
ty

 o
f

C
or

re
ct

 D
ec

is
io

n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100
 10

 20

 30

 40

 50

 60

 70

 80

 90

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30 35 40
 15

 20

 25

 30

 35

 40

 45

 50

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 5 10 15 20 25 30 35 40 45
 15

 20

 25

 30

 35

 40

 45

 50

 55

Pr
ob

ab
ili

ty
 o

f
C

or
re

ct
 D

ec
is

io
n

A
cc

ur
ac

y
as

 %
 o

f
G

ap
 C

lo
se

d

Depth

Probability
Accuracy

Fig. 8. Accuracy and probability of the rounding heuristic with algorithms PA (top left), VIA (top
right), CPA (bottom left), and FIA (bottom right) on 1000 weakly correlated knapsack instances
with 100 items. The ‘Probability’ of making the right decision goes with the left axis, the actual
‘Accuracy’ is again measured on the right axis as the relative gain in terms of percent of gap closed.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

%
 R

un
s

R
ea

ch
in

g
de

pt
h

Depth

PA
VIA
CPA
FIA

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

R
el

ev
an

t N
um

be
r

of
 N

od
es

Depth

PA
VIA
CPA
FIA

Fig. 9. Relevance of the rounding heuristic when employed within algorithms PA, VIA, CPA,
and FIA on 1000 weakly correlated knapsack instances with 100 items. The left plot shows the
percentage of instances that reach a certain depth, the right how many nodes are relevant, as an
average over all runs that reach that depth.

Note that stronger inequalities like Mixed-Integer Gomory Cuts may have a similarly
strong effect. However, while our statistics recording code does not allow us to pro-
vide a quantitative comparison, we would like to note that we found that constraint
propagation could be conducted much faster than the computation of the strengthened
linear relaxation bounds.

We conclude that stronger inference techniques can reduce the importance of good
heuristic predictions. As a consequence, value selection heuristics are left with less
room to make a dramatic difference and therefore appear less accurate on average.

156 D.H. Leventhal and M. Sellmann

6 Conclusions

We conducted an empirical study regarding the accuracy of value selection heuristics
within incomplete systematic search. We found that global performance measures do
not enable us to deduce how adequate heuristic predictions are. By measuring heuristic
accuracy as a function of depth, we found that good value selection functions are most
error prone when only few branching decisions have been made while the expected
relevance of these decisions is greater. However, while bad heuristics may even decay
with depth, good knapsack heuristics quickly improve their performance, which then
stays practically constant for the remainder of the search.

To devise better value heuristics, we found two aspects to be essential: First, heuris-
tics that quickly generate high-quality no-goods can actually work faster than more
accurate heuristics, depending on the search strategy within which they are employed
(recall the good performance of the inclusion heuristic within DFS). Second, improved
heuristic accuracy is the result of self-enforcement: decisions higher-up in the tree drive
the distribution of nodes where the heuristic choice matters in such a way that for these
nodes the heuristic works better. In order to devise superior search heuristics, we believe
that both aspects deserve to be studied in much more detail.

Finally, we found that inference methods render heuristic decisions far less relevant
and thereby improve the robustness of search. Of course, whether invoking expensive
inference techniques pays off or not depends largely on the accuracy of the heuristics
that are available: After all, a good and robust value selection heuristic has the potential
to guide us to feasible or optimal solutions, even when we choose branching variables
poorly, or when inference is limited.

With respect to future work, we need to investigate whether the characteristic curve
that describes the accuracy of many good heuristics for knapsack instances of vari-
ous benchmark classes also applies to good heuristics of other combinatorial problems.
Based on our findings, we then intend to devise new search strategies that actively in-
corporate the characteristic evolution of heuristic accuracy during search.

References

1. Balas, E., Carrera, M.: A dynamic subgradient-based branch-and-bound procedure for set
covering. Operations Research 44, 875–890 (1996)

2. Beacham, A., Chen, X., Sillito, J., van Beek, P.: Constraint Programming Lessons Learned
from Crossword Puzzles. In: Canadian Conference on AI, pp. 78–87 (2001)

3. Cooper, M.C.: An Optimal k-Consistency Algorithm. AI 41, 89–95 (1989)
4. Crowder, H., Johnson, E., Padberg, M.: Solving large scale zero-one linear programming

problem. Operations Research 31, 803–834 (1983)
5. Dantzig, G.: Discrete variable extremum problems. Operations Research 5, 226–277 (1957)
6. Fahle, T., Sellman, M.: Cost-Based Filtering for the Constrained Knapsack Problem.

AOR 115, 73–93 (2002)
7. Focacci, F., Lodi, A., Milano, M.: Cutting Planes in Constraint Programming. In: CP-AI-OR,

pp. 45–51 (2000)
8. Freuder, E.: Backtrack-Free and Backtrack-Bounded Search. In: Search in Artificial Intelli-

gence, pp. 343–369 (1988)
9. Garey, M.R., Johnson, D.S.: Computers and Intractability (1979)

The Accuracy of Search Heuristics 157

10. Gomes, C., van Hoeve, W., Leahu, L.: The Power of Semidefinite Programming Relaxations
for MAXSAT. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, Springer,
Heidelberg (2006)

11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. American
Mathematical Society 64, 275–278 (1958)

12. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. IJCAI, 607–613 (1997)
13. Hooker, J.N.: A search-infer-and-relax framework for integrating solution methods. In:

CPAIOR, pp. 243–257 (2005)
14. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and tight bounds for the 0-1 knap-

sack problem. Management Science 45, 414–424 (1999)
15. Pisinger, D.: Where are the hard knapsack problems? Computers and Operations Re-

search 32(9), 2271–2284 (2005)
16. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABOP: A Fast Optimal Algorithm for Winner

Determination in Combinatorial Auctions. Management Science 51(3), 374–390 (2005)
17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2002)
18. Trick, M.: A Dynamic Programming Approach for Consistency and Propagation for Knap-

sack Constraints. In: CP-AI-OR, pp. 113–124 (2001)
19. Walsh, T.: Depth-bounded discrepancy search. In: IJCAI, pp. 1388–1393 (1997)
20. Williams, R., Gomes, C., Selman, B.: On the Connections between Heavy-tails, Backdoors,

and Restarts in Combinatorial search. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, Springer, Heidelberg (2004)

A Novel Approach For Detecting Symmetries in

CSP Models

C. Mears1, M. Garcia de la Banda1, M. Wallace1, and B. Demoen2

1 Monash University, Australia
2 Katholieke Universiteit Leuven, Belgium

Abstract. While several powerful methods exist for automatically de-
tecting symmetries in instances of constraint satisfaction problems
(CSPs), current methods for detecting symmetries in CSP models are
limited to the kind of symmetries that can be inferred from the global
constraints present in the model. Herein, a new approach for detecting
symmetries in CSP models is presented. The approach is based on first
applying powerful methods to a sequence of problem instances, and then
reasoning on the resulting instance symmetries to infer symmetries of the
model. Our results show that this approach deserves further exploration.

1 Introduction

A constraint satisfaction problem (CSP) consists of a set of variables, a set
of domains (one per variable), and a set of constraints on the variables. CSPs
can often be separated into two parts: the model and the data. The model
is a parameterised version of the CSP that, while formally defining the type of
variables, domains, and constraints, does not completely determine their number
or their values. The data part provides concrete values to the parameters and, as
a result, completely determines the number of variables, their domains and the
constraints. Thus, while the model represents a class of CSPs, the model plus
the data specifies an instance of that class (i.e., a particular CSP).

For example, the Latin square problem of size 3 involves a 3× 3 square, where
each of the 9 cells in the square takes a value from [1..3], in such a way that each
value occurs exactly once in each row and once in each column. The associated
CSP can be defined using 9 variables, each with finite domain 1..3, and 18
disequality constraints. Alternatively, it can be separated into a model that is
parameterised on the board size N (N × N variables, each with domain 1..N ,
and appropriate constraints), and the data part which simply indicates N = 3.
Different instances (i.e., CSPs) of the class can be obtained with the same model
simply by modifying the value of N in the data.

Solving a CSP can be made more efficient by exploiting the symmetries of the
problem. This is because, during search, one can omit parts of the search space
that are symmetric to others already explored. If these already explored parts
led to a solution, the symmetric search space is known to contain only symmetric
solutions (which can be automatically generated without search). If they led to
failure, the symmetric search space is known not to contain solutions.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 158–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Novel Approach For Detecting Symmetries in CSP Models 159

Considerable progress has been made in the automatic detection of symmetries
of CSPs and their exploitation in speeding up the search (e.g., [9, 1, 11, 17, 12,
15, 8, 13, 3, 5, 10, 6, 7]. Unfortunately, the most powerful methods ([11, 1]) can
only be applied to a CSP, rather than to its model. Therefore, the symmetries
detected can only be used to accelerate the solving process for that CSP, and
the cost of detecting these symmetries cannot be amortised over all CSPs in the
class. Furthermore, the computation cost of these methods grows with the size
of the CSP in such a way as to render them impractical for real-size CSPs.

While there are automatic symmetry detection methods for CSP models [14,
16], to our knowledge, they can only detect a relatively small set of “simple”
symmetries (i.e., piecewise value and piecewise variable interchangeability), and
only from the global constraints in the model. We propose a radically new ap-
proach that (1) uses symmetry detection on a series of small CSPs to elicit can-
didate symmetries, (2) parameterises these candidate symmetries to be defined
over the model rather than over a particular CSP, and (3) determines whether
these candidates are indeed symmetries of the model – herein referred to as the
parameterised CSP. Our results show the approach has considerable potential.
Furthermore, we believe the approach can be used to infer from the model many
other kinds of information useful for optimisation.

2 Background and Definitions

A CSP is a tuple (X, D, C, dom) where X represents a set of variables, D a set
of domains, C a set of constraints, and where dom is a function from X to D,
so that dom(x) ∈ D denotes the domain of variable x ∈ X . By an abuse of
notation, when all variables have the same domain, D will simply denote this
domain and dom will be omitted.

For a given CSP, a literal lit is of the form x = d where x ∈ X and d ∈ dom(x).
We will use var (lit) to denote its variable x. We denote the set of all literals of
a CSP P by lit(P). An assignment A is a set of literals. An assignment over a
set of variables V ⊆ X has exactly one literal x = d for each variable x ∈ V . An
assignment over X is called a complete assignment.

A constraint c is defined over a set of variables, denoted by vars(c), and
specifies a set of allowed assignments over vars(c). An assignment over vars(c)
that is not allowed by c is disallowed by c. An assignment A over V ⊆ X
satisfies constraint c if vars(c) ⊆ V and the projection of A over vars(c) (i.e.,
{lit ∈ A|var (lit) ∈ vars(c)}) is allowed by c. A solution is a complete assignment
that satisfies every constraint in C.

Example 1. The CSP for the Latin square problem of size 3 introduced before
can be defined as follows:
X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {x11 �= x12, x11 �= x13, x12 �= x13, x21 �= x22, x21 �= x23, x22 �= x23,

x31 �= x32, x31 �= x33, x32 �= x33, x11 �= x21, x11 �= x31, x21 �= x31,
x12 �= x22, x12 �= x32, x22 �= x32, x13 �= x23, x13 �= x33, x23 �= x33}

160 C. Mears et al.

where variable xij represents the cell in row i, column j. The set A = {x21 =
1, x22 = 2, x23 = 2} is an assignment containing 3 literals. While A satisfies
constraint x21 �= x22 (since {x21 = 1, x22 = 2} is allowed by it), A does not
satisfy x22 �= x23 (since {x22 = 2, x23 = 2} is disallowed by it). �

A solution symmetry f of a CSP P is a permutation of lit(P) that preserves the
set of solutions [1], i.e., a bijection from literals to literals that maps solutions to
solutions. Two important kinds of solution symmetries are induced by permuting
either variables or values.

A permutation f of the set of variables X induces a permutation pf of literals
by defining pf (x = d) as f(x) = d. A variable symmetry is a permutation of the
variables whose induced literal permutation is a solution symmetry [10]. Since the
inverse of any such permutation is also a symmetry, we will use 〈x1, . . . , xn〉 ↔
〈x1′ , . . . , xn′〉, where x1, . . . , xn, x1′ , . . . , xn′ ∈ X to denote the symmetry that
maps each xi to xi′ leaving the remaining variables in X unchanged.

A set of domain permutations fdom(x), one for each x ∈ X , induces a per-
mutation pf of literals by defining pf(x = v) as x = fdom(x)(v). A value sym-
metry is a set of domain permutations whose induced literal permutation is
a solution symmetry [10]. We will use 〈di1, . . . , din〉 ↔ 〈di1′ , . . . , din′ 〉, where
{di1, . . . , din} = dom(xi) = {di1′ , . . . , din′}, to denote a value symmetry for
xi ∈ X . A variable-value symmetry is any solution symmetry that is not a vari-
able or a value symmetry. Note that it is not necessarily a composition of those
variable and value symmetries that exist in the CSP.

Several methods [12, 11, 1] have been proposed to automatically detect the
symmetries of a CSP by constructing its (hyper-)graph representation, and us-
ing graph automorphism techniques on it. Our approach uses the technique of
Mears et al. [9] since it is more powerful than that of Puget [11] without being
as computationally demanding as that of Cohen et al. [1]. However, any such
method can be used. The general idea is to (a) represent every literal as a node,
(b) represent every assignment disallowed by a constraint as a hyper-edge, and
(c) add an edge between every two literals x = d1 and x = d2 where d1 �= d2.

Example 2. The Latin square CSP of Example 1 has (a) variable symmetries that
swap any columns: 〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉, 〈x11, x21, x31〉 ↔ 〈x13, x23,
x33〉, and 〈x12, x22, x32〉 ↔ 〈x13, x23, x33〉, (b) similar variable symmetries that
swap any rows, and (c) variable-value symmetries that transpose the rows, col-
umn and value dimensions, and correspond to flipping the 3 × 3 square using a
diagonal. The associated graph (left hand side of Figure 1) has 9×3=27 nodes
(labelled [i, j]

k
) representing the 27 literals xi,j = k where i, j, k ∈ [1..3], and

(18*3) + (9*3) edges representing the 3 assignments disallowed by each of the 18
constraints, and the 3 extra edges needed to disallow each pair of values of the 9
variables. �

Given a hyper-graph 〈V, E〉, where V is a set of nodes, and E a set of unweighted
and undirected hyper-edges, an automorphism f of graph 〈V, E〉 is a permu-
tation of the nodes (i.e., a bijection among nodes) such that ∀{ni, · · · , nj} ∈
E : {f(ni), · · · , f(nj)} ∈ E. Since, for a given CSP P , the graph has a node

A Novel Approach For Detecting Symmetries in CSP Models 161

C

C

C

F F

F

A

B

D D

C

C

C

C

C

C

F

F
F

F

F
F

B1

B

A A1

E

E1

E

1
[1,2]

2
[1,3]

2
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[1,1]

1
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[3,1]

1
[3,2]

1
[1,1]

1
[1,3]

2
[1,3]

2
[1,2]

3
[1,1]

3
[1,2]

3
[1,3]

1
[2,3]

2
[2,3]

3
[2,3]

1
[3,3]

1
[2,3]

1
[4,4]

1
[1,4]

1
[3,1]

1
[3,2]

1
[4,1]

1
[4,2]

1
[1,3]

1
[4,3]

2
[3,4]

2
[1,4]

2
[4,4]

4
[3,4]

4
[2,4]

3
[4,4]

3
[3,4]

3
[2,4]

4
[4,4]

3
[1,2]

3
[1,3]

3
[1,4]

1
[3,4]

1
[2,4]

1
[2,4]

1
[3,3]

2
[3,3]

3
[3,3]

3
[1,1]

4
[1,1]

4
[1,2]

4
[1,3]

4
[1,4]

Fig. 1. Graphs and generators for LatinSquare[3] and LatinSquare[4]

for each literal in lit(P), each graph automorphism has a direct interpretation
as a permutation of the literals in lit(P) and corresponds to a symmetry of P .
Thus, in an abuse of terminology, we will sometimes use symmetry of a graph
as a shorthand for automorphism of the graph associated with a CSP. Standard
tools, such as Saucy [2], can compute the automorphisms of a graph and return
its symmetry group (i.e., all possible symmetries) by means of a set of generators
(a possibly minimal set of symmetries that can be used to generate all others).

Example 3. For the Latin square graph of size 3 given in Example 2, Saucy re-
turns the following set of generators (illustrated in the left hand side of Figure 1):

A 〈n121, n122, n123, n221, n222, n223, n321, n322, n323〉 ↔
〈n131, n132, n133, n231, n232, n233, n331, n332, n333〉

B 〈n211, n212, n213, n221, n222, n223, n231, n232, n233〉 ↔
〈n311, n312, n313, n321, n322, n323, n331, n332, n333〉

C 〈n121, n122, n123, n131, n132, n133, n231, n232, n233〉 ↔
〈n211, n212, n213, n311, n312, n313, n321, n322, n323〉

D 〈n111, n121, n131, n211, n221, n231, n311, n321, n331〉 ↔
〈n112, n122, n132, n212, n222, n232, n312, n322, n332〉

E 〈n112, n122, n132, n212, n222, n232, n312, n322, n333〉 ↔
〈n113, n123, n133, n213, n223, n233, n313, n323, n333〉

F 〈n112, n113, n123, n212, n213, n223, n312, n313, n323〉 ↔
〈n121, n131, n132, n221, n231, n232, n321, n331, n332〉

where node nijk represents literal xi,j = k. A states that columns 2 and 3 can
be swapped, B that rows 2 and 3 can be swapped, C that the square can be
reflected across the top-left/bottom-right diagonal, D that values 1 and 2 can be
swapped, E that values 2 and 3 can be swapped, and F that the second dimension
of the square can be swapped with the value dimension. Their combination

162 C. Mears et al.

results in the symmetries given for Example 2 (e.g., to swap columns 1 and 2
(〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉) apply first F, then D, and then F). �

3 From CSPs to Parameterised CSPs

There is no standard notation to distinguish between a CSP and its parameterised
version. Herein, we denote a parameterised CSP as CSP [Data], where Data repre-
sents the parameters, and a particular CSP in that class as CSP [d], where d is the
value given to Data to yield that CSP. While we will use mathematical notation
to specify parameterised CSPs, any high-level modelling language can be used as
long as it separates the model from the data, has multi-dimensional arrays of finite
domain variables, and supports iteration over them.

Example 4. The parameterised LatinSquare[N] for the CSP of Example 1:

X [N] = {squareij |i, j ∈ [1..N]}
D[N] = [1..N]
C[N] = {squareij �= squareik|i, j ∈ [1..N], k ∈ [j + 1..N]}∪

{squareji �= squareki|i, j ∈ [1..N], k ∈ [j + 1..N]}

defines N × N integer decision variables (squareij) with values in [1..N], and
conjoins the inequality constraints for every row (i) and column (j). �

Our aim is to determine the symmetries of every CSP in the class represented by
CSP [Data], i.e., the symmetries of CSP [d], for every d possibly given to Data.
To do so we define the parameterised graph G[Data] of CSP [Data] in such as
way that, when instantiated by giving a value d to Data, G[d] yields the graph
of CSP [d]. Formally, G[Data] is obtained from CSP [Data] = (X [Data], D[Data],
C[Data], dom [Data]) as follows:

– G[Data] = 〈V [Data], Ev[Data] ∪ Ec[Data]〉
– V [Data] = {xi = di|xi ∈ X [Data], di ∈ dom(xi)[Data]}, i.e., V [Data] con-

tains a node for every literal in CSP [Data].
– Ev[Data] = {{x = di, x = dj}|x ∈ X [Data], di, dj ∈ dom(x)[Data], di �= dj},

i.e., an edge exists for every two nodes that map a variable to different values.
– Ec[Data] =

⋃
c∈C[Data]{A|vars(A) = vars(c), A is an assignment disallowed

by c}, i.e., a hyper-edge exists for every disallowed assignment A of every
constraint c, and connects the nodes associated with all literals in A.

Note that G[Data] is simply a syntactic construct that represents a class of
graphs, much as CSP [Data] represents a class of CSPs.

Example 5. The parameterised graph G[N] associated with LatinSquare[N] is
as follows. V [N] is defined as {nijv|i, j, v ∈ [1..N]} where nijv denotes literal
squareij = v. Ev[N] is defined as {{nijv1 , nijv2}|i, j, v1, v2 ∈ [1..N], v1 �= v2},
while Ec[N] is obtained by transforming the two constraints in LatinSquare[N]
into the set of assignments they disallow:

A Novel Approach For Detecting Symmetries in CSP Models 163

Ec[N] = {{nijv, nikv}|i, j, v ∈ [1..N], k ∈ [j + 1..N]}∪
{{njiv, nkiv}|i, j, v ∈ [1..N], k ∈ [j + 1..N]}

Note that the nodes in G[N] maintain some of the knowledge about the structure
of LatinSquare[N] thanks to the reuse of the i and j identifiers appearing in
LatinSquare[N]. This is important to automate the construction of the edges in
G[N] and, as we will see later, to parameterise symmetries of a CSP. �

We can now give a definition of a parameterised symmetry.

Definition 1. Given a parameterised CSP [Data] and its parameterised graph
G[Data], a parameterised permutation f [Data] is a bijection of the nodes of
G[Data]. That is, for all values d given to Data, f [d] permutes the nodes of
G[d]. A parameterised symmetry of CSP [Data] is a parameterised permutation
f [Data] of the nodes in G[Data] s.t. for all values d given to Data, f [d] is a
symmetry (i.e., an automorphism) of G[d].

We denote by S[Data] the group of parameterised symmetries of CSP [Data].
Note that for all values d given to Data, S[d] is a subset of the symmetries
in CSP [d]. The subset is proper if some symmetry in CSP [d] does not apply
to all other instances of the CSP. In other words, parameterised symmetries
must be determined by information explicitly represented in CSP [Data], without
requiring information only present in a particular d.

4 A Framework for Detecting Parameterised Symmetries

As the main concepts of parameterised CSPs and parameterised symmetries have
been introduced, we can now turn to the problem of detecting parameterised
symmetries for a class of CSPs. Our approach is based on a generic framework
which, given a CSP [Data], performs the following steps:

1. Detect symmetries of CSP [d] for a number of values d given to Data,
2. Lift them to obtain parameterised permutations of the literals in CSP [Data],
3. Filter the parameterised permutations to keep only those that are likely to

be parameterised symmetries,
4. Prove that the selected parameterised permutations are indeed parame-

terised symmetries.

Note that while the parameterised CSP is a crucial element of our framework,
the parameterised graph is currently used only as a means to define parame-
terised symmetries. However, as shown later, we plan to use the parameterised
graph to obtain a better method than we currently have for step four.

4.1 Step One: Detecting Symmetries for Some CSP[d]

The first step of our generic framework can be realised in different ways by the
choice of parameter values and of symmetry detection method. These choices are

164 C. Mears et al.

somewhat mutually dependent. For example, using a powerful symmetry detec-
tion method will usually force the parameter values to be small. As mentioned
before, our implementation uses the detection method of Mears et al. [9], which
returns the group of symmetries in a CSP [d] as a set of group generators1. Also,
our implementation assumes that the parameter Data is a tuple of k integers,
(p1, p2, . . . , pk) and chooses parameter values d by increasing each component of
the tuple individually, starting from some user-defined base tuple (typically the
smallest meaningful instance of the class).

Example 6. For LatinSquare[N], Data has a single component: the board size N .
If the user provides (3) as the base tuple, we increment the component twice ob-
taining three values for d: (3), (4), and (5). For the social golfers problem (see Sec-
tion 5), Data has three components: the number of weeks, groups per week and
players per group. If (2, 2, 2) is the base tuple, we increment twice each component
to get nine values for d (seven of which are distinct): (2, 2, 2), (3, 2, 2), (4, 2, 2),
(2, 2, 2), (2, 3, 2), (2, 4, 2), (2, 2, 3), (2, 2, 2), and (2, 2, 4). �

4.2 Step Two: Lifting Symmetries to Parameterised Permutations

This step requires taking every symmetry g detected in step one for any of
the CSP [d] considered, and determining one or more parameterised permuta-
tion(s) f [Data] for which f [d] = g. Since computing f [Data] from g alone is
quite a task, our implementation uses a much simpler, although incomplete,
method: it first defines a set of “common” parameterised symmetries Per =
{f1[Data], · · · , fm[Data]}, and then checks every generator g against them.

The success of our implementation relies on the parameterised CSPs having
literals that can be arranged into an n-dimensional matrix, and having param-
eterised symmetries that permute particular matrix elements, such as rows or
columns. These are the kind of “common” symmetries that we will add to Per.

Consider a CSP [Data] with an n-dimensional matrix-like structure L[Data],
whose elements correspond to the literals in CSP [Data] (and, thus to the nodes
in G[Data]). The exact number of elements in each of the n dimensions of L[Data]
depends on the value given to Data and can be obtained by means of a function
Dims [Data] = (d1, d2, . . . , dn), where di, i ∈ [1..n] indicates the exact number of
elements in the ith dimension.

Example 7. The parameterised LatinSquare[N] problem has a matrix like struc-
ture, since its literals can be arranged into a 3-dimensional matrix where each lit-
eral squareij = k is indexed as L[N]i,j,k. This is clearly visible in Figure 1, where
the only difference between G[3] and G[4] are the exact values of each dimension:
Dims [3] = (3, 3, 3) while Dims [4] = (4, 4, 4). �

Parameterised permutations can then be easily expressed as permutations on the
elements of L[Data] without reference to any specific value d given to Data. This

1 Since the symmetry detection method chosen is incomplete (i.e., might miss some
symmetries), our implementation of the generic framework is also incomplete.

A Novel Approach For Detecting Symmetries in CSP Models 165

allows us to express a parameterised permutation as a single entity, even though
each specific instantiation might involve permuting different nodes. Some com-
mon parameterised permutations for a CSP [Data] with n-dimensional matrix
L[Data] and Dims [Data] = (d1, d2, . . . , dn) are:

– Value swap: interchanges values v and v′ of the kth dimension (e.g., sym-
metry represented by generator D in Figure 1) and is defined as:
L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,v′,ik+1,...,in ∀ij ∈ [1..dj], j ∈ [1..n].

– All values swap: interchanges all values of the kth dimension (e.g. symme-
tries represented by generators D, E, and their combinations in Figure 1)
and is defined as: L[Data]i1,...,ik−1,v,ik+1,...,in ↔ L[Data]i1,...,ik−1,v′,ik+1,...,in ,
∀v, v′ ∈ [1..dk], v �= v′, ij ∈ [1..dj], j ∈ [1..n].

– Dimension invert: interchanges every value v of the kth dimension with
value n − v + 1 (e.g., symmetry represented by generator A and by gen-
erator A1 in Figure 2) and is defined as: L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,n−v+1,ik+1,...,in , ∀v ∈ [1..dk], ij ∈ [1..dj], j ∈ [1..n].

– Dimension swap: swaps kth and k′th dimensions (e.g., symmetry repre-
sented by generator B in Figure 2) and is defined as:
L[Data]i1,...,ik−1,ik,ik+1,...,ik′−1,ik′ ,ik′+1,...,in ↔
L[Data]i1,...,ik−1,ik′ ,ik+1,...,ik′−1,ik,ik′+1,...,in , ∀ij ∈ [1..dj], j ∈ [1..n].

Example 8. The generators found for LatinSquare[3] in Example 3 can be auto-
matically matched to the following parameterised permutations for L[N]:

A value swap with k = 2, v = 2, v′ = 3: L[N]i2l ↔ L[N]i3l, ∀i, l ∈ [1..N]
B value swap with k = 1, v = 2, v′ = 3: L[N]2jl ↔ L[N]3jl, ∀j, l ∈ [1..N]
C dimension swap with k = 1, k′ = 2: L[N]ijl ↔ L[N]jil, ∀i, j, l ∈ [1..N]
D value swap with k = 3, v = 1, v′ = 2: L[N]ij1 ↔ L[N]ij2 , ∀i, j ∈ [1..N]
E value swap with k = 3, v = 2, v′ = 3: L[N]ij2 ↔ L[N]ij3 , ∀i, j ∈ [1..N]
F dimension swap with k = 2, k′ = 3: L[N]ijl ↔ L[N]ikl, ∀i, j, l ∈ [1..N]

Consider the graph G[4] associated with LatinSquare[4], shown in the right
hand side of Figure 1. Saucy finds 9 generators for this graph. Six of them are
simple extensions of those found for G[3]. For example, the extension of A is:

A 〈n121, n122, n123, n124, n221, n222, . . . , n321, . . . , n421, . . .〉 ↔
〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉

and similarly for B, C, D, E and F. The other three generators found are:

A1〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉 ↔
〈n141, n142, n143, n144, n241, n242, . . . , n341, . . . , n441, . . .〉

B1〈n311, n312, n313, n314, n321, n322, . . . , n331, . . . , n341, . . .〉 ↔
〈n411, n412, n413, n414, n421, n422, . . . , n431, . . . , n441, . . .〉

E1〈n113, n123, n133, n143, n213, n223, . . . , n313, . . . , n413, . . .〉 ↔
〈n114, n124, n134, n144, n214, n224, . . . , n314, . . . , n414, . . .〉

The generators A, B, C, D, E and F in G[4] match the parameterised
permutations used for G[3], while A1, B1 and E1 match value swap with:

166 C. Mears et al.

A1 k = 2, v = 3, v′ = 4: L[N]i3l ↔ L[N]i4l, ∀i, l ∈ [1..N]
B1 k = 1, v = 3, v′ = 4: L[N]3jl ↔ L[N]4jl, ∀j, l ∈ [1..N]
E1 k = 3, v = 3, v′ = 4: L[N]ij3 ↔ L[N]ij4, ∀i, j ∈ [1..N]

The generators found by Saucy for LatinSquare[5] are the simple extensions of
A, A1, B, B1, C, D, E, E1 and F (which can be parameterised as before),
plus three more A2, B2, and E2, which can be parameterised as:

A2 k = 2, v = 4, v′ = 5: L[N]i3l ↔ L[N]i4l, ∀i, l ∈ [1..N]
B2 k = 1, v = 4, v′ = 5: L[N]3jl ↔ L[N]4jl, ∀j, l ∈ [1..N]
E2 k = 3, v = 4, v′ = 5: L[N]ij3 ↔ L[N]ij4 , ∀i, j ∈ [1..N] �

Considering a symmetry g in isolation is not always productive. This is because
some parameterised permutation patterns, when instantiated, correspond to a
group of symmetries rather than to a single symmetry. For example, the “all val-
ues swap” pattern (which interchanges all values in a dimension) is a combination
of at least two generator symmetries. Thus, to detect such a parameterised pat-
tern we cannot simply parameterise each symmetry on its own; we must consider
groups of symmetries {g1, · · · , gm} such that f [d] = {g1, · · · , gm}.

For the “all value swap” case, we group symmetries by keeping track of any
pair of value-swap pattern symmetries which operate on the same dimension and
whose interchanged values overlap. These are combined into a single symmetry
stating that all values involved can be freely interchanged. Our implementation
considers the “all values swap” pattern matched if, by applying this kind of
combination until a fixpoint is reached, we obtain a symmetry that interchanges
all [1..dk], where dk is the value returned by Dims[d] for dimension k.

Example 9. The generators D and E for LatinSquare[3] form an instance of the
“all value swap” pattern L[N]ijv ↔ L[N]ijv′ , ∀v, v′ ∈ [1..N], v �= v′, i, j ∈ [1..N].
The generators D, E and E1 for LatinSquare[4] form the same pattern. �

4.3 Step Three: Filtering Parameterised Permutations

Step two identifies our candidate parameterised symmetries. However, it is likely
that some of these candidates apply only to a few instances, rather than to the
entire class. We would like to eliminate unlikely permutations before performing
the (possibly expensive) proof step. Our implementation uses a simple (and again
incomplete) heuristic which selects as likely candidates the intersection of the
parameterised permutations present in all tested instances.

Unfortunately, the success of such an intersection relies on Saucy returning
the same (or equivalent) set of generators for each CSP [d]. This is because,
as mentioned before, our implementation only attempts to parameterise the
generators returned by Saucy (as opposed to every symmetry in the group), and
a group can be obtained from many different sets of generators. We can solve this
problem as follows. If a particular parameterised permutation is found in more
than one instance but not in all, we check the group of symmetries of the other
instances to see if the permutation is, in fact, present. This is done via the GAP
system for computational group theory [4]. If the parameterised permutation is
indeed found in all instances, it is marked as a candidate.

A Novel Approach For Detecting Symmetries in CSP Models 167

A A

B

B

B

B

B

B

B

B

B

B

B B

BB

B

A1 A1

1
 q2

1
 q3

1
 q4

2
 q1

2
 q3

2
 q4

3
 q1

3
 q2

3
 q3

3
 q4

4
 q1

4
 q2

4
 q3

4
 q4

1
 q1

1
 q2

1
 q3

2
 q1

2
 q3

3
 q1

3
 q2

3
 q3

1
 q1

1
 q4

2
 q4

3
 q4

4
 q1

4
 q2

4
 q3

4
 q4

2
 q2

2
 q2

1
 q5

2
 q5

3
 q5

4
 q5

5
 q5

5
 q4

5
 q3

5
 q2

5
 q1

Fig. 2. Graph instances for Queens[4] and Queens[5]

Example 10. Consider the social golfers problem with values of d being (2, 2, 2),
(3, 2, 2), (4, 2, 2), (2, 3, 2), (2, 4, 2), (2, 2, 3), (2, 2, 4). Our implementation finds
an instance of the “all value swap” pattern for the third dimension (golfers are
interchangeable) for every value of d. However, the “all value swap” pattern
for the first dimension (the weeks are interchangeable) is found for only 5 out
of the 7 values of d, due to the particular generators given by Saucy. Searching
explicitly for this pattern in the groups found for the other values of d shows that
it is indeed present in all of them and can thus be considered a likely candidate.

4.4 Step Four: Proving Class Symmetries

This last step can be achieved, for example, by first representing both the param-
eterised CSP and the candidate parameterised permutation in the logic formalism
described in [8], and then making use of theorem proving techniques. Of course,
such a technique is in general undecidable. We are currently exploring an alter-
native approach that we hope will be more successful: to use graph techniques to
prove that our likely candidate is an automorphism of the parameterised graph
G[Data]. This is however not straightforward, since G[Data] is not really a graph,
but a syntactic construct that represents a class of graphs.

5 Detailed Examples

We have seen how our current implementation automatically detects as likely
candidates all parameterised symmetries in LatinSquare[N]. This is, however,
not always the case. Here we provide three other examples: Queens, for which it
again detects all parameterised symmetries as likely candidates, Social golfers,
for which it also detects all symmetries (after adding a new pattern), and Golomb
ruler, for which it fails to detect any likely candidate.

Queens: aims at positioning N queens on an N × N chess board without at-
tacking each other. The following parameterised CSP Queens[N] uses N integer
variables (each being the row in which the queen appears) with domains in [1..N].

168 C. Mears et al.

X[N] = {qi|i ∈ [1..N]}
D[N] = [1..N]
C[N] = {qi �= qj |i ∈ [1..N], j ∈ [i + 1..N]}∪

{qi + i �= qj + j|i ∈ [1..N], j ∈ [j + 1..N]}∪
{qi − i �= qj − j|i ∈ [1..N], j ∈ [j + 1..N]}

Its parameterised graph G[N] = (V [N], Ec[N] ∪ Ev[N]) is:

V [N] = {qiv |i, v ∈ [1..N]}
Ec[N] = {{qiv , qjv}|i, v ∈ [1..N], j ∈ [i + 1..N])}∪

{{qivi , qjvj }|i, vi, vj ∈ [1..N], j ∈ [i + 1..N], vi + i = vj + j)}∪
{{qivi , qjvj }|i, vi, vj ∈ [1..N], j ∈ [i + 1..N], vi − i = vj − j)}

Ev[N] = {{qivi , qjvj }|i, vi, vj ∈ [1..N], vi �= vj}

where node qiv represents literal qi = v. Given the initial base tuple (4), our im-
plementation generates G[4], G[5] and G[6]. Figure 2 shows the graph instances
G[4] and G[5], together with the generators found by Saucy. For G[4] it finds:

A 〈q11, q12, q21, q22, q31, q32, q41, q42〉 ↔ 〈q14, q13, q24, q23, q34, q33, q44, q43〉
B 〈q12, q13, q14, q23, q24, q34〉 ↔ 〈q21, q31, q41, q32, q42, q43〉

which can be parameterised to match:

A dimension invert with k=2: L[N]iv ↔L[N]i(N−v+1), ∀v, i ∈ [1..N]
B dimension swap with k = 1 and k′ = 2:L[N]ij ↔ L[N]ji, ∀i, j ∈ [1..N]

and for G[5] Saucy finds:

A1〈q11, q12, q21, q22, q31, q32, q41, q42, q51, q52〉 ↔
〈q15, q14, q25, q24, q35, q34, q45, q44, q55, q54〉

B 〈q12, q13, q14, q15, q23, q24, q25, q34, q35, q54〉 ↔
〈q21, q31, q41, q41, q32, q42, q52, q43, q53, q45〉

where B is an extension of the generator with the same name found for G[4]
(and matches the same dimension swap pattern), and A1 is a new generator
that matches the same dimension invert pattern as A. The generators found for
G[6] are, again, an extension of B that matches the dimension swap pattern,
and a new generator A2 that matches the same pattern as A and A1. The
intersection of the patterns results in both being marked as likely candidates.

Social Golfers: aims at building a schedule of W weeks, with G equally-sized
groups per week, and P golfers per group, such that each pair of golfers may
play in the same group at most once. A parameterised CSP Golf[W, G, P] is:

X[W, G, P] = {playerswg|w ∈ [1..W], g ∈ [1..G]}
D[W, G, P] = ℘({1..P ∗ G})
C[W, G, P] = {|playerswg| = P |w ∈ [1..W], g ∈ [1..G]}∪

{|playerswg1 ∩ playerswg2 | = 0|w ∈ [1..W],g1, g2 ∈ [1..G], g1 < g2}∪
{|playersw1g1 ∩ playersw2g2 | ≤ 1|w1, w2 ∈ [1..W],w1 < w2, g1, g2 ∈ [1..G], g1 < g2}

where ℘ is the powerset. The associated parameterised graph G[W, G, P] is:

A Novel Approach For Detecting Symmetries in CSP Models 169

V [W, G, P] = {nwgp|w ∈ [1..W], g ∈ [1..G], p ∈ ℘([1..P ∗ G])}
Ec[W, G, P] ={nwgp|w ∈ [1..W], g ∈ [1..G], |p| �= P}∪

{〈nwg1p1 , nwg2p2〉|w ∈ [1..W], g1, g2 ∈ G, g1 < g2,
p1, p2 ∈ ℘([1..P ∗ G]), |p1 ∩ p2| �= 0)}∪

{〈nw1g1p1 , nw2g2p2〉|w1, w2 ∈ [1..W], w1 < w2, g1, g2 ∈ G,
g1 < g2, p1, p2 ∈ ℘([1..P ∗ G]), |p1 ∩ p2| > 1}

Ev[W, G, P] ={〈nwgp,p, nwgp2 〉|w ∈ [1..W], g ∈ [1..G],p1, p2 ∈ ℘([1..P ∗ G]), p1 �= p2}

where node nwgp represents literal playerswg = p. The parameterised versions of
the generators found for G[2, 2, 2] are:
A {nija ↔ nijb|i ∈ [1..W], j ∈ [1..G], a, b ∈ ℘([1..P ∗ G]),1 ∈ a; b = (a \ {1}) ∪ {2}}
B {nija ↔ nijb|i ∈ [1..W], j ∈ [1..G], a, b ∈ ℘([1..P ∗ G]),2 ∈ a; b = (a \ {2}) ∪ {3}}
C {nija ↔ nijb|i ∈ [1..W], j ∈ [1..G], a, b ∈ ℘([1..P ∗ G]),3 ∈ a; b = (a \ {3}) ∪ {4}}
D {n11v ↔ n12v |v ∈ ℘([1..P ∗ G])}
E {n21v ↔ n22v |v ∈ ℘([1..P ∗ G])}
F {n1jv ↔ n2jv |j ∈ [1..G], v ∈ ℘([1..P ∗ G])}

Generators A, B and C represent symmetries that swap golfers 1 with 2, 2
with 3, and 3 with 4, respectively. Taken together, our implementation detects
the combined all value swap permutation pattern that states that all golfers are
interchangeable. Generator F represents the symmetry that swaps week 1 and
week 2. This trivially matches the all value swap pattern that states that all
weeks are interchangeable, and also the dimension invert pattern that reflects
the weeks. Generators D and E represent symmetries that swap groups 1 and
2 within week 1, and within week 2, respectively. Our implementation did not
consider parameterised patterns that perform a swap on only a subset of the
literals and, thus, failed to detect such pattern as likely candidate. However, once
we extended the set of patterns to include one that represents the interchanging
of values within a particular row or column, this symmetry was captured.

The generators for G[2, 3, 2], G[2, 2, 3], G[2, 4, 2] and G[2, 2, 4] include the ex-
tended versions of generators A to F in G[2, 2, 2], plus additional generators
representing the interchangeability of the extra golfers, and of the extra groups.
As before, our implementation detects the combined all value swap pattern that
states that all golfers are interchangeable and that all weeks are interchange-
able. With the inclusion of the pattern mentioned above, the interchangeability
of groups within each week is also marked as likely candidate.

The generators for G[3, 2, 2] include the extended versions of A, B, C, D and
E. However, Saucy produces generators that do not have a simple parameter-
isation. The situation for G[4, 2, 2] is similar. But since the weeks were found
to be interchangeable in all of the other instances, the implementation consults
GAP to check whether this holds for [3, 2, 2] and [4, 2, 2], even though the gen-
erators from Saucy don’t directly correspond to it. GAP indicates that it does
and, therefore, the symmetry is marked as a likely candidate.

Golomb ruler: is defined as a set of N integers (marks on the ruler) a1, . . . , aN

such that the N(N−1)
2 differences aj − ai, 1 ≤ i < j ≤ N are distinct. The

problem involves finding a valid set of N marks. The following parameterised
CSP Golomb[N] uses N integer variables (the marks) with domains in [0..N2],
plus N(N−1)

2 integer variables (the differences) with domains [1..N2].

170 C. Mears et al.

X[N] = {marki|i ∈ [0..N]} ∪ {diffij |i ∈ [1..N], j ∈ [i + 1..N]}
D[N] = {[0..N2], [1..N2]}
C[N] = {marki − markj =diffij |i ∈ [1..N], j ∈ [i + 1..N]}∪

{diffij �=diffik|i, j ∈ [1..N], k ∈ [j + 1..N]}
dom(mi) = [0..N2] ; dom(dij) = [1..N2]

The parameterised graph associated with Golomb[N] is:
V [N] = {miv|i ∈ [1..N], v ∈ [0..N2]}∪

{djiv|i ∈ [1..N], j ∈ [(i + 1)..N], v ∈ [1..N2]}
Ec[N] ={{miv1 , mjv2 , dijv3}|i ∈ [1..N], j ∈ [(i + 1)..N], v1, v2, v3 ∈ [1..N2], v1 − v2 �= v3}∪

{{dijv, dijv}|i ∈ [1..N], j ∈ [(i + 1)..N], v ∈ [1..N2]}
Ev[N] ={(miv1 , miv2)|i ∈ [1..N], v1, v2 ∈ [1..N2], v1 �= v2}∪

{(dijv1 , dijv2)|i ∈ [1..N], j ∈ [(i + 1)..N], v1, v2 ∈ [1..N2], v1 �= v2}

where node miv represents literal marki = v and node dijv literal diffsij = v.
The generator found by Saucy for G[3] is:

A 〈d121, d122, d123, d124, d125, d126, d127, d128, d129〉 ↔
〈d231, d232, d233, d234, d235, d236, d237, d238, d239〉 plus
〈m10, m11, m12, m13, m14, m15, m16, m17, . . . , m24〉 ↔
〈m39, m38, m37, m36, m35, m34, m33, m32, . . . , m25〉

which swaps the lengths of the spaces between the marks, i.e., turns the ruler
back-to-front. This symmetry involves variables from two separate matrices, dij

and mi, and our simple implementation cannot yet handle this. Even if we only
consider the search variables mi, our implementation would need to obtain for
G[3], G[4] and G[5] the pattern {miv ↔ mjv′ |i, j ∈ [1..N], i = N − j + 1, v, v′ ∈
[0..N2], v = N2 − v′+ 1}. Since our implementation currently does not take this
pattern into account, it cannot recognise the symmetry as likely candidate.

6 Results

Let us evaluate our simple implementation (which includes the patterns de-
scribed in Section 4.2 plus the additional pattern described for Social Golfers)
over a set of problems that include those discussed earlier, plus the following.

Balanced Incomplete Block Design: with parameters (v, b, k, r, λ), where
the task is to arrange v objects into b blocks such that each block has exactly
k objects, each object is in exactly r blocks, and every pair of objects occurs
together in λ blocks. The objects are interchangeable and the blocks are inter-
changeable.

Graceful Graph: with parameters (m, n), where the edges (a, b) of the graph
Km × Pn are labeled by |a − b|, and there is no two edges with the same label.
The corresponding vertices in each clique are simultaneously interchangeable,
the order of the cliques is reversible, and the values are reversible.

N × N queens: where an N ×N chessboard is coloured with N colours, so that
a pair of queens in any two squares of the same colour do not attack each other.
The symmetries are those of the chessboard, plus the colours are interchangeable.

A Novel Approach For Detecting Symmetries in CSP Models 171

Table 1. Symmetry detection results

Problem Tuple Amount Symmetries Time Instance

BIBD (2,2,2,2,2) +3 objects � 19.0 20%
blocks �

Social Golfers (2,2,2) +2 rows � 376.4 96%
groups �
players �

Golomb Ruler (3) +3 flip X 6.7 99%

Graceful Graph (2,2) +3 intra-clique � 9.0 44%
path-reverse �

value �
Latin Square (3) +3 dimensions � 13.7 10%

value �
N × N queens (4) +3 chessboard � 8.0 21%

colours �
Queens (int) (8) +3 chessboard � 3.6 36%

Queens (bool) (8) +3 chessboard � 5.4 64%

Steiner Triples (3) +3 triples � 16.8 32%
value �

Queens (bool): which uses a Boolean matrix model for the Queens problem of
Section 5. The symmetries are those of the chessboard.

Steiner Triples: where the task is to find n(n−1)
6 triples of distinct integers

from 1 to n, such that any pair of triples has at most one element in common.
The triples are interchangeable and the values are interchangeable.

Table 1 shows the results, where the columns indicate the problem name,
the base tuple, the amount by which each component is increased, the known
symmetries and whether they are found by our implementation, the total running
time in seconds, and the percentage of that time spent in detection (as opposed
to parametrisation). The experiments were run on an dual Intel Core 2 1.86GHz
computer with 1GB of memory. No effort has been made to optimise detection
time; the times are included simply to show the practicality of the approach.

7 Conclusions

The automatic detection of CSP symmetries is currently either restricted to
problem instances, or limited to the class of symmetries that can be inferred
from the global constraints present in the model. This paper provides a radically
new framework that takes advantage of existing (and future) powerful detection
methods defined for problem instances, by generalising their results to models
without requiring them to use any particular syntax. We provide a very simple
(and incomplete) implementation that requires the problem to have matrix-
like structure and only considers a pre-determined number of model symmetries
(those that correspond to permutations of the objects in the matrix). While
this is a very limited implementation of the general framework, it is nonethe-
less capable of detecting symmetries that could previously only be detected for

172 C. Mears et al.

instances. Of course, more complete implementations of the framework will be
able to detect even more kinds of symmetries.

We now plan to integrate in our implementation techniques to validate or
reject likely candidates. While theorem proving techniques are an obvious possi-
bility, we are also investigating graph techniques that rely on the parameterised
graph and which we think will be more efficient and complete.

References

1. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry Defini-
tions for Constraint Satisfaction Problems. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 17–31. Springer, Heidelberg (2005)

2. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting Structure in
Symmetry Generation for CNF. In: 41st Design Automation Conference, pp. 530–
534 (2004)

3. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A System for Transforming Con-
straint Satisfaction Problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS
(LNAI), vol. 2627, pp. 15–30. Springer, Heidelberg (2003)

4. TheGAPGroup.GAP–Groups,Algorithms, andProgramming,Version4.4.9 (2006)
5. Gent, I.P., Harvey, W., Kelsey, T., Linton, S.: Generic SBDD using Computational

Group Theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 333–347. Springer,
Heidelberg (2003)

6. Gent, I.P., Smith, B.M.: Symmetry Breaking in Constraint Programming. In: ECAI
2000. 14th European Conference on Artificial Intelligence (2000)

7. Haselböck, A.: Exploiting Interchangeabilities in Constraint-Satisfaction Problems.
In: IJCAI 1993, pp. 282–289 (1993)

8. Mancini, T., Cadoli, M.: Detecting and Breaking Symmetries by Reasoning on
Problem Specifications. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS
(LNAI), vol. 3607, Springer, Heidelberg (2005)

9. Mears, C., de la Banda, M.G., Wallace, M.: On Implementing Symmetry Detection.
In: SymCon 2006 (2006)

10. Puget, J.-F.: Symmetry Breaking Revisited. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)

11. Puget, J.-F.: Automatic Detection of Variable and Value Symmetries. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 475–489. Springer, Heidelberg (2005)

12. Romani, A., Markov, I.L.: Automatically Exploiting Symmetries in Constraint Pro-
gramming. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004.
LNCS, vol. 3149, pp. 98–112. Springer, Heidelberg (2004)

13. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable Symmetry Break-
ing using Restricted Search Trees. In: ECAI 2004 (2004)

14. Roy, P., Pachet, F.: Using Symmetry of Global Constraints to Speed Up the Resolu-
tion of Constraint Satisfaction Problems. In: ECAI 1998 Workshop on Non-binary
Constraints, pp. 27–33 (1998)

15. Sellmann, M., Van Hentenryck, P.: Structural Symmetry Breaking. In: IJCAI 2005
(2005)

16. Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Compositional Derivation
of Symmetries for Constraint Satisfaction. In: Zucker, J.-D., Saitta, L. (eds.) SARA
2005. LNCS (LNAI), vol. 3607, Springer, Heidelberg (2005)

17. Walsh, T.: General Symmetry Breaking Constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, Springer, Heidelberg (2006)

Amsaa: A Multistep Anticipatory Algorithm
for Online Stochastic Combinatorial Optimization

Luc Mercier and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912, USA

Abstract. The one-step anticipatory algorithm (1s-AA) is an online algorithm
making decisions under uncertainty by ignoring future non-anticipativity con-
straints. It makes near-optimal decisions on a variety of online stochastic combi-
natorial problems in dynamic fleet management, reservation systems, and more.

Here we consider applications in which 1s-AA is not as close to the optimum
and propose Amsaa, an anytime multi-step anticipatory algorithm. Amsaa com-
bines techniques from three different fields to make decisions online. It uses the
sampling average approximation method from stochastic programming to ap-
proximate the problem; solves the resulting problem using a search algorithm
for Markov decision processes from artificial intelligence; and uses a discrete
optimization algorithm for guiding the search.

Amsaa was evaluated on a stochastic project scheduling application from the
pharmaceutical industry featuring endogenous observations of the uncertainty.
The experimental results show that Amsaa significantly outperforms state-of-the-
art algorithms on this application under various time constraints.

1 Introduction

In recent years, progress in telecommunication and in information technologies has gen-
erated a wealth of Online Stochastic Combinatorial Optimization (OSCO) problems.
These applications require to make decisions under time constraints, given stochastic
information about the future. Anticipatory algorithms have been proposed to address
these applications [18]. We call an algorithm anticipatory if, at some point, it anticipates
the future, meaning that it makes some use of the value of the clairvoyant. These antic-
ipatory algorithms typically rely on two black-boxes: a conditional sampler to generate
scenarios consistent with past observations and an offline solver for the deterministic
version of the combinatorial optimization problem.

1s-AA is a simple one-step anticipatory algorithm. It works by transforming the
multi-stage stochastic optimization problem into a 2-stage one by ignoring all non-
anticipativity constraints but those of the current decision. This 2-stage problem is ap-
proximated by sampling, and the approximated problem is solved optimally by com-
puting the offline optimal solutions for all pairs (scenario,decision). 1s-AA was shown
to be very effective on a variety of OSCO problems in dynamic fleet management [3,2],
reservation systems [18], resource allocation [15], and jobshop scheduling [17]. More-
over, a quantity called the global anticipatory gap (GAG) was introduced by [14] to
measure the stochasticity of the application and that paper showed that 1s-AA returns
high-quality solutions when the GAG is small.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 173–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 L. Mercier and P. Van Hentenryck

Here we consider OSCO applications with a significant GAG and propose to address
them with Amsaa, a multi-step anticipatory algorithm which provides an innovative
integration of techniques from stochastic programming, artificial intelligence, and dis-
crete optimization. Like 1s-AA, Amsaa samples the distribution to generate scenarios of
the future. Contrary to 1s-AA however, Amsaa approximates and solves the multi-stage
problem. The SAA problem is solved by an exact search algorithm [4] using anticipa-
tory relaxations as a heuristic to guide the search.

Amsaa was evaluated on a stochastic resource-constrained project scheduling prob-
lem (S-RCPSP) proposed in [6] to model the design and testing of molecules in a phar-
maceutical company. This problem is highly combinatorial because of precedence and
cumulative resource constraints. It is also stochastic: the durations, costs, and results of
the tasks are all uncertain. The S-RCPSP features what we call endogenous observa-
tions: the uncertainty about a task can only be observed by executing it. This contrasts
with online stochastic combinatorial optimization (OSCO) problems studied earlier, in
which the observations were exogenous, and leads to significant GAGs [8]. More gen-
erally, Amsaa applies to a class of problems that we call Stoxuno problems (STochastic
Optimization with eXogenous Uncertainty and eNdogenous Observations). The experi-
mental results indicate that Amsaa outperforms a wide variety of existing algorithms on
this application.

The rest of the paper is organized as follows. Sections 2 and 3 describe the motivating
problem and introduce Stoxuno problems. Section 4 presents the background in Markov
Decision Processes and dynamic programming. Section 5 introduces the concept of
Exogenous MDPs (X-MDPs) to model Stoxuno and exogenous problems. Section 6
describes Amsaa. Section 7 presents extensive experimental results. Section 8 compares
Amsaa with a mathematical programming approach. Section 9 concludes the paper and
discusses research opportunities.

2 A Stochastic Project Scheduling Problem

This section describes the stochastic resource-constrained project scheduling problem
(S-RCPSP), a problem from the pharmaceutical industry [6]. A pharmaceutical com-
pany has a number of candidate molecules that can be commercialized if shown suc-
cessful, and a number of laboratories to test them. Each molecule is associated to a
project consisting of a sequence of tasks to be executed in order. A task is not preemp-
tive and cannot be aborted once started. Its duration, cost, and result (failure, which
ends the project, or success, which allows the project to continue) are uncertain. The
realization of a task is a triplet (duration, cost, result). A project is successful if all its
tasks are successful. A successful project generates a revenue which is a given decreas-
ing function of its completion date. The goal is to schedule the tasks in the laboratories,
satisfying the resource constraints (no more running tasks than the number of labs at
any given time), to maximize the expected profit. The profit is the difference between
the total revenues and the total cost. There is no obligation to schedule a task when a
lab is available and there are tasks ready to start. Indeed, it is allowed to drop a project
(never schedule a task ready to start), as well as to wait some time before starting a task.
Waiting is sometimes optimal, like in dynamic fleet management [2].

Amsaa: A Multistep Anticipatory Algorithm 175

Fig. 1. An Instance of the Stochastic Project Scheduling Problem

Each project is modeled by its own finite heterogeneous first-order Markov chain.
That is, for each task, the set of possible realizations is known. The Markov chain, which
is given, provides the distribution of the realization of the first task, and the probability
transition matrices that, for any realization of the i-th task, gives the distribution of the
realization of the (i+ 1)-th task.

Figure 1 depicts a small instance to illustrate these concepts. In this instance, there
are 3 projects and 4 tasks, and all the projects always succeed. In this instance, the
offline optimal schedules for the two possible realizations, which are shown in Figure
1(c), differ at the first decision when the uncertainty is not yet resolved. Hence the
optimal online policy is necessarily inferior to a perfect clairvoyant decision maker.
The schedule in Figure 1(c2) is the optimal online solution.

3 Exogeneity and Endogeneity: Problem Classification

Traditionally, stochastic optimization problems were separated into two classes accord-
ing to the exogenous or endogenous nature of their uncertainty. To delineate precisely
the scope of Amsaa, we need to refine this classification.

Purely exogenous problems are those in which the uncertainty, and the way it is ob-
served, is independent of the decisions. Customers and suppliers behavior is considered
exogenous [18], as well as nature (e.g., water inflow in hydroelectric power scheduling),
and prices in perfect markets. In this class, there is a natural concept of scenario (e.g.,
the sequence of customer requests) and, given two scenarios, it is possible to compute
when they become distinguishable.

Purely endogenous problems are those for which there is no natural concept of sce-
narios. Most benchmark problems for Markov Decision Processes are of this nature.
Problems in robotics where the uncertainty comes from the actuators are endogenous.

Stoxuno Problems (STochastic Optimization problems with eXogenous Uncertainty
and eNdogenous Observations) are applications like the S-RCPSP, for which the un-
derlying uncertainty is exogenous, but observations depend on the decisions. In these
problems, the concept of scenario is natural. However, given two scenarios, it is not pos-
sible to decide when a decision maker will be able to distinguish them. Many scheduling

176 L. Mercier and P. Van Hentenryck

problems with uncertainty on tasks should belong to this category. The lot sizing prob-
lem in [10] also falls into that category.

Amsaa applies to both purely exogenous and Stoxuno problems.

4 Background in Stochastic Dynamic Programming

Stochastic Dynamic Programming is a field of research that aims at solving stochastic
optimization problems modelled as Markov Decision Processes (MDPs). MDPs can
model purely endogenous problems, purely exogenous, and Stoxuno problems. We only
consider finite horizon MDPs with no reward discounting and no transition costs.

Markov Decision Processes. An MDP (S,s0,F,X ,⊥,X , f ,P) consists of:

– a state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.
– a decision space X containing a decision ⊥ (denoting no action) and a function

X : S → X returning the set of feasible decisions in a given state such that ∀s ∈
S,0 < #X (s) < ∞ and that ∀s ∈ F,X (s) = {⊥}.

– a bounded reward function f : F → R.
– a transition function P : S × X → prob(S), where prob(S) is the set of probability

distributions over S, satisfying ∀s ∈ F,P(s,⊥)({s}) = 1.

For convenience, we write P(·|s,x) instead of P(s,x)(·). A run of an MDP
(S,s0,F,X ,⊥,X , f ,P) starts in the initial state s0. In a given state s, the decision
maker selects a decision x ∈ X (s) which initiates a transition to state s′ ∈ A ⊆ S with

probability P(A|s,x). The resulting sequence of states and decisions, i.e. s0
x0−→ s1

x1−→
. . .

xt−1−−→ st
xt−→ . . . , is called a trajectory. This is a Markovian process: conditionally on

si and xi, the distribution of si+1 is independent of the past trajectory.
We assume horizon finiteness: there exists an integer T such that all trajectories

starting in s0 are such that sT is final. As a corollary, the state space graph has to be
acyclic. The objective of the decision maker is to maximize E [f (sT)].

Policies, Value functions, and Optimality. A (deterministic) Markovian policy π :
S → X is a map from states to feasible decisions, i.e., that satisfies ∀s ∈ S, π(s) ∈ X (s).
The value vπ(s) of policy π in state s is the expected value obtained by running policy
π from state s. A policy π is optimal if the value vπ(s0) is maximal among all policies.

A value function v is a map S → R. The Q-value function canonically associated to
v is the mapping S × X → R defined by Q(s,x) = EP [v(s′)|s,x] , which, in the case
of finite state space, becomes Q(s,x) = ∑s′∈S v(s′)P(s′|s,x). Given a value function v
and a state s, a decision x ∈ X (s) is greedy if Q(s,x) = maxx′∈X (s) Q(s,x′). We assume
that there is a rule to break ties, so we can talk about “the” greedy decision even though
it is not unique. The greedy policy πv associated with a value function v is the policy
defined by taking the greedy decision in every state. A value function is optimal if the
associated greedy policy is optimal. A necessary and sufficient condition for v to be
optimal is that, for all state s reachable under πv, we have v(s) = f (s) if s is final,
and Resv(s) = 0 otherwise, where Resv(s) = v(s) − maxQ(s,x) is called the Bellman
residual of v at s. Under our assumptions, there is always an optimal value function v�.

Amsaa: A Multistep Anticipatory Algorithm 177

5 Exogenous Markov Decision Processes

Section 3 discussed the nature of the uncertainty. MDPs can model problems of any na-
ture, but represents the uncertainty endogenously. For exogenous problems, it is better
to use a model that represents the uncertainty exogenously. Stochastic programs are an
example of such models, but they cannot model Stoxuno problems. Therefore we in-
troduce exogenous MDPs (X-MDPs) that allow the modeling of purely exogenous and
of Stoxuno problems. They are neither more nor less expressive than traditional MDPs
[18], but have computational advantages discussed at length in Section 6.

Model and Definitions. An exogenous Markov decision process (X-MDP)
(S,s0,F,X ,⊥,X , f ,ξ,μξ ,τ) consists of:

– a state space S, an initial state s0 ∈ S, and a set of final states F ⊆ S.
– a decision space X containing a decision ⊥ (denoting no action) and a function

X : S → X returning the set of feasible decisions in a given state such that ∀s ∈
S,0 < #X (s) < ∞ and that ∀s ∈ F,X (s) = {⊥}.

– a bounded reward function f : F → R.
– a random variable ξ, with values in a scenario space Ξ, and distribution μξ .
– a (deterministic) transition function τ : S × X × Ξ → S satisfying ∀s ∈ S, ∀ξ ∈

Ξ, τ(s,⊥,ξ) = s.

Running an X-MDP consists of first sampling a realization ξ of the random variable
ξ. The decision maker doesn’t know ξ , but it makes inferences by observing transition
outcomes. Starting in s0, it makes a decision, observes of the outcome of the transition,
and repeats the process. For a state s and a decision x, the next state becomes τ(s,x,ξ).
The alternation of decisions and state updates defines a trajectory s0

x0−→
ξ

s1
x1−→
ξ

. . .
xt−1−−→

ξ
st

satisfying (i) for all i, xi ∈ X (si) and (ii) for all i, si+1 = τ(st ,xt ,ξ).
Like for MDPs, we assume finite horizon: there is a T such that sT is final regardless

of the decisions made and of ξ. The objective also consists of maximizing E [f (sT)],
which is always defined if f is bounded. We will also restrict attention to Markovian
policies; in this order, we need to introduce a new concept before specifying the prop-
erty that ensures their dominance.

In an X-MDP, scenario ξ is compatible with a trajectory s0
x0−→ s1

x1−→ . . .
xt−1−−→ st

if τ(si,xi,ξ) = si+1 for all i < t. C
(

s0
x0−→ . . .

xt−1−−→ st

)
is the set of such scenarios. A

scenario is compatible with a state s if it is compatible with a trajectory from s0 to s,
and C (s) is the set of such scenarios.

The Markov property for X-MDPs, which ensures the dominance of Markovian poli-
cies, then reads:

for all trajectory s0
x0−→ . . .

xt−1−−→ st , C
(

s0
x0−→ . . .

xt−1−−→ st

)
= C (st) . (1)

It will be easy to enforce this property in practice: simply include all past observations
into the current state. An elementary but important corollary of this assumption is that

178 L. Mercier and P. Van Hentenryck

conditional probabilities on the past trajectory are identical to conditional probabilities
on the current state, i.e.,

∀A ⊆ Ξ, P

(
ξ ∈ A

∣∣∣ ξ ∈ C
(

s0
x0−→ . . .

xt−1−−→ st

))
= P(ξ ∈ A | ξ ∈ C (st)) ,

Hence, sampling scenarios conditionally on the current state is equivalent to sampling
scenarios conditionally on the past trajectory.

X-MDPs naturally exhibit an underlying deterministic and offline problem that has
no counterpart in MDPs. The offline value of state s under scenario ξ , denoted by
O(s,ξ), is the largest reward of a final state reachable from state s when ξ = ξ . It
is defined recursively by:

O(s,ξ) =

{
f (s) if s is final,

maxx∈X (s) O(τ(s,x,ξ),ξ) otherwise.

Consider the instance shown in Figure 1. If ξs and ξl denote the scenarios in which A.2
is short and long respectively, then O(s0,ξs) = 17 and O(s0,ξl) = 15.

Policies and Optimality for X-MDPs. Like for MDPs, it is possible to define the value
of a policy for an X-MDP. Let A be an X-MDP and π : S → X be a policy for A. Consider

a past trajectory s0
x0−→ . . .

xt−1−−→ st , not necessarily generated by π . Remember that for
any sequence of decisions sT is final. Therefore the expected value obtained by follow-

ing π after this past trajectory is well defined and is denoted by vπ

(
s0

x0−→ . . .
xt−1−−→ st

)
.

By the Markov property, this quantity only depends on st , so we denote it π(st). A
policy π is optimal if the value vπ(s0) is maximal among all policies.

Modelling the Stochastic RCPSP as an X-MDP. It is easy to model the S-RCPSP as
an X-MDP. A state contains: (1) the current time, (2) the set of currently running tasks
with their start times (but without lab assignment), and (3) the set of all past observed
task realizations. Thanks to (3) the Markov property for X-MDPs is satisfied.

6 Amsaa: An Algorithm for Decision Making in X-MDPs

Overview of Amsaa. This section presents a high-level overview of Amsaa, the Any-
time Multi-Step Anticipatory Algorithm, which aims at producing high-quality deci-
sions for X-MDPs. Its pseudo-code follows.

Because we want an anytime algorithm, that is, one that can be stopped and return
something at any time, there is an outer loop for which the condition can be anything.
In an operational setting, it will most likely be a time constraint (e.g., “make a decision
within a minute”), and in a prospective setting, it could be a stopping criteria based on
some accuracy measure (for example, the contamination method [9]).

Amsaa’s first step is to approximate the X-MDP to make it more tractable. It then
converts it to an MDP in order to apply standard search algorithm for MDPs. This
search is guided by an upper bound that exploits the existence of offline problems due
to the exogenous nature of the uncertainty. For efficiency, lines 3–4 are incremental, so

Amsaa: A Multistep Anticipatory Algorithm 179

Function.Amsaa(X-MDP A)
while some condition do1

Approximate the X-MDP A by replacing ξ with a random variable ξ′
whose support is smaller,2

or refine the current approximation.
Convert the resulting X-MDP to a standard MDP.3
Solve the resulting MDP with a search algorithm for MDPs, using the offline upper bound4

hE,max(s) = E

[
O(s,ξ′)

∣∣∣ ξ′ ∈ C (s)
]
.

return the greedy decision at the root node of the MDP.5

that when the approximation is refined (line 1), the amount of work to be done is small
if the refinement does not change the approximated problem too much.

We will now present the details of the approximation, of the convertion to an MDP,
of the MDP solving, and, finally, of the incrementality.

Approximating the X-MDP by Sampling. The first step of Amsaa is to approximate
the original X-MDP by replacing the distribution of the scenarios by one with a finite
and reasonably small support. The simplest way of doing so is by sampling. For stochas-
tic programs, this idea is called the Sample Average Approximation (SAA) method [16],
and it can be extended to X-MDPs. Suppose we want a distribution whose support has
cardinality at most n: just sample ξ n times, independently or not, to obtain ξ1, . . . ,ξn

and define μ̂n as the empirical distribution induced by this sample, that is, the distribu-
tion that assigns probability 1/n to each of the sampled scenarios. Some results of the
SAA theory translate to X-MDPs. In particular, if Ξ is finite and the sampling iid, then
the SAA technique produces almost surely optimal decisions with enough scenarios.

Benefits of Exterior Sampling for X-MDPs. Sampling can be used either to compute
an optimal policy for an approximated problem (The SAA method, used in Amsaa);
or to compute an approximately optimal policy for the original problem, like in [12],
who proposed an algorithm to solve approximately an MDP by sampling a number of
outcomes at each visited state (interior sampling). Their algorithm was presented for
discounted rewards but generalizes to finite horizon MDPs. We argue that the SAA
method is superior because sampling internally does not exploit a fundamental advan-
tage of problems with exogenous uncertainty: positive correlations.

Indeed, in a state s, the optimal decision maximizes Q�(s,x), where Q� is the Q-
value function associated to the optimal value function v�. However, estimating this
value precisely is not important. What really matters is to estimate the sign of the dif-
ference Q�(s,x1)− Q�(s,x2) for each pair of decisions x1,x2 ∈ X (s). Now, consider
two functions g and h mapping scenarios to reals, for example the optimal policy value
obtained from a state s after making a first decision. That is, g(ξ) = v�(τ(s0,x1,ξ)) and
h(ξ) = v�(τ(s0,x2,ξ)) for two decisions x1,x2 ∈ X (s0). If ξ1 and ξ2 are iid scenarios:

var
(
g(ξ1)− h(ξ2)

)
= var

(
g(ξ1)

)
+ var

(
h(ξ2)

)
,

var
(
g(ξ1)− h(ξ1)

)
= var

(
g(ξ1)

)
+ var

(
h(ξ1)

)
− 2cov

(
g(ξ1),h(ξ1)

)
,

and therefore var
(
g(ξ1)− h(ξ1)

)
=

(
1 − acorr

(
g(ξ1),h(ξ1)

))
· var

(
g(ξ1)− h(ξ1)

)
,

where acorr(X ,Y) = cov(X ,Y)
1/2(var(X)+var(Y)) is a quantity we call arithmetic correlation. Note

180 L. Mercier and P. Van Hentenryck

that acorr(X ,Y) ≈ corr(X ,Y) when var(X) and var(Y) are close. Now consider an infi-
nite iid sample ξ1,ξ1′

,ξ2,ξ2′
, . . . , and a large integer n. By the central limit theorem, the

distributions of 1
n ∑n

i=1 g(ξi)− h(ξi) and of 1
nγ ∑nγ

i=1 g(ξi)− h(ξi′) are almost the same

when 1/γ = 1 − acorr
(
g(ξ1),h(ξ1)

)
. Therefore, for some specified accuracy, the num-

ber of required scenarios to estimate the expected difference between g(ξ) and h(ξ) is
reduced by this factor γ when the same scenarios (exterior sampling) are used instead
of independent scenarios (interior sampling).

This argument is not new, and can be found for example in [16]. However, no empir-
ical evidence of high correlations were given, which we now report. Consider an SAA
problem approximating the standard instance of the S-RCPSP application with 200 sce-
narios generated by iid sampling, and consider the optimal policy values in the initial
state for the 6 possible initial decisions (the first is to schedule nothing, the others are
to schedule the first task of each project). Associating a column with each decision, the
values for the first five scenarios are:

OptPolicyValue = 1e4×

⎛

⎜⎜⎜⎜⎝

0 2.110 2.038 1.910 1.893 2.170
0 −0.265 −0.275 −0.275 −0.275 −0.225
0 −0.205 −0.230 −0.230 −0.170 −0.170
0 1.375 1.405 1.279 1.345 1.365
0 1.045 1.070 1.015 1.105 1.160

⎞

⎟⎟⎟⎟⎠

The correlation is evident. Excluding the first decision (which is uncorrelated to the
others), the arithmetic correlations range from 94% to 99%, computed on the 200 sce-
narios. Moreover, the minimal correlation is 98.7% among the second, third, and fourth
decisions, which are the three good candidates for being selected as the initial decision.

It remains to see whether these correlations are a characteristic of the problem or
even of the instance. In most OSCO problems, some scenarios are more favorable than
others regardless of the decisions, causing these correlations: in the S-RCPSP, scenarios
with many successful projects bring more money than scenarios with many failures, and
this is very visible on the matrix above. As a result we conjecture that, for most OSCO
problems, exterior sampling converges with far fewer scenarios than interior sampling.

Converting the X-MDP into an MDP. This is the second step of Amsaa.

Definition 1. Given an X-MDP A with state-space S and final states set F, the trimmed
X-MDP B induced by A is the X-MDP that is in all equal to A, except:

1. its state space is S′ = {s ∈ S|C (s) 	= ∅};
2. its set of final states is F ′ = F ∪{s ∈ S′|#C (s) = 1}, and the function X is modified

accordingly;
3. its reward function f ′ is defined, for states s ∈ F ′ \ F, by f (s) = O(s,ξ), where ξ

is the unique scenario compatible with s.

A trimmed X-MDP is equivalent to the original one, in the sense that an optimal policy
in A induces an optimal policy in B and vice versa.

Definition 2. Let B = (S,s0,F,X ,⊥,X , f ,ξ,μξ ,τ) be the trimmed X-MDP induced by
an X-MDP A. Define P from S × X to the set of probability distributions on S by:

∀s ∈ S,x ∈ X ,U ⊆ S, P(U |s,x) = P(τ(s,x,ξ) ∈ U | ξ ∈ C (s)) .

Amsaa: A Multistep Anticipatory Algorithm 181

Then C = (S,s0,F,X ,⊥,X , f ,P) is the MDP induced by X-MDP A.

The induced MDP is equivalent to the original problem in the following sense.

Theorem 1. Let A be an X-MDP, C the induced MDP, and π be a policy that is optimal
in A for states in F ′ \ F. Then, for all states s ∈ S′, vA

π(s) = vC
π(s).

This theorem is a consequence of the Markov property for X-MDPs, which implies that,
following π in B or C, for all t the distribution of st is the same in B and in C.

Solving MDPs. Once the approximated X-MDP is converted into an MDP, it is possible
to apply existing algorithms for solving the MDP exactly. We use aheuristic search
algorithm, which, despite its name, is an exact algorithms.

Heuristic Search Algorithms for MDPs. Heuristic search algorithms for MDPs perform
a partial exploration of the state space, using a — possibly monotone — upper bound to
guide the search. A value function h : S → R is an upper bound if ∀s ∈ S, h(s) ≥ v�(s),
and is a monotone upper bound if, in addition, Resh(s) ≥ 0 for all state s. A monotone
upper bound is an optimistic evaluation of a state that cannot become more optimistic
if a Bellman update is performed.

Function.findRevise(MDP A)
precondition: h is a upper bound for A, h(s) = f (s) if s is final
foreach s ∈ S do v(s) ← h(s)1
repeat2

Pick a state s reachable from s0 and πv with |Resv(s)| > 03
v(s) ← maxx∈X (s) Q(s,x)4

until no such state is found5
return v6

Function findAndRevise, introduced by [4], captures the general schema of heuris-
tic search algorithm for MDPs and returns an optimal value function upon termination.
At each step, the algorithm selects a state reachable with the current policy πv whose
Bellman residual is non-zero and performs a Bellman update. When h is monotone,
only strictly positive (instead of non-zero) Bellman residuals must be considered. Dif-
ferent instantiations of this generic schema differ in the choice of the state to reconsider.
They include, among others, HDP [4], Learning Depth-First Search (LDFS) [5], Real-
Time Dynamic Programming (RTDP) [1], Bounded RTDP [13], and LAO* [11]. These
algorithms only manipulate partial value functions defined only on the states visited so
far, performing the initialization v(s) ← h(s) on demand. We chose to use the acyclic
version of Learning Depth-First Search (a-LDFS). It applies to acyclic problems (ours
are), and requires a monotone upper bound, which we have.

The Upper Bound hE,max. The performance of heuristic search algorithms strongly de-
pends on the heuristic function h. For MDPs induced by X-MDPs, a good heuristic
function can be derived from the deterministic offline problems. More precisely, for a
state s, the heuristic consists of solving the deterministic offline problems for the scenar-
ios compatible with s in the original X-MDP and taking the resulting expected offline
value, i.e., hE,max(s) = Eμ [O(s,ξ) | ξ ∈ C (s)] , where μ is ξ’s distribution. Function

182 L. Mercier and P. Van Hentenryck

hE,max is a monotone upper bound. It is attractive for guiding the search because it
leverages the combinatorial structure of the application (black-box offline solver) and
can be computed efficiently because the sets C (s) are finite and small. hE,max provides
a significant computational advantage to X-MDPs over MDPs.

Incrementality and Anytime Decision Making. Incrementality is the ability to re-
solve the MDP quickly after a small change in the approximated problem. Incremen-
tality enables fine-grained refinement, providing for efficient anytime decision making
and openning the door to sequential sampling [7]. It is based on the following theorem.

Theorem 2. Let A , B and C be three X-MDPs that differ only by their respective
distributions μ , ν , and ρ and let ρ = λ μ +(1−λ)ν for some 0 < λ < 1. Let hμ and hν
be monotone upper bounds for A and B respectively. Define h : S → R by h(s) = −∞
if ρ(C (s)) = 0, and otherwise by

h(s) =
1

ρ(C (s))

(
λ μ(C (s)) hμ(s) + (1 − λ)ν(C (s))hν (s)

)
.

Then h is a monotone upper bound for the induced MDP of C .

This theorem is used in the following setting. μ is the old sample distribution, and we
have solved A optimally with findAndRevise(). The optimal value function it
returned is the monotone upper bound hμ(s). ν is the distribution of the newly added
scenarios, and hν is the hν

E,max, the offline upper bound for B. ρ is the new sample
distribution, and includes the old sample and the newly added scenarios. λ is the weight
of the old sample in the new sample. Our experiments showed adding the scenarios one-
by-one instead of all at once produced only a 20% slowdown on 500-scenario problems.

7 Experimental Results on Anytime Decision Making

Experimental Setting. The benchmarks are based on the collection of 12 instances for
the S-RCPSP from [8]. The reference instance, Reg, is similar to the one in [6]. It has
2 laboratories, 5 projects, and a total of 17 tasks. The number of realizations for each
tasks range from 3 to 7, giving a total of 109 possible scenarios. The 11 other instances
are variant of Reg, scaling the costs, scaling the time axis of the revenue functions, or
chaning the structure of the Markov chains for each molecule.

For each instance, we generated 1,000 realizations of the uncertainty. A run of an
algorithm on one of these realizations consists of simulating one trajectory in the X-
MDP. At each encountered state, the online algorithm takes a decision with hard time
constraints. If the online algorithm has not enough time to decide, a default decision,
closing the labs, is applied. The algorithms were tested on all the realizations and vari-
ous time limits. With 4 tested algorithms and time limits of 31 ms, 125 ms, 500 ms, 2s,
8s, 32s, this gives a total of 288,000 runs taking more than 8,000 hours of cpu time.

The Four Compared Algorithms. Amsaa was used with iid sampling and sample sizes
growing by increments of 10%. Its performance relies on a fast offline solver. We used
the branch and bound algorithm from [8] whose upper bound relaxes the resource con-
straints for the remaining tasks. This branch and bound is very fast thanks to a good

Amsaa: A Multistep Anticipatory Algorithm 183

preprocessing step: it takes on average less than 1ms for the reference instance. 1s-AA
is the one-step anticipatory algorithm with iid sampling. It uses the same offline solver
than Amsaa. BRTDP is the Bounded Real Time Dynamic Programming algorithm [13].
The lower bound h−(s) correspond to not scheduling anything after state s. The upper
bound is h+(s) is a very slight relaxation of hmax,max, using the offline solver on an hy-
pothetical best scenario. Like in RTDP, and as opposed to B-RTDP, decisions are taken
greedily with respect to the upper bound value function v+: Indeed experimental results
showed that making decisions with respect to v− provides very poor decisions. HC-DP
is the Heuristically Confined Dynamic Programming algorithm from [6] enhanced into
an anytime algorithm. The offline learning phase is removed and performed within the
given time limits. A full Bellman update is performed at increasing larger intervals, so
that the decision can be updated. Less than half the computation time is spent doing
updates, the rest being spent exploring the state-space. Its results outperform those of
the original HC-DP algorithm in [6].

The Performance of Amsaa. Figure 2 summarizes the results for anytime decision
making. It contains a table for each of the 12 instances. The first line of this table con-
tains the empirical mean value obtained by running Amsaa. The three lines below report
the relative gap between the expected value of the considered algorithm and Amsaa with
the same time constraint. In addition, the background color carries information about
the statistical significance of the results, at the 5% level, as indicated by the legend of
the figure. It indicates whether the considered algorithm is better than Amsaa-32s (no
occurrence here); not worse than Amsaa-32s (e.g., Amsaa-500ms on Cost2); signifi-
cantly worse than Amsaa-32s, but better than Amsaa-31ms (e.g., 1s-AA-31 ms on P3);
worse than Amsaa-32s, but not than Amsaa-31ms (e.g., B-RTDP-2s on Agr); or worse
than Amsaa-31ms (e.g., HC-DP-32s on Reg).

Overall Amsaa exhibits excellent performance. The solution quality of Amsaa-32s is
often higher by at least 10% than 1s-AA-32s, HC-DP-32s, and B-RTDP-32s and Amsaa
is robust across all instances. With 32s, Amsaa is significantly better than all other
algorithms on 11 instances and as good as any other algorithm on Cost5. Moreover, the
remaining three algorithms lacks robustness with respect to the instances: They all rank
second and last at least once. Note that, on Cost5, the optimal policy is not to schedule
anything. HC-DP is able to realize that quickly, with only 125 ms, because it uses very
fast heuristics. Amsaa-32s and HC-DP with at least 125ms are optimal on this problem.

Amsaa is also robust with respect to the available computation time. On most in-
stances, the rankings of the four algorithms do not vary much with respect to the com-
putation times. One might think that with very strong time constraints, 1s-AA is prefer-
able to Amsaa, because 1s-AA can use more scenarios in the same amount of time. Yet,
there are only two instances on which 1s-AA-31ms beats Amsaa-31ms (Agr and P3)
and 3 on which they exhibit similar results. Note that B-RTDP-31ms has a zero score
on many instances due to the fact that even a single B-RTDP trial has to go deep in the
state space and compute the bounds h+ and h− for many states. Under such strict time
constraints, B-RTDP cannot even perform one trial before the deadline.

Empirical Complexity of Amsaa. Figure 3(a) shows how the sample size grows with
the available runtime on instance Reg, measured on the making of the initial decision.
Because Amsaa is exponential in the worst case, one might fear that the number of

184 L. Mercier and P. Van Hentenryck

scenarios grows logarithmically with the runtime. Yet, a power model for the expected
sample size E [n] as a function of the computation time t fits almost perfectly the empir-
ical data. The fitted model is E [n] = 105× t0.61, which indicates that Amsaa’s execution
time grows subquadratically in the number of scenarios (1/0.61 = 1.64 < 2)

However, one may argue that this behavior may be a consequence of iid sampling and
is not a convincing evidence that Amsaa performs well. Indeed, in the case of a contin-
uous distribution of the uncertainty, all the scenarios would almost surely be dispatched
to different states after the first observation and Amsaa with iid sampling would have a
linear complexity. The stochastic RCPSP has finite distributions but a similar behavior,
i.e., a fast divergence of the scenarios, could explain its good performance.

To test whether this is the case, we measured the number of states in the trimmed ap-
proximated X-MDP that are reachable by an optimal policy, as depicted on figure 3(b).
With a continuous distribution, the number of reachable states would almost surely be
n + 1 for n scenarios: the root node and n leaves. If observations were Bernoulli ran-
dom variables with parameter 1/2, the solution state space would be a roughly balanced
binary tree with 2n − 1 nodes. These two extreme cases suggest to fit a linear model of
the form (nb reachable states) = a + bn. Such a model fits perfectly the experimental
results with a slope of 1.96, making it much closer to a Bernoulli case than a continuous
distribution. This provides evidence that scenarios do not diverge too quickly with iid
sampling and that the SAA problems become harder with the number of scenarios.

Comparison with Gap Reduction Techniques. The following table reports the rel-
ative gap (in %) between [8]’s best algorithm, called ATEPR, based on gap reduction
techniques, and Amsaa-32s. The background color provides significance information:
on Cost2 and R.6, ATEPR beats Amsaa-32s at the 5% significance level. On Reg, Cost5,
and R1.5, none is better than the other. On D.6 gap reduction is worse than Amsaa-31ms,
and on the others gap reduction is worse than Amsaa-32s but better than Amsaa-31ms.

Reg Agr Cost2 Cost5 D.6 D1.5 P1 P2 P3 P4 R.6 R1.5
-0.24 -1.11 +9.96 0.00 -16.8 -0.43 -1.98 -2.80 -0.57 -0.62 +5.40 +0.39

Gap reduction techniques are an attractive alternative to Amsaa. Nethertheless, Amsaa
outperforms them on most instances here, sometimes with a large gap (17% on D.6),
and converges to the optimal decisions (gap reduction techniques do not).

8 Comparison with Mathematical Programming

Stochastic programming traditionally focuses on purely exogenous problems. However,
[10] proposed an integer programming (IP) formulation for SAA problems of a Stox-
uno lot-sizing problem. We investigated a similar approach for the solving of SAA
problems for S-RCPSP using an IP closely following model (P2) in [10]. In this model,
the number of binary variables is quadratic in the number of scenarios and linear in
the time horizon. A 20-scenario problem generated by iid sampling had, after CPLEX’s
presolve, 47·103 binary variable and 20·106 non-zeros. On this problem, CPLEX 10.1
runs out of memory before finding the first integer solution, while Amsaa solves it in
0.2s, and solves 1,000-scenario problems within minutes. With 1,000 scenarios, the IP
model would have about 108 binary variables ((103)2 × 100: there are about 100 time
steps), which is outside the scope of today’s IP solvers.

Amsaa: A Multistep Anticipatory Algorithm 185

Fig. 2. Experimental Results for Anytime Decision Making on the S-RCPSP

186 L. Mercier and P. Van Hentenryck

Fig. 3. Empirical complexity of Amsaa

[10] proposed to solve this IP using a branch-and-bound algorithm based on a La-
grangian relaxations of the non-anticipativity constraints. Yet, with 1,000 scenarios,
their algorithm would relax 109 constraints (10 non-anticipatory constraints for each
binary variable), so there would be a billion Lagrange multipliers to optimize at each
node of the tree, which is not reasonable either.

Why is Amsaa so much more scalable on this problem? The main difference is the
way non-anticipativity constraints are handled in the two approaches. In Grossman’s
approach, these are relaxed by Lagragian duality whereas, in Amsaa, they are enforced
lazily. The lazy approach has two major advantages. First, the presence of Lagrangian
multipliers alter the structure of the problem, precluding the use of a highly optimized
ad-hoc solver like in Amsaa. Second, it makes Amsaa able to exploit the discrete nature
of the decisions, using states and transitions instead of discretizing time.

9 Conclusion and Research Opportunities

We proposed Amsaa, the Anytime Multi-Step Anticipatory Algorithm, designed to
address the limitations of the one-step anticipatory algorithm on very stochastic applica-
tions. Amsaa applies to online combinatorial stochastic optimization problems with ex-
ogenous uncertainty and exogenous or endogenous observations. Experimental results
on stochastic resource-constraint project scheduling indicate that Amsaa significantly
outperforms existing algorithms under a variety of time constraints and of instances.

The essence of Amsaa lies in the integration of three ideas from different fields: the
SAA method from stochastic optimization to exploit positive correlations between de-
cisions, search algorithms from AI to solve MDPs exactly without time discretization,
and the use of black-box offline solvers from online stochastic combinatorial optimiza-
tion to compute good upper bounds quickly.

There are many research avenues to improve Amsaa. They include the use of lower
bounds like in B-RTDP (recall that we are maximizing) and of weaker but faster upper
bounds. Other research questions concern the generation of the approximated prob-
lems. The stochastic programming literature include a few techniques to produce better

Amsaa: A Multistep Anticipatory Algorithm 187

sample than by iid sampling [9]. It is not yet clear which of these techniques could be
applied to Stoxuno problems.

Acknowlegments. Many thanks to Grégoire Dooms for his help. This research is par-
tially supported by NSF awards DMI-0600384 and ONR award N000140610607.

References

1. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic program-
ming. Artificial Intelligence 72(1), 81–138 (1995)

2. Bent, R., Van Hentenryck, P.: Waiting and Relocation Strategies in Online Stochastic Vehicle
Routing. In: Proceedings of the 20th Int. Joint Conf. on A.I. (IJCAI 2007) (January 2007)

3. Bent, R., Van Hentenryck, P.: Scenario-Based Planning for Partially Dynamic Vehicle Rout-
ing Problems with Stochastic Customers. Operations Research 52(6) (2004)

4. Bonet, B., Geffner, H.: Faster heuristic search algorithms for planning with uncertainty and
full feedback. In: IJCAI, pp. 1233–1238 (2003)

5. Bonet, B., Geffner, H.: Learning depth-first search: A unified approach to heuristic search in
deterministic and non-deterministic settings, and its application to mdps. In: ICAPS (2006)

6. Choi, J., Realff, M.J., Lee, J.H.: Dynamic prog. in a heuristically confined state space: A
stochastic resource-constrained project scheduling appplication. Computers and Chemical
Engineering (2004)

7. Dempster, M.A.H.: Sequential Importance Sampling Algorithms for Dynamic Stochastic
Programming. Journal of Mathematical Sciences 133, 1422–1444 (2006)

8. Dooms, G., Van Hentenryck, P.: Gap Reduction Techniques for Online Stochastic Project
Scheduling. In: CPAIOR 2008 (2008)

9. Dupacova, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs.
Annals of Operations Research (2000)

10. Goel, V., Grossmann, I.E.: A class of stochastic programs with decision dependent uncer-
tainty. Math. Program 108(2-3), 355–394 (2006)

11. Hansen, E.A., Zilberstein, S.: LAO: A heuristic-search algorithm that finds solutions with
loops. Artificial Intelligence 129(1-2), 35–62 (2001)

12. Kearns, M., Mansour, Y., Ng, A.: A Sparse Sampling Algorithm for Near-Optimal Planning
in Large Markov Decision Processes. In: IJCAI 1999, pp. 1231–1324 (1999)

13. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic programming:
RTDP with monotone upper bounds and performance guarantees. In: ICML, pp. 569–576
(2005)

14. Mercier, L., Van Hentenryck, P.: Performance Analysis of Online Anticipatory Algorithms
for Large Multistage Stochastic Programs. In: Proceedings of the 20th Int. Joint Conf. on AI
(IJCAI) (2007)

15. Parkes, D., Duong, A.: An Ironing-Based Approach to Adaptive Online Mechanism Design
in Single-Valued Domains. In: AAAI 2007, Vancouver, Canada, pp. 94–101 (2007)

16. Ruszczynski, A., Shapiro, A. (eds.): Stochastic Programming. Hanbooks in Operations Re-
search and Management Series, vol. 10. Elsevier, Amsterdam (2003)

17. Thomas, M., Szczerbicka, H.: Evaluating Online Scheduling Techniques in Uncertain Envi-
ronments. In: Proceedings of the 3rd Multidisciplinary International Scheduling Conference
(MISTA 2007) (2007)

18. Van Hentenryck, P., Bent, R.: Online Stochastic Combinatorial Optimization. The MIT Press,
Cambridge (2006)

Optimal Deployment

of Eventually-Serializable Data Services

L. Michel2, A. Shvartsman2, E. Sonderegger2, and P. Van Hentenryck1

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Replication is a fundamental technique for increasing
throughput and achieving fault tolerance in distributed data services.
However, its implementation may induce significant communication costs
to maintain consistency between the replicas. Eventually-Serializable
Data Service (ESDS) has been proposed to reduce these costs and en-
able fast operations on data, while still providing guarantees that the
replicated data will eventually be consistent. This paper reconsiders the
deployment phase of ESDS, in which a particular implementation of com-
municating software components must be mapped onto a physical archi-
tecture. This deployment aims at minimizing the overall communication
costs, while satisfying the constraints imposed by the protocol. Both MIP
and CP models are presented and applied to realistic ESDS instances.
The experimental results indicate that both models can find optimal so-
lutions and prove optimality. The CP model, however, provides orders of
magnitude improvements in efficiency. The limitations of the MIP model
and the critical aspects of the CP model are discussed. Symmetry break-
ing and parallel computing are also shown to bring significant benefits.

1 Introduction

Data replication is a fundamental technique in distributed systems: it im-
proves availability, increases throughput, and eliminates single points of failure.
Data replication however induces a communication cost to maintain consistency
among replicas. This cost can be reduced by the use of Eventually-Serializable
Data Services (ESDS) [6], which allow the users to selectively relax the consis-
tency requirements in exchange for improved performance. Given a definition
of an arbitrary serial data type, ESDS guarantees that the replicated data will
eventually be consistent (i.e., presenting a single-copy centralized view of the
data to the users), although it may not be at a particular point during the
execution.

The design, analysis, and implementation of ESDS is not an easy task how-
ever, and dedicated specification languages have been developed to express these
algorithms and protocols formally. See, for instance, the framework of (timed)
I/O automata [12,9] and their associated tools [13] which allow theorem provers
(e.g., PVS [15]) and model checkers (e.g., UPPAAL [10,4]) to reason about their
correctness. The ESDS algorithm is in fact formally specified with I/O automata

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 188–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Deployment of Eventually-Serializable Data Services 189

and proved correct [6]. Once a specification is deemed correct, it must be imple-
mented and deployed. The implementation typically consists of communicating
software modules whose collective behaviors cannot deviate from the set of ac-
ceptable behaviors of the specification; see [5] for a methodic implementation of
the algorithm and a study of its performance. The deployment then focuses on
mapping the software modules on a distributed computer system to maximize
performance or, more precisely, to minimize communication costs between the
software components.

This research focuses on the last step of this process: the deployment of the im-
plementation on a specific architecture. The deployment problem can be viewed
as a resource allocation problem in which the objective is to minimize the net-
work traffic while satisfying the constraints imposed by the distributed algo-
rithms. These constraints include, in particular, the requirements that replicas
cannot be allocated to the same computer since this would weaken fault toler-
ance. The ESDS Deployment Problem (ESDSDP) was considered by [3] and was
modeled as a MIP. Unfortunately, the experimental results were not satisfactory
at the time as even small instances could not be solved optimally [3].

This paper reconsiders the ESDSDP and studies both MIP and CP formu-
lations. It demonstrates that MIP solvers can now solve practical instances in
reasonable times, although the problems remain surprisingly challenging. It also
presents a constraint-programming approach which dramatically improves the
performance of the MIP model. The CP model is a natural encoding of the ES-
DSDP together with a simple search heuristic focusing on the objective function.
The paper also evaluates empirically the strength of the filtering algorithms, the
use of symmetry breaking, and the benefits of parallel computing.

Surveying the current results in more detail, the CP model brings orders of
magnitude improvements in performance over the MIP model; for the examples
considered here, it returns optimal solutions and proves optimality within a
couple of minutes in the worst-case and within 15 seconds in general. The CP
model enforces arc consistency on all different and multi-dimensional element
constraints, which is critical for good performance. Symmetry breaking brings
significant speedups (up to a factor 13), while parallel computing produces linear
speedups on a 4 processor SMP machine.

The results in this paper also open new horizons for on-line optimization of
distributed deployment. Given the observed improvements in obtaining optimal
solutions, it becomes feasible next to consider optimizing deployment of com-
ponents in reconfigurable consistent data services for dynamic systems, such as
Rambo [11,7]. Here configurations (quorum systems) of processors maintaining
data replicas can be changed dynamically. Any server maintaining a replica can
propose a new configuration and choosing suitable configurations is crucial for
the performance of the service. There exists a trade-off between fast reconfigu-
ration and the choice of suitable configurations. Enabling the servers to propose
optimized configuration based on their local observations and decisions will sub-
stantially benefit such services. It is of note that realistic instance sizes (cf. [1,16])
are now within the current ability to compute optimal deployment.

190 L. Michel et al.

The rest of this paper is organized as follows. Section 2 presents an overview
of ESDS and illustrates the deployment problem on a basic instance. Section 3
introduces the high-level deployment model, while Sections 4 and 5 present the
MIP and CP models. Section 6 reports the experimental results and analyzes
the behavior of the models in detail. Section 7 concludes the paper.

2 Deployment of Eventually-Serializable Data Services

An Eventually-Serializable Data Service (ESDS) consists of three types of com-
ponents: clients, front-ends, and replicas. Clients issue requests for operations
on shared data and receive responses returning the results of those operations.
Clients do not communicate directly with the replicas; instead they communicate
with front ends which keep track of pending requests and handle the communi-
cation with the replicas. Each replica maintains a complete copy of the shared
data and “gossips” with other replica to stay informed about operations that
have been received and processed by them. Since multiple clients may issue re-
quests concurrently, the responses are not uniquely defined. The service only
guarantees that the responses are consistent with an eventual total order on the
operations. Each replica maintains a set of the requested operations and a partial
ordering on those operations consistent with the responses. Clients may specify
constraints on how the requested operations are ordered. If no constraints are
specified by the clients, the operations may be reordered after a response has
been returned. A request may include a list of previously requested operations
that must be performed before the currently requested operation. Lastly, a re-
quest also may be “strict”, which means that the response must be consistent
with the eventual total order. For any sequences of requests issued by the clients,
the service guarantees eventual consistency of the replicated data [6].

ESDS is well-suited for implementing applications such as a distributed direc-
tory service, cf. Internet’s Domain Name System [8], which needs redundancy
for fault-tolerance and good response time for name lookup but does not require
immediate consistency of naming updates. Indeed, the access patterns of such
applications of ESDS are dominated by queries, with infrequent update requests.

Optimizing the deployment of an ESDS application can be challenging due to
non-uniform communication costs induced by the actual network interconnect,
as well as the various types of software components and their communication
patterns. In addition, for fault tolerance, no more than one replica should reside
on any given node. Finally, there is a tradeoff between the desire to place front-
ends near the clients with whom they communicate the most and the desire
to place the front-ends near replicas. Note also that the client locations may be
further constrained by exogenous factors. Deployment instances typically involve
a handful of front-ends to mitigate between clients and servers, a few replicas,
and a few clients. Instances may not be particularly large as the (potentially
numerous) actual users are external to the system and simply forward their
demands to the internal clients modeled within the ESDS.

Optimal Deployment of Eventually-Serializable Data Services 191

PC1 PC2 PC3 PC4

Servers 1-5

S
w

itc
h

Servers 6-10

c1 c2 c3 c4

fe1 fe2

s1 s2

s3s4

s5 s6

10 2 10 5

12 15

5

5

5

5
5 5

5

5
5

555

5

Fig. 1. A Simple ESDS Deployment Problem

Figure 1 depicts a simple ESDP Deployment Problem (ESDSDP). The left
part of the figure shows the hardware architecture, which consists of 10 heavy-
duty servers connected via a switch (full interconnect) and 4 “light” servers
connected via direct links to the first four heavy-duty servers. For simplicity, the
cost of sending a message from one machine to another is the number of network
hops. For instance, a message from PC1 to PC2 requires 3 hops, since a server-
to-server message through the switch requires one hop only. The right part of
Figure 1 depicts the software implementation of the ESDS. The ESDS software
modules fall in three categories: (1) client modules that issue queries (c1, · · · , c4);
(2) front-end modules (fe1, fe2) that mediate between clients and servers and
are responsible for tracking the sequence of pending queries; and (3) replicas
(s1, · · · , s6). Each software module communicates with one or several modules
and the right side of the figure specifies the volume of messages that must flow
between the software components in order to implement the service. The problem
constraints in this problem are as follows: the first 3 client modules must be
hosted on the light servers (PC1, · · · , PC4) while the remaining components
(c4, fe1, fe2, s1, · · · , s6) must run on the heavy-duty servers. Additionally, the
replicas s1 through s6 must execute on distinct servers to achieve the fault
tolerance promised by the ESDS. The deployment problem consists of finding
an assignment of software components to servers that satisfies the constraints
stated above and minimizes the overall network traffic expressed as the volume
of messages sent given the host assignments.

3 Modeling Optimal EDSD Deployments

We now present the deployment model originally developed in [2,3]. The input
data consists of

– The set of software modules C;
– The set of hosts N ;

192 L. Michel et al.

– The subset of hosts to which a component can be assigned is denoted by
booleans sc,n equal to true when component c can be assigned to host n;

– The network cost is directly derived from its topology and expressed with
a matrix h where hi,j is the minimum number of hops required to send a
message from host i to host j. Note that hi,i = 0 (local messages are free);

– The message volumes. In the following, fa,b denotes the average frequency
of messages sent from component a to component b;

– The separation set Sep which specifies that the components in each S ∈ Sep
must be hosted on a different servers;

– The co-location set Col which specifies that the components in each S ∈ Col
must be hosted on the same servers;

The decision variables xc are associated with each module c ∈ C and xc = n if
component c is deployed on host n. An optimal deployment minimizes

∑

a∈C

∑

b∈C

fa,b · hxa,xb

subject to the following. Components may only be assigned to supporting hosts

∀c ∈ C : xc ∈ {i ∈ N | sc,i = 1}.

For each separation constraint S ∈ Sep, we impose

∀i, j ∈ S : i �= j ⇒ xi �= xj .

Finally, for each co-location constraint S ∈ Col , we impose

∀i, j ∈ S : xi = xj .

4 The MIP Model

We now present a MIP model for the deployment problem. It is interesting
to observe that the ESDSDP is a generalization of the Quadratic Assignment
Problem (QAP). Indeed, in a QAP, C = N , the variables xi are required to form
a permutation on N , and there is no separation and co-location constraint. A
QAP is also obtained when the co-location constraints are absent and the model
contains a single separation constraint over the set of components C.

Basic Model. The MIP model uses a four-dimensional matrix y of 0/1-variables
such that ya,i,b,j = 1 if xa = i∧xb = j. It also uses a two-dimensional matrix z of
0/1-variables satisfying za,i = 1 ⇔ xa = i. The ESDSDP can then be specified
as the minimization of

∑

a∈C

∑

i∈N

∑

b∈C

∑

j∈N

fa,b · hi,j · ya,i,b,j

subject to

Optimal Deployment of Eventually-Serializable Data Services 193

za,i ≤ sa,i ∀a ∈ C, ∀i ∈ N (1)
∑

i∈N

za,i = 1 ∀a ∈ C (2)

ya,i,b,j ≤ za,i ∀a, b ∈ C, ∀i, j ∈ N (3)
ya,i,b,j ≤ zb,j ∀a, b ∈ C, ∀i, j ∈ N (4)
ya,i,b,j ≥ za,i + zb,j − 1 ∀a, b ∈ C, ∀i, j ∈ N (5)

∑

a∈S

za,i ≤ 1 ∀S ∈ Sep , ∀i ∈ N (6)

za,i = zb,i ∀i ∈ N , ∀S ∈ Col , ∀a, b ∈ S (7)

Constraints (1) require the components to be hosted on supporting hosts and the
constraints (2) that each component be deployed on exactly one host. The con-
straints (3,4,5) enforce the semantic definition of the z variables. The constraints
(6) encode the separation constraints and (7) the co-location constraints.

Improving the formulation. In the above formulation, the conjunction za,i =
1 ∧ zb,j = 1 is represented twice: once with ya,i,b,j and once with yb,j,a,i. It is
thus possible to use only half the variables in y. In addition, for all components
a ∈ C and nodes i, j ∈ N , i �= j ⇒ ya,i,a,j = 0, since component a cannot
be deployed on nodes i and j simultaneously. Moreover, hi,i = 0 and therefore
all the terms on the diagonal can be removed from the objective function. The
objective function thus only needs to feature variables ya,i,b,j such that a ≺ b,
where ≺ is a total ordering relation on C.

5 The CP Model

We now review a Comet program for the ESDSDP shown in Figure 2.

The Model. The model is depicted in lines 1–25 in Figure 2. The data dec-
larations are specified in lines 2–8 and should be self-explanatory. The decision
variables are declared in line 9 and are the same as in the model presented
in Section 3: variable x[c] specifies the host of component c and its domain is
computed from the support matrix s.

The objective function is specified in line 10 and eliminates the diagonal el-
ements (since hi,i = 0 for every i ∈ N). The CP formulation features a two-
dimensional element constraint since the matrix h is indexed by variables. Lines
12-15 state the co-location constraints: for each set S (line 12), an element c1 ∈ S
is selected (randomly) and the model imposes the constraint xc1 = xc2 for each
other elements c2 in S. Lines 16-17 state the separation constraints for every set
in Sep using alldifferent constraints. The onDomains annotations indicate that
arc-consistency must be enforced on the equations and alldifferent constraints.

Consider the pruning performed by the objective function when an upper
bound is available. In Comet, a multi-dimensional element constraint is imple-
mented in terms of a table T containing all the tuples 〈a, b, ha,b〉 for (a, b ∈ C).

194 L. Michel et al.

1 Solver<CP> cp();
2 range C = ...; // The Components
3 range N = ...; // The Hosts
4 int[,] s = ...; // The supports matrix
5 int[,] f = ...; // The frequency matrix
6 int[,] h = ...; // The hops matrix
7 set{set{int}} Sep = ...; // The separation sets
8 set{set{int}} Col = ...; // The co−location sets
9 var<CP>{N} x[c in C](cp,setof(n in N) (s[c,n] == 1));

10 minimize<cp> sum(a in C,b in C: a != b) f[a,b] ∗ h[x[a],x[b]]
11 subject to {
12 forall(S in Col)
13 select(c1 in S)
14 forall (c2 in S: c1 != c2)
15 cp.post(x[c1] == x[c2],onDomains);
16 forall(S in Sep)
17 cp.post(alldifferent(all(c in S) x[c]),onDomains);
18 } using {
19 while (!bound(x)) {
20 selectMax(i in C: !x[i].bound(), j in C)(f[i,j])
21 tryall<cp>(n in N) by (min(l in N: x[j].memberOf(l)) h[n,l])
22 cp.post(x[i] == n);
23 onFailure cp.post(x[i] != n);
24 }
25 }

Fig. 2. The Constraint-Programming Model in Comet

Comet creates a variable σa,b for each term hxa,xb
in the objective and imposes

(xa, xb, σa,b) ∈ T

on which it achieves arc consistency. The objective then becomes
∑

a∈C

∑

b∈C

fa,b · σa,b.

The Search Procedure. The search procedure is depicted in lines 19–24. It is
a variable labeling with dynamic variable and value orderings. Lines 20–23 are
iterated until all variables are bound (line 19) and each iteration nondeterminis-
tically assigns a variable x[i] to a host n (lines 21–23). The variable and value
orderings are motivated by the structure of the objective function

∑

i∈C

∑

j∈C

fi,j · hxi,xj .

In the objective, the largest contributions are induced by assignments of compo-
nents i and j that are communicating heavily and are placed on distant hosts.
As a result, the variable and value ordering are based on two ideas:

Optimal Deployment of Eventually-Serializable Data Services 195

Fig. 3. Instance HYPER16: Deploying 18 Components on a 16-Node Hypercube

1. Assign first a component i whose communication frequency f [i, j] with a
component j is maximal (line 20);

2. Try the hosts for component i in increasing number of hops required to
communicate with component j (line 21).

The variable selection thus selects first components with the heaviest (single)
communications, while the value selection tries to minimize the number of hops.

6 Experimental Results

The experimental results on the ESDSDP are reported for both the MIP and
CP model. We first describe the benchmarks and then present the results.

6.1 The Benchmarks

The models are evaluated on a collection of synthetic benchmarks that are rep-
resentative of realistic proprietary instances [1]. The benchmarks cover instances
with different configurations of software components and different hardware ar-
chitectures. All instances, which are available upon request, have from 12 to 18
software modules, and the hardware platforms range from 14 to 16 machines with
2 to 4 front-ends. In particular, Figure 3 depicts instance HYPER16 which deploys
18 components on an hypercube, while Figure 4 depicts instance SCSS2SNUFE.

Table 1 gives a more detailed description of the instances. For each benchmark,
it gives the number of hosts and components, the separation and co-location
constraints, the size of the search space and the hardware and software configu-
rations. The specification 3:6S:3FE:4C indicates that there are three separation
sets, one for the six replicas, one for the 3 front-ends, and one for the 4 clients.
The hardware setups named H1 through H5 are specified as follows.

H1 is the hardware platform depicted in Figure 1.
H2 is a simple extension of H1 with a fifth client connected to the fifth server.
H3 is a network with 10 servers on two subnets and 1 server (machine 8) acting

as a gateway between the subnets. Each subnet is arbitrated by a switch.
The four clients are connected to the first 4 servers on the first subnet.

H4 is based on an 8-node hypercube with 7 extra machines connected by a
directed link to a single vertex of the hypercube (so the degrees of 7 vertices
of the hypercube are 4 and the last vertex has a degree of 3).

H5 is the 16-node hypercube depicted in Figure 3.

196 L. Michel et al.

c1 c2 c3 c4

fe1 fe2

s1 s2

s4s3

s5 s6

5 2 6 4

2 5

5
4 1

10 10

0 1 2 3

4 5 6 7

9 10 11 12

8

Fig. 4. Instance SCSS2SNUFE: A Deployment on Two Subnets

The software configurations named S1 through S3 are specified as follows.

S1 is the architecture depicted in Figure 1.
S2 is identical to S1. However, clients can communicate with more than one

front-end and front-ends communicate with several replicas as well.
S3 is a scaled-up version of S2 and it is shown in Figure 3.

Table 1. High-Level Descriptions of the Benchmarks

Bench #N #C S T SearchSpace Hardware Software

SIMPLE2 14 12 1:6S 0 43 · 107 H1 S1

SIMPLE1 14 12 1:6S 0 43 · 108 H1 S1

SIMPLE0 14 12 1:6S 0 43 · 109 H1 S1

fe3c5pc 14 14 2:6S:3FE 0 44 · 1010 H1 S1

fe3c5pc5 15 14 2:6S:3FE 0 44 · 1010 H2 S1

fe3c5sun 14 14 2:6S:3FE 0 43 · 1011 H1 S1

fe3c6pc5 15 15 2:6S:3FE 0 55 · 1010 H2 S1

fe3c7pc5 15 16 2:6S:3FE 0 55 · 1011 H2 S1

fe3c7pc5CS 15 16 3:6S:3FE:4C 0 55 · 1011 H2 S1

fe3c7pc5CST 15 16 3:6S:3FE:4C 1:2C 55 · 1011 H2 S1

fe3dist 14 13 2:6S:3FE 0 43 · 1010 H1 S1

SCSS1SNUFE 14 12 2:6S:4FE 0 43 · 123 · 106 H1 S2

SCSS2SNUFE 14 12 2:6S:4FE 0 43 · 123 · 106 H3 S2

SCSS2SNCFE 14 12 2:6S:4FE 0 43 · 109 H3 S2

HYPER8 15 18 2:6S:4FE 0 56 · 1012 H4 S3

HYPER16 16 18 2:6S:4FE 0 56 · 1012 H5 S3

6.2 The MIP Model

We ran the MIP model using CPLEX version 11 on an AMD Athlon64 at 2Ghz
with 2 gigabytes of RAM. Various attempts were made to find the best settings
for CPLEX. Changing the variable branching heuristic to use the coefficients of
the objective function (set mip ordertype 1 in the interactive solver) seems
to deliver the best performance. CPLEX then finds the optimal solution early
on, in general, contrary to the default settings. All times are reported in seconds.

Optimal Deployment of Eventually-Serializable Data Services 197

Table 2. Experimental Results for the MIP Model

Bench Tend v10.1 Tend v11.0 Topt(s) #Nodes MTS #R #C Gap
SIMPLE2 6 4 2 68 8834 3070 61.34%

SIMPLE1 30 1420 247 4238 2.58 11295 3900 25.77%

SIMPLE0 4466 18 12 502 14056 4830 38.49%

fe3c5pc 30576 5091 1717 22741 25.04 18442 6312 39.79%

fe3c5pc5 6813 5407 960 26360 30.59 19804 6770 37.85%

fe3c5sun 17904 7877 210 29216 33.94 20458 6990 88.50%

fe3c6pc5 85832 10556 507 35901 41.54 21605 7375 78.21%

fe3c7pc5 186731 14712 312 26818 34.38 25356 8635 70.50%

fe3c7pc5CS 43788 44677 387 81673 116.00 25356 8635 67.82%

fe3c7pc5CST 51953 6154 480 51223 66.44 25290 8610 64.50%

fe3dist 4584 4105 3100 33889 34.62 17097 5860 15.44%

SCSS1SNUFE 41865 844 135 16350 14.73 17492 5994 70.08%

SCSS2SNUFE 7750 1624 90 32846 29.82 17492 5994 83.33%

SCSS2SNCFE 2583 3026 1551 72711 55.20 14048 4830 26.12%

HYPER8 79150 53906 51381 124918 190.95 31583 10725 5.82%

Table 2 reports the results for the MIP model. Column Tend reports the run-
ning times (in seconds) to find the optimal solution and prove optimality. Column
Topt reports the times to find the optimal solutions. Column #Nodes reports the
number of nodes in the branch & bound tree, column MTS gives the peak size of
the branch & bound tree (in megabytes), columns #R and #C give the number
of rows and columns after presolve, and column Gap returns the optimality gap
as a percentage of the optimal solution when it is is found. All the values are for
v11 (the very first column reports the runtime of v10.1).

Overall, the results indicate that optimal solutions can be found in reasonable
time (except when the network topology is an hypercube) and that optimality
proofs require significant computational resources. More precisely, the computa-
tional results can be summarized as follows.
1. CPLEX v11.0 delivers solutions faster than v10.1 and the improvement is

noticeable (a few instances are worse though). The changes are dependent
on the instances and sometime lead to a 200-fold reduction in the number of
explored nodes. For most instances this reduction translates into improve-
ments for the runtime by up to one order of magnitude (some instances do
not benefit at all or get a little worse).

2. On the FExCySz instances, the solver (v10.1) finds an optimum relatively
quickly (from 20 to 705 seconds) but the proofs of optimality are very costly.

3. On the SCSSx instances, the MIP solver also finds optimal solutions reason-
ably quickly. The proof of optimality takes significant time when only one
subnet is used. It becomes significantly faster (by about a factor 6) when
two subnets are used, probably because the linear-programming relaxation
recognizes the higher communication costs for hosts on different subnets.

4. On the HYPERx instances, the MIP solver has great difficulties and only
solves the smallest instance. It took slightly more than 7 1

2 hours to obtain
the optimal solution on HYPER8 and almost 22 hours to prove its optimality.

198 L. Michel et al.

Table 3. Experimental Results for the CP Model

Bench Tend #CHPT Topt

SIMPLE2 0.23 2510 .19
SIMPLE1 1.38 15408 .19
SIMPLE0 7.75 87491 .19
fe3c5pc 2.76 14597 .19
fe3c5pc5 4.64 24130 .22
fe3c5sun 6.29 30621 .20
fe3c6pc5 3.54 18547 .20
fe3c7pc5 7.83 35726 .20

Bench Tend #CHPT Topt

fe3c7pc5CS 7.77 35312 .20
fe3c7pc5CST 13.68 70495 .20
fe3dist 4.16 29750 .19
SCSS1SNUFE 43.34 392628 .19
SCSS2SNUFE 66.43 380117 49.82
SCSS2SNCFE 50.83 322472 36.04
HYPER8 65.07 123213 8.06
HYPER16 309.46 513051 254.4

5. The MIP solver explores a large number of nodes on these instances, takes
significant memory, and exhibits large optimality gaps. The linear relaxation
is not particularly strong, which explains the large search tree.

Although they highlight the computational progress in MIP solvers, these results
are quite sobering. Indeed, the MIP solver took 4,466 seconds for proving the
optimality of the instance discussed in Section 2 after obtaining the optimal
solution in about 20 seconds. This instance does not seem particularly difficult,
since its software communication patterns are rather simple and well-structured.

6.3 The CP Model

Table 3 reports the results for the CP model with Comet 0.07 (executing on an
Intel Core at 2Ghz with 2 Gigabytes of RAM). Column Tend gives the time in
seconds to find the optimum and prove optimality, column #Chpt reports the
number of choice points and column Topt reports the time in seconds to find the
optimum. Several observations should be conveyed about these results.

1. The CP model dramatically outperforms the MIP model with speedup fac-
tors ranging from 121 on SIMPLE2 to 1, 209 on HYPER8. The number of search
nodes is orders of magnitude smaller for CP, showing the significant pruning
obtained by the CP solver compared to the MIP solver.

2. On the FExCySz instances, the CP solver finds the optimal solutions and
proves optimality in less than 14 seconds.

3. On the SCSSx instances, the CP solver also finds the optimal solutions and
proves optimality in less than 67 seconds. Interestingly, having several sub-
nets does not seem to help the CP solver as far as computation times are
concerned, although the number of choice points decreases.

4. On the HYPERx instances, the CP solver finds the optimum and proves opti-
mality in less than 4 minutes. These instances are more challenging (as they
were for the MIP solver) but the computation times remain reasonable.

5. The instances HYPERx and SCSSx are hard on two counts: to find the optimum
and to prove optimality. SCSS1x is the only exception which indicates that
the network topology significantly impacts the search.

Optimal Deployment of Eventually-Serializable Data Services 199

Table 4. The Value of Arc Consistency for the CP Model

Algo CP-BC CP-AC

Bench Tend #Chpt Tend #Chpt
SIMPLE2 1.2 7582 0.2 2510
SIMPLE1 6.1 46874 1.4 15408
SIMPLE0 37.2 307365 7.7 87491
fe3c5pc 94.8 748118 2.8 14597
fe3c5pc5 639.9 4705378 4.6 24130
fe3c5sun 166.3 1336353 6.2 30621
fe3c6pc5 1039.2 7238665 3.5 18547
fe3c7pc5 2107.1 14M 7.8 35726

Algo CP-BC CP-AC

Bench Tend #Chpt Tend #Chpt
fe3c7pc5CS 1916.5 12M 7.8 35312
fe3c7pc5CST 1286.4 8.5M 13.7 70495
fe3dist 93.6 839781 4.2 29750
SCSS1SNUFE 62.8 482601 43.3 392628
SCSS2SNUFE 60.4 442373 66.4 380117
SCSS2SNCFE 30.4 246228 50.8 322472
HYPER8 7653.0 34M 65.0 123213
HYPER16 34570.9 157M 237.5 513051

Note that the simple instance discussed in Section 2 now requires less than
8 seconds for finding the optimal and proving its optimality (instead of 4,466
seconds for the MIP solver). This remains sobering given the simplicity of that
particular instance but it is perhaps reassuring that more complex FExCySz
instances (from a visual standpoint) require roughly the same time.

The Value of Arc-Consistency. The CP model presented in this paper is
quite elegant since it enforces arc consistency on all constraints and the objective
function.1 One may wonder whether arc consistency is critical in ESDSDPs or
whether a weaker form of consistency is sufficient. Table 4 depicts the results
when only bound reasoning is performed on the objective. The second and the
third column report the results of the CP solver when bound consistency is
enforced on the objective, while the fourth and the fifth columns reproduce those
in Table 3. The experimental results show a dramatic loss in performance when
arc consistency is not used. On some benchmarks, the CP model with bound
consistency on the objective becomes about 300 times slower than the model with
arc consistency on the objective. The all-different constraints are less critical and
reverting to a weaker consistency there does not induce significant losses.

Exploiting Value Symmetries. ESDSDPs may feature a variety of symme-
tries, which could be removed to improve performance. Consider the instance
presented in Section 2 and the 10 heavy-duty servers in particular. Four of these
servers are connected through dedicated links to the “light” servers that must
host some of the clients. This creates two classes of heavy-duty servers: those
connected to the light servers and those that are not. Moreover, the heavy-duty
servers 6 − 10 are fully interchangeable in that any permutation of these servers
in a solution would also produce a solution. Techniques for removing these sym-
metries during search are well-known (see, for instance, [17]).

Figure 5 illustrates how to enhance the search procedure presented earlier with
symmetry breaking for all instances except the hypercube networks (the inter-
node distances –hops– reduce the potential symmetries and are more difficult
1 As traditional, the solver dynamically adds new constraints whenever a new solution

is produced, forcing the objective function to improve upon the best known solution.

200 L. Michel et al.

1 while (!bound(x)) {
2 selectMax(i in C: !x[i].bound(), j in C)(f[i,j]) {
3 int L = max(firstSym,1 + max(s in C: x[s].bound()) x[s].getMin());
4 tryall<cp>(n in N: n <= L) by (min(l in N: x[j].memberOf(l)) h[n,l])
5 cp.post(x[i] == n);
6 onFailure cp.post(x[i] != n);
7 }
8 }

Fig. 5. The Search Procedure with Value Symmetry Breaking

Table 5. The Impact of Value Symmetry Breaking

Algo CP+SYM CP

Bench Tend #C Tend #C

fe3c7pc5 2.21 8628 7.83 35726
fe3c7pc5CS 2.07 7949 7.77 35312
fe3c7pc5CST 3.03 13654 13.68 70495
fe3dist 0.31 1708 4.16 29750

Algo CP+SYM CP

Bench Tend #C Tend #C

SCSS1SNUFE 3.24 20805 43.34 392628
SCSS2SNUFE 14.74 71692 66.43 380117
SCSS2SNCFE 8.48 48740 50.83 322472

to exploit). For simplicity, we take the convention that the servers are divided
into two classes: 1..firstSym-1 (non-interchangeable servers) and firstSym..|C|
(interchangeable servers) (It is easy to generalize these conventions by manipu-
lating sets when there are more classes of interchangeable servers.) In the simple
instance, firstSym = 6. Line 3 determines the possible hosts for component i:
these are the already used hosts (the max expression) and at most one new server
in firstSym..|C|. The outer max ensures that all the servers up to firstSym are
considered, since these are not interchangeable.

Table 5 depicts the results on the larger instances in which there are inter-
changeable heavy servers. The second and the third column report the results
of the CP solver with symmetry breaking while the fourth and the fifth columns
reproduce the standard results from Table 3. The experimental results show nice
improvements, including speedups close to 13.5 on some instances. The ability
to break symmetries during search is important here to avoid interfering with
the search heuristics. All these instances (which do not include the hypercube
instances) are now solved optimally in less than 15 seconds.

Note that there are potentially many other forms of symmetries in ESDSDPs
which have not been exploited. For instance, in the simple ESDSDP presented
earlier, the software components s3, . . . , s6 are symmetric, revealing some vari-
able symmetries. Similarly, the hardware pairs (PC-i,Heavy-Servers-i) are sym-
metric. We did not make any effort to remove these symmetries since they are
instance-dependent and were not necessary to solve the CP model effectively.

Parallel Computing. Since Comet supports transparent parallelism [14], we
evaluated the performance of the CP model with a 4 processors SMP machine
on the hypercube instances. The results in Table 6 exhibit linear speedups.

Optimal Deployment of Eventually-Serializable Data Services 201

Table 6. The Impact of Parallelism (each value is an average over 5 runs)

Bench 1 2 3 4

HYPER8 50.54 24.46 16.58 12.79

Bench 1 2 3 4

HYPER16 198.43 100.71 65.53 48.28

7 Conclusion

In distributed systems, Eventually-Serializable Data Services (ESDS) support
data replication and reduce the communication costs to maintain consistency
between the replicas by allowing the users of the service to take advantage of the
semantics of the sequential data types to relax consistency for certain operations
while ensuring eventual consistency. Once ESDS protocols and algorithms have
been designed and formally verified, they are deployed on specific architectures.
More precisely, in ESDS deployments, a collection of communicating software
components must be mapped onto a physical architecture to minimize the com-
munication costs while preserving the safety of the ESDS service. The ESDS
deployment problem was considered in the late 1990s, but practical instances
could not be solved optimally at the time by state-of-the-art MIP solvers.

This paper reconsidered the deployment problem in ESDS, presented the tra-
ditional MIP model, and proposed a CP model. The models were evaluated
experimentally on synthetic instances capturing the sizes and properties of ac-
tual ESDS. The experimental results indicate that MIP solvers are now capable
of solving ESDS deployment problems, although these applications remain ex-
tremely challenging. In particular, the optimality gap is substantial for the MIP
model, which gives rise to very large search trees. The CP model brings orders
of magnitude improvements in performance over the MIP model; it returns opti-
mal solutions and proves optimality within a couple of minutes in the worst-case
and within 15 seconds in general. The CP model enforces arc consistency on all
different and multi-dimensional element constraints, which is critical for good
performance. The benefits of symmetry breaking and parallelism were also stud-
ied. Symmetry breaking brings significant speedups (up to a factor 13), while
parallel computing produces linear speedups.

Future work will exploit the structure of ESDS deployments more finely, as
these problems often exhibit some regularities either in the underlying hardware
or in the software components. Given the improvements in obtaining optimal
solutions, it makes sense to explore a portfolio of algorithms that includes a
CP model for the on-line deployment optimization of dynamic reconfigurable
distributed data services such as Rambo.

Acknowledgements

This work was partially supported through the following NSF awards:
DMI-0600384, IIS-0642906 and CCF-0702670 as well as an ONR award
N000140610607.

202 L. Michel et al.

References

1. Aguilera, M.: Hewlett-Packard, Personal communication (2007)
2. Bastarrica, M., Demurjian, S., Shvartsman, A.: Software architectural specification

for optimal object distribution. In: SCCC 1998: Proc. of the XVIII Intl. Conf. of
the Chilean Computer Science Society, Washington, DC, USA (1998)

3. Bastarrica, M.C.: Architectural specification and optimal deployment of distributed
systems. PhD thesis, University of Connecticut (2000)

4. Behrmann, G., David, A., Larsen, K., Möller, O., Pettersson, P., Yi, W.: Uppaal -
present and future. In: Proceedings of the 40th IEEE Conference on Decision and
Control (CDC 2001), pp. 2881–2886 (2001)

5. Cheiner, O., Shvartsman, A.: Implementing an eventually-serializable data service
as a distributed system building block. Networks in Distributed Computing 45,
43–71 (1999)

6. Fekete, A., Gupta, D., Luchangco, V., Lynch, N., Shvartsman, A.: Eventually-
serializable data services. In: PODC 1996: Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pp. 300–309 (1996)

7. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO II: Rapidly reconfigurable
atomic memory for dynamic networks. In: DSN, pp. 259–268. IEEE Computer
Society Press, Los Alamitos (2003)

8. IETF. Domain name system, rfc 1034 and rfc 1035 (1990)
9. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O

Automata, Synthesis Lectures in Computer Science. Morgan & Claypool Publish-
ers, San Francisco (2006)

10. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

11. Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic memory service
for dynamic networks. In: Proceedings of the 16th International Symposium on
Distributed Computing, pp. 173–190 (2002)

12. Lynch, N., Tuttle, M.: An introduction to Input/Output Automata. CWI-
Quarterly 2(3), 219–246 (1989)

13. Lynch, N.A., Garland, S., Kaynar, D., Michel, L., Shvartsman, A.: The Tempo
Language User Guide and Reference Manual. VeroModo Inc. (December 2007),
http://www.veromodo.com

14. Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs trans-
parently. In: Proceedings of the 13th International Conference on the Principles
and Practice of Constraint Programming (CP 2007), Providence, RI (2007)

15. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

16. Saito, Y., Frølund, S., Veitch, A.C., Merchant, A., Spence, S.: Fab: building dis-
tributed enterprise disk arrays from commodity components. In: Mukherjee, S.,
McKinley, K.S. (eds.) ASPLOS, pp. 48–58. ACM Press, New York (2004)

17. Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Tractable symmetry break-
ing for CSPs with interchangeable values. In: International Joint Conference on
Artificial Intelligence (IJCAI 2003) (2003)

http://www.veromodo.com

Counting Solutions of Knapsack Constraints

Gilles Pesant and Claude-Guy Quimper

Département de génie informatique et génie logiciel
École Polytechnique de Montréal

C.P. 6079, succ. Centre-ville
Montreal, Canada H3C 3A7

pesant@crt.umontreal.ca, claude-guy.quimper@polymtl.ca

Abstract. This paper furthers the recent investigation of search heuris-
tics based on solution counting information, by proposing and evaluat-
ing algorithms to compute solution densities of variable-value pairs in
knapsack constraints. Given a domain consistent constraint, our first
algorithm is inspired from what was proposed for regular language mem-
bership constraints. Given a bounds consistent constraint, our second
algorithm draws from discrete uniform distributions. Experiments on
several problems reveal that simple search heuristics built from the in-
formation obtained by these algorithms can be very effective.

1 Introduction

Recent work on search heuristics using information about the number of solu-
tions of constraints has shown encouraging results to solve constraint satisfaction
problems [4,8]. Working at the level of individual constraints, it asks not only
whether there exists a solution in which variable x takes value d, which corre-
sponds to the familiar concept of consistency, but also how many of the solutions
feature that particular assignment. Such an approach requires efficient ways to
answer that question for each type of constraint commonly found in constraint
programs. This paper examines knapsack constraints, present in many problems.

The knapsack(x, c, �, u) constraint holds if

� ≤ cx ≤ u

where c = (c1, c2, . . . , cn) is an integer row vector, x is a column vector of finite
domain variables (x1, x2, . . . , xn)T with xi ∈ Di, and � and u are integers. To
be interpreted as a knapsack, the integer values involved (including those in the
finite domains) are non negative. We will come back to this restriction in Section
5. We assume that l and u are finite as they can always be set to the smallest
and largest value that cx can take.

To prepare us to manipulate information on the number of solutions of knap-
sack constraints, we recall some definitions and notation from [4,8].

Definition 1 (solution count). Given a constraint γ(x1, . . . , xk) and respec-
tive finite domains Di 1≤i≤k, let #γ(x1, . . . , xk) denote the number of solutions
of constraint γ, called its solution count.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 203–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 G. Pesant and C.-G. Quimper

Definition 2 (solution density). Given a constraint γ(x1, . . . , xk), respective
finite domains Di 1≤i≤k, a variable xi in the scope of γ, and a value d ∈ Di, we
will call

σ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xk)

#γ(x1, . . . , xk)

the solution density of pair (xi, d) in γ. It measures how often a certain assign-
ment is part of a solution.

In the rest of the paper, Section 2 presents the counting algorithm for knapsack
constraints on which domain consistency is enforced, Section 3 presents another
counting algorithm for bounds consistent knapsack constraints, and Section 4
reports several experiments. Final comments are given in Section 5.

2 Counting with Domain Consistent Knapsacks

In [6], Trick proposes a filtering algorithm for knapsack constraints that relies
on a graph whose structure is very similar to that of the regular constraint
[3]. He notes that every path in that graph corresponds to a solution and that
counting the number of solutions is easily obtained through a recursion without
the need to enumerate these solutions. Not surprisingly then, the computation
of solution counts and solution densities for knapsack constraints follows quite
directly from the work on the regular constraint.

We start from the reduced graph described in [6], which is a layered directed
graph G(V, A) with a vertex vi,b ∈ V for 1 ≤ i ≤ n and 0 ≤ b ≤ u whenever

∀ j ∈ [1, i], ∃ dj ∈ Dj such that
i∑

j=1

cjdj = b

and

∀ j ∈ (i, n], ∃ dj ∈ Dj such that � − b ≤
n∑

j=i+1

cjdj ≤ u − b,

and an arc (vi,b, vi+1,b′) ∈ A whenever

∃ d ∈ Di+1 such that ci+1d = b′ − b.

We define the following two recursions to represent the number of incoming and
outgoing paths at each node.

For every vertex vi,b ∈ V , let #ip(i, b) denote the number of paths from vertex
v0,0 to vi,b:

#ip(0, 0) = 1
#ip(i + 1, b′) =

∑

(vi,b,vi+1,b′)∈A

#ip(i, b), 0 ≤ i < n

Counting Solutions of Knapsack Constraints 205

Let #op(i, b) denote the number of paths from vertex vi,b to a vertex vn,b′ with
� ≤ b′ ≤ u.

#op(n, b) = 1
#op(i, b) =

∑

(vi,b,vi+1,b′)∈A

#op(i + 1, b′), 0 ≤ i < n

The total number of paths (i.e. the solution count) is given by

#knapsack(x, c, �, u) = #op(0, 0)

in time linear in the size of the graph even though there may be exponentially
many of them. The solution density of a variable-value pair (xi, d) is given by

σ(xi, d, knapsack) =

∑
(vi−1,b,vi,b+cid)∈A #ip(i − 1, b) · #op(i, b + cid)

#op(0, 0)
.

0

1

4

3

2

5

7

6

8

0 1 2 3 4

 1;9 1;2

 1;3

 2;4

 1;4

 1;10

 1;3 2;2

 1;1 3;1

 3;2

 2;2

 3;1

 6;1

 6;1

 5;1

 1;22

3;2 5;1

i

b

Fig. 1. Reduced graph for knapsack constraint 5 ≤ 3x1 + x2 + 2x3 + x4 ≤ 8 with
D1 = {0, 1, 2}, D2 = {0, 1, 3}, D3 = {0, 1, 2}, D4 = {1, 2}. Vertex labels represent the
number of incoming and outgoing paths.

In Figure 1, the left and right labels inside each vertex give the number of
incoming and outgoing paths for that vertex, respectively. Table 1 reports the
solution densities for every variable-value pair.

The time required to compute these recursions is related to the number of
arcs, which is in O(nu max1≤i≤n{|Di|}). Then each solution density computes
a summation over a subset of the arcs but each arc of the graph is involved in
at most one such summation, so the overall time complexity of computing every
solution density is O(nu max1≤i≤n{|Di|}) as well.

206 G. Pesant and C.-G. Quimper

Table 1. Solution densities for the example of Fig. 1

variable
value x1 x2 x3 x4

0 9/22 8/22 9/22 –
1 10/22 8/22 7/22 11/22
2 3/22 – 6/22 11/22
3 – 6/22 – –

3 Counting with Bounds Consistent Knapsacks

Knapsack constraints, indeed most arithmetic constraints, have traditionally
been handled by enforcing bounds consistency, a much cheaper form of inference.
In some situations, we may not afford to enforce domain consistency in order to
get the solution counting information we need to guide our search heuristic. Can
we still retrieve such information, perhaps not as accurately, from the weaker
bounds consistency?

Consider the variable x with domain D = [a, b]. Each value in D is equiprob-
able. We associate to x the discrete random variable X which follows a discrete
uniform distribution with probability mass function f(v), mean μ = E[X], and
variance σ2 = V ar[X].

f(v) =
{ 1

b−a+1 if a ≤ v ≤ b

0 otherwise
(1)

μ =
a + b

2
(2)

σ2 =
(b − a + 1)2 − 1

12
(3)

To find the distribution of a variable subject to a knapsack constraint, one
needs to find the distribution of a linear combination of uniformly distributed
random variables. Lyapunov’s central limit theorem allows us to approximate
the distribution of such a linear combination.
Theorem 1 (Lyapunov’s central limit theorem). Consider the indepen-
dent random variables X1, . . . , Xn. Let μi be the mean of Xi, σ2

i be its variance,
and r3

i = E[|Xi − μi|3] be its third central moment. If

lim
n→∞

(
∑n

i=1 r3
i)

1
3

(
∑n

i=1 σ2
i)

1
2

= 0,

then the random variable S =
∑n

i=1 Xi follows a normal distribution with mean
μS =

∑n
i=1 μi and variance σ2

S =
∑n

i=1 σ2
i .

The probability mass function of the normal distribution with mean μ and vari-
ance σ2 is the Gaussian function:

ϕ(x) =
e−

(x−μ)2

2σ2

σ
√

2π
(4)

Counting Solutions of Knapsack Constraints 207

Note that Lyapunov’s central limit theorem does not assume that the variables
are taken from identical distributions. This is necessary since variables with
different domains have different distributions.

Lemma 1 defines an upper bound on the third central moment of the ex-
pression kX where k is a positive coefficient and X is a uniformly distributed
random variable.
Lemma 1. Let Y be a discrete random variable equal to kX such that k is a
positive coefficient and X is a discrete random variable uniformly distributed
over the interval [a, b]. The third central moment r3 = E[|Y − E[Y]|3] is no
greater than k3(b − a)3.

Proof. The case where a = b is trivial. We prove for b−a > 0. The proof involves
simple algebraic manipulations from the definition of the expectation.

r3 =
kb∑

i=ka

|i − E[Y]|3f(i) (5)

=
b∑

j=a

|kj − kE[X]|3f(j) (6)

= k3
b∑

j=a

∣∣∣∣j − a + b

2

∣∣∣∣
3 1

b − a + 1
since k > 0 (7)

=
k3

b − a + 1

⎛

⎝
a+b
2∑

j=a

(
a + b

2
− j

)3

+
b∑

j= a+b
2

(
j − a + b

2

)3
⎞

⎠ (8)

=
k3

b − a + 1

⎛

⎝
b−a
2∑

j=0

j3 +

b−a
2∑

j=0

j3

⎞

⎠ (9)

≤ 2k3

b − a

b−a
2∑

j=0

j3 since b − a > 0 (10)

Let m = b−a
2 .

r3 ≤ k3

m

m∑

j=0

j3 (11)

≤ k3

m

(
1
4
(m + 1)4 − 1

2
(m + 1)3 +

1
4
(m + 1)2

)
(12)

≤ k3

m

(
m4

4
+

m3

2
+

m2

4

)
(13)

≤ k3

m

(
m4

4
+ m4 + m4

)
since m ≥ 1

2 (14)

≤ 9
4
k3m3 (15)

208 G. Pesant and C.-G. Quimper

Which confirms that r3 ≤ 9
32k3(b − a)3 ≤ k3(b − a)3. �	

Lemma 2 defines the distribution of a linear combination of uniformly distributed
random variables.

Lemma 2. Let Y =
∑n

i=1 ciXi be a random variable where Xi is a discrete
random variable uniformly chosen from the interval [ai, bi] and ci is a non-
negative coefficient. When n tends to infinity, the distribution of Y tends to a
normal distribution with mean

∑n
i=1 ci

ai+bi

2 and variance
∑n

i=1 c2
i

(bi−ai+1)2−1
12 .

Proof. Let Yi = ciXi be a random variable. We want to characterize the dis-
tribution of

∑n
i=1 Yi. Let mi = bi−ai

2 . The variance of the uniform distribu-

tion over the interval [ai, bi] is σ2
i = (bi−ai+1)2−1

12 = (mi+ 1
2)2

3 − 1
12 . We have

V ar[Yi] = c2
i V ar[Xi] = c2

i σ
2
i . Let r3

i be the third central moment of Yi. By
Lemma 1, we have r3

i ≤ c3
i (bi − ai)3. Let L be the term mentioned in the condi-

tion of Lyapunov’s central limit theorem:

L = lim
n→∞

(∑n
i=1 r3

i

) 1
3

(
∑n

i=1 c2
i σ

2
i)

1
2

(16)

Note that the numerator and the denominator of the fraction are non-negative.
This implies that L itself is non-negative. We prove that L ≤ 0 as n tends to
infinity.

L ≤ lim
n→∞

(∑n
i=1 8c3

i m
3
i

) 1
3

(∑n
i=1 c2

i

(
(mi+ 1

2)2

3 − 1
12

)) 1
2

(17)

≤ lim
n→∞

(
8

∑n
i=1 c3

i m
3
i

) 1
3

(1
3

∑n
i=1 c2

i m
2
i

) 1
2

(18)

≤ lim
n→∞ 2

√
3 6

√√√√(
∑n

i=1 c3
i m

3
i)

2

(
∑n

i=1 c2
i m

2
i)

3 (19)

≤ lim
n→∞ 2

√
3 6

√ ∑n
i=1

∑n
j=1(cicjmimj)3∑n

i=1
∑n

j=1
∑n

k=1(cicjckmimjmk)2
(20)

Note that in the last inequality, the terms (cicjmimj)3 and (cicjckmimjmk)2

are of the same order. However, there are n times more terms in the denominator
than the numerator. Therefore, when n tends to infinity, the fraction tends to
zero which proves that L = 0 as n tends to zero. By Lyapunov’s central limit
theorem, as n tends to infinity, the expression Y =

∑n
i=1 Yi tends to a nor-

mal distribution with mean E[Y] =
∑n

i=1 ciE[Xi] =
∑n

i=1 ci
ai+bi

2 and variance

V ar[Y] =
∑n

i=1 c2
i V ar[Xi] =

∑n
i=1 c2

i
(bi−ai+1)2−1

12 . �	

Counting Solutions of Knapsack Constraints 209

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 5 10 15 20 25 30 35 40 45 50

de
ns

ity

x

Approximation of a Combination of Uniformly Distributed Random Variables

Fig. 2. The histogram is the actual distribution of the expression 3x + 4y + 2z for
x, y, z ∈ [0, 5]. The curve is the approximation given by the Gaussian curve with mean
μ = 22.5 and variance σ2 = 84.583.

Consider the knapsack constraint � ≤
∑n

i=1 cixi ≤ u. Let xn+1 be a variable
with domain Dn+1 = [�, u]. We obtain xj = 1

cj
(xn+1 −

∑j−1
i=1 cixi −

∑n
i=j+1 cixi).

Some coefficients in this expression might be negative. They can be made positive
by setting c′i = −ci and D′i = [− max(Di), − min(Di)]. When n grows to infinity,
the distribution of xj tends to a normal distribution as stated in Lemma 2. In
practice, the normal distribution is a good estimation even for small values of
n. Figure 2 shows the actual distribution of the expression 3x + 4y + 2z for
x, y, z ∈ [0, 5] and its approximation by a normal distribution.

Given a variable xi subject to a knapsack constraint, Algorithm 1 returns
the assignment xi = v with the highest solution density. The for loop computes
the average mean μi and the variance σ2

i of the uniform distribution associated
to each variable xi. Lines 4 to 5 compute the mean and the variance of the
distribution of xn+1 −

∑n
j=1 cjxj while Lines 6 and 7 compute the mean and

the variance of xi = 1
ci

(xn+1 −
∑i−1

j=1 cjxj −
∑n

j=i+1 cjxj). Since this normal
distribution is symmetric and unimodal, the most likely value ki in the domain
Di is the one closest to the mean μi. The algorithm finds and returns this
value as well as its density di. The density di is computed using the normal
distribution. Since the variable xi must be assigned to a value in its domain, the
algorithm normalizes on Line 9 the distribution over the values in the interval
[min(Di), max(Di)].

Lines 1 through 5 take O(n) time to execute. Line 8 depends on the data
structure used by the solver to encode a domain. We assume that the line
takes O(log |Di|) time to execute. The summation on Line 9 can be computed
in constant time by approximating the summation with Φm,v(max(Di) + 1

2) −
Φm,v(min(Di) + 1

2) where Φm,v is the normal cumulative distribution function
with average m and variance v. The constant 1

2 is added for the continuity
correction. Other lines have a constant running time. The total complexity of
Algorithm 1 is therefore O(n+log |Di|). Note that Line 1 to Line 5 do not depend
on the value of i. Their computation can therefore be cached for subsequent calls

210 G. Pesant and C.-G. Quimper

for j ∈ [1, n] do1

μj ← min(Dj)+max(Dj)
2 ;2

σ2
j ← (max(Dj)−min(Dj)+1)2−1

12 ;3

E ← l+u
2 −

∑n
j=1 cjμj ;4

V ← (u−l+1)2−1
12 +

∑n
j=1 c2

jσ
2
j ;5

e ← E+ciμi
ci

;6

v ← V −c2i σ2
i

c2i
;7

ki ← argmink∈Di
|k − e|;8

di ← 1
v
√

2π
e

− (ki−e)2

2v2 ;9

return 〈xi = ki, di〉10

Algorithm 1. FindDensity([X1, . . . Xn], i) returns the assignment xi = k with

the highest density as well as its density.

to the function over the same knapsack constraint. Using this technique, finding
the variable xi ∈ {x1, . . . , xn} which has an assignment xi = k of maximum
density takes O(

∑n
i=1 log |Di|) time.

A source of alteration of the distribution are values in the interval which are
absent from the actual domain. Bounds consistency approximates the domain
of a variable with its smallest covering interval. In order to reduce the error
introduced by this approximation, one can compute the actual mean and actual
variance of a domain Di on Lines 2 and 3 instead of using the mean and the
variance of the covering interval, at a revised overall cost of O(

∑n
i=1 |Di|).

4 Experiments

We evaluated the usefulness of solution counting information from knapsack
constraints on four types of problems. The first two are benchmarks from the
literature and feature 0-1 knapsack constraints. The third one is a magic square
completion problem, featuring integer knapsack constraints. The last one is in-
spired from the area of rostering and features integer knapsack constraints as
well. These problems were chosen because they are modeled using (almost) only
knapsack constraints, in order to avoid the separate issue of combining heuristic
information from different types of constraints.

A word on the notation used for the search heuristics investigated. The prefix
“Lexico” refers to variable selection according to lexicographic order, whereas
“Dom” refers to variable selection in increasing order of domain size. Keyword
“Random” refers to random value selection. Keyword “MaxSD” refers to vari-
able/value selection in decreasing order of solution density, or solely as a value
selection heuristic if a prefix indicates a particular variable selection heuristic.
Note that densities are considered separately from every constraint. In the case

Counting Solutions of Knapsack Constraints 211

of bounds consistency, keyword “MaxSD+” indicates that the actual mean and
variance were computed from the domains in Algorithm 1.

The experiments were performed with ILOG Solver 5.1 on a Sun Fire 4800
(1.2 GHz cpu, 16 Gb ram, 43 Gb swap) running under SunOS 5.10. Measures
reported for heuristics involving random choices are an average over five runs.

4.1 Market Split Problem

The Market Split Problem was introduced by [2] as a challenge to LP-based
branch-and-bound approaches. An optimization version of the problem exists
but it was originally introduced as a satisfaction problem. An instance consists of
m 0-1 equality knapsack constraints on the same 10(m−1) variables. Even small
instances (4 ≤ m ≤ 6) are surprisingly hard to solve by standard means. We used
the generator from [7], whose resulting instances have the same characteristics
as those used in [6] and [1]. Table 2 reports the performance of three search
heuristics with two levels of consistency on ten instances with m = 4. Note that
heuristics based on domain size do not apply here.

Table 2. Results of a few search heuristics on ten 4-30 Market Split instances generated
from [7]

consistency heuristic backtracks time (sec.)
mean min max mean min max

domain LexicoRandom 245234.2 22770 689261 180.7 17.9 443.9
LexicoMaxSD 93212.6 4634 248324 159.8 8.2 433.6

MaxSD 59870.6 7015 175596 257.3 34.5 630.4

bounds LexicoRandom 5848346.0 20671 19403712 121.3 0.4 396.9
LexicoMaxSD 2463102.0 91989 8647160 116.8 4.4 400.1

MaxSD 12543500.0 2701376 22010947 957.6 209.7 1664.7

With domain consistency. We observe that the MaxSD heuristic, based on the
solution density of variable-value pairs, achieves about a four-fold reduction in
the average number of backtracks compared to a random heuristic (variable
selection is lexicographic but the coefficients of the constraints were randomly
generated), but at the expense of slightly higher runtimes. The number of back-
tracks of LexicoRandom is consistent with what was reported in [6] with the
same domain consistency algorithm for knapsack constraints. The LexicoMaxSD
heuristic uses solution density information only to guide value selection. Since
fewer solution densities are examined (the choice of variable is fixed), the search
heuristic will be faster but probably less accurate as well. Despite a noticeable
increase in the average number of backtracks with respect to MaxSD, the average
runtime improves enough to beat LexicoRandom. The random restart strategy
was tried in combination with the heuristics but it significantly deteriorated
their performance: several instances could not be solved within the one-hour
time limit.

212 G. Pesant and C.-G. Quimper

Table 3. Number of backtracks of a few search heuristics on six multidimensional
knapsack instances. Instances are labeled by their size: “number of variables; number
of constraints”. A cutoff time of one hour was used.

consistency heuristic instance (#vars;#constraints)
6;11 15;11 20;11 28;11 39;6 50;6

domain LexicoRandom 0 10 157 3119 85275 –
LexicoMaxSD 0 2 56 448 39305 –

MaxSD 0 2 40 18 1438 –

bounds LexicoRandom 1 66 729 22052 176615 –
LexicoMaxSD 0 35 376 16937 98993 21532762

MaxSD 0 0 3676 260952 – –

Table 4. Runtime in seconds of a few search heuristics on six multidimensional knap-
sack instances. Instances are labeled by their size: “number of variables; number of
constraints”. A cutoff time of one hour was used.

consistency heuristic instance (#vars;#constraints)
6;11 15;11 20;11 28;11 39;6 50;6

domain LexicoRandom 0.0 0.2 2.2 79.8 912.7 –
LexicoMaxSD 0.0 0.2 1.9 22.8 795.0 –

MaxSD 0.0 0.2 1.4 2.1 57.3 –

bounds LexicoRandom 0.0 0.0 0.0 0.9 5.9 –
LexicoMaxSD 0.0 0.0 0.1 3.1 13.4 3047.7

MaxSD 0.0 0.0 0.9 72.5 – –

With bounds consistency. As expected with this weaker level of consistency, the
number of backtracks is significantly larger than with domain consistency but
most runtimes are reduced as well. The LexicoMaxSD heuristic is the fastest
overall. MaxSD does not perform well here.

4.2 Multidimensional Knapsack Problem

This set corresponds to the six mknap instances used in [5]. The mknap1 set from
the OR-Library, which are optimization problems, are transformed into satis-
faction problems by fixing the objective function to its optimal value, thereby
introducing a 0-1 equality knapsack constraint. The other constraints are up-
per bounded knapsack constraints on the same variables. The instances are of
increasing size.

Tables 3 and 4 report the performance of search heuristics on the six instances.
Among the heuristics tested, only LexicoMaxSD with bounds consistency is able
to solve the last instance within an hour. With domain consistency, we note
a correlation between increased use of exact solution densities and decreased
backtracks and runtimes. Note however that these results are not statistically
very significant because there are only three instances of reasonable size – the
instances were used because they previously appeared in [5]. It is difficult to

Counting Solutions of Knapsack Constraints 213

Table 5. Results of a few search heuristics on twenty 9 × 9 Magic Square completion
instances with about 90% holes. A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom 9362.4 3 354346 27.1 7.2 661.3 1.8
DomMaxSD 694.4 2 3642 23.5 20.6 28.6 –

MaxSD 3095.1 2 50750 27.3 21.4 36.4 –

bounds DomRandom 133931.6 43 3864972 4.4 0.0 123.1 0.4
DomMaxSD 266358.0 34 3159163 12.7 0.1 145.0 1.0

DomMaxSD+ 1258030.0 281 11816592 94.8 0.3 838.6 –
MaxSD 200574.0 34 3148707 27.0 0.1 421.2 1.0

MaxSD+ 161512.0 280 757915 47.8 0.2 224.3 3.0

Table 6. Results of a few search heuristics on twenty 9 × 9 Magic Square completion
instances with about 50% holes. A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom 15679.0 18 341084 72.8 2.2 2020.0 –
DomMaxSD 2442.9 6 16014 14.6 2.3 96.6 –

MaxSD 3102.6 7 17969 19.6 2.6 137.4 –

bounds DomRandom 856060.1 183 17754444 36.3 0.0 744.9 0.2
DomMaxSD 1503090.0 1232 26527968 88.7 0.1 1565.0 –

DomMaxSD+ 236459.0 1023 1257436 20.1 0.1 111.1 –
MaxSD 284006.0 1098 2741124 62.3 0.2 597.1 1.0

MaxSD+ 200094.0 647 1219949 84.9 0.3 402.5 1.0

compare our results to those because in that paper only bounds consistency
was enforced on knapsack constraints. With that same level of consistency, our
heuristics do not perform as well.

4.3 Magic Square Completion Problem

This very old puzzle is built on a square n × n grid and asks that we place
the first n2 integers in the grid so that each row, column and main diagonal
sums up to the same value. A partially filled Magic Square Problem asks for
a solution, if one exists. It can be made harder to solve than the traditional
version starting from a blank grid. This time we have two types of constraints,
2n+2 integer knapsack constraints on n variables and one alldifferent constraint
on n2 variables. Note that the knapsack constraints have unit coefficients. Each
variable ranges over n2 values.

We first generated twenty 9×9 instances with about 10% of the squares al-
ready filled in. Table 5 reports our results. Our heuristics exploiting domain
consistency perform well but with a noticeable computational fixed cost proba-
bly due to the size of the underlying graph, which impacts the solution density

214 G. Pesant and C.-G. Quimper

computation. Despite the fact that these instances seem to have many solutions
(or maybe because of it) — a DomRandom heuristic with bounds consistency solves
almost every instance, often very fast — our heuristics based on discrete uniform
distributions perform worse than DomRandom.

We then generated twenty 9×9 instances with about half of the squares already
filled in. Table 6 reports our results. With domain consistency, all three heuristics
solve every instance but our heuristics perform better both in terms of number of
backtracks and runtime. Our heuristics with bounds consistency require about
two orders of magnitude more backtracks but runtimes that are less than an
order of magnitude longer.

4.4 Cost-Constrained Rostering Problem

This set was constructed for this paper and is inspired from a rostering context.
Here a 25-day schedule is planned for four employees, who each day either work
a two-, three-, five-hour shift, or not at all. Every day, exactly one of each type of
shift must be covered. There is an hourly cost for making someone work, which
varies both across employees and days. For each employee, the total cost must
lie within a certain range. Finally, some employees are unavailable for certain
shifts on certain days.

An employee-centered model for this problem has 100 variables in all (one per
employee and per day), each with domain {0, 2, 3, 5}. There are 25 alldifferent
constraints on four variables each (one for each day). There are four knapsack
constraints on 25 variables each (one for each employee): the integer coefficients
corresponding to the hourly costs are drawn uniformly at random from [0, 9].
Ten unavailabilities exclude some values from the domains. We consider two
variants.

Upper-bounded costs. In this variant, the total cost for each employee is
bounded above by an integer drawn uniformly at random from [240, 260]. This
translates into upper bounded integer knapsack constraints.

Table 7. Results of a few search heuristics on ten rostering instances with upper
bounded costs. A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom 152607.6 0 2653226 197.3 0.3 3280.5 3.0
DomMaxSD 0 0 0 0.6 0.5 0.7 –

MaxSD 0 0 0 0.9 0.8 1.0 –

bounds DomRandom 644552.3 0 10692243 50.8 0.0 862.4 2.0
DomMaxSD 0 0 0 0.0 0.0 0.0 –

DomMaxSD+ 0 0 0 0.0 0.0 0.0 –
MaxSD 0 0 0 0.0 0.0 0.0 –

MaxSD+ 0 0 0 0.1 0.1 0.1 –

Counting Solutions of Knapsack Constraints 215

Table 7 reports the performance of search heuristics on ten feasible instances.
These instances are very easy for our heuristics based on solution densities, either
exact of approximate: every instance is backtrack-free. The DomRandom heuristics
leave a few instances unsolved. Refining variable selection by considering domain
size over dynamic degree did not help DomRandom but adding a random restarts
strategy made it possible to solve every instance, with an average runtime under
a second in the case of DomRandom with bounds consistency.

Exact Costs. In this variant, the total cost for each employee must equal an
integer drawn uniformly at random from [220, 240]. This translates into equal-
ity integer knapsack constraints. Table 8 reports the performance of the search
heuristics on ten feasible instances.

Table 8. Results of a few search heuristics on ten rostering instances with exact costs.
A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom – – – – – – 5.8
DomMaxSD 7.1 0 49 0.3 0.3 0.3 1.0

MaxSD 5.2 0 40 0.4 0.4 0.5 –

bounds DomRandom – – – – – – 5.3
DomMaxSD 232.0 0 1976 0.0 0.0 0.0 1.0

DomMaxSD+ 29.0 0 161 0.0 0.0 0.0 1.0
MaxSD 508.1 0 4930 0.1 0.0 0.5 –

MaxSD+ 89.0 2 560 0.1 0.1 0.2 –

Here heuristic behavior is similar for domain and bounds consistency. Even
with smallest-domain variable selection and domain (or bounds) consistency
enforced on every constraint of the problem, the behavior of the DomRandom
heuristic is very erratic, failing to solve more than half of the instances on average
and exhibiting backtrack numbers ranging from zero to almost three million. As
before, dynamic degree did not help. The addition of a random restarts strategy
on top of DomRandom helps to solve a few more instances but the overall behavior
remains the same. In contrast, our heuristics using solution densities for value
selection perform extremely well and show more robustness: low average and
maximum number of backtracks. Note however that one instance out of the ten
could not be solved by the DomMaxSD heuristic given one hour of computing time
— using solution densities for variable selection as well appears to be more robust
for this problem. A more extensive experiment with 100 similar instances still
gave very few backtracks for the MaxSD heuristic. For the “bounds consistency”
heuristics, there is a noticeable decrease of the number of backtracks when exact
means and variances are computed.

216 G. Pesant and C.-G. Quimper

5 Discussion

We showed how to evaluate the solution density of a set of variables subject to
a knapsack constraint. The first method based on domain consistency computes
the exact solution density. The second method approximates variable domains
with intervals as it is done with bounds consistency. The experiments generally
showed a significant advantage of search heuristics based on such information
both in the number of backtracks and the computation time. The fact that the
increased accuracy of the solution density information is almost always accompa-
nied by a decreased number of backtracks indicates that this is relevant heuristic
information.

However the experimental results so far do not clearly indicate which of the
two algorithms should be used or even when one dominates the other. It is also
unclear yet whether computing the exact mean and variance of a discrete domain
generally helps. We plan to clarify those points in a further investigation. For
the moment, we at least measured the relative error made by Algorithm 1 when
computing solution densities for the Magic Square Completion Problem. On the
instances with 90% holes, we observed a 5% error with exact mean and variance
and a 9% error with approximated mean and variance. On the instances with
50% holes, the error was 30% in the first case and 35% in the other.

We haven’t attempted here any aggregation of the solution density infor-
mation from different constraints beyond simply taking the maximum. A true
assessment of the potential of such an approach to heuristic search must consider
more ways to aggregate. For example, taking the average solution density of a
variable-value pair over the constraints in whose scope it is and choosing the pair
maximizing that average was tried on the multidimensional knapsack instances
and this outperformed the approach of [5].

Note that both solution density algorithms proposed can be easily adapted to
lift the restriction of non-negative coefficients and domain values, at the expense
of a larger graph in the case of the first algorithm. This means that the scope of
this work can be broadened to general linear constraints.

Acknowledgments

We wish to thank the anonymous referees for their excellent comments and
suggestions. Financial support for this research was provided by the Natural
Sciences and Engineering Research Council of Canada.

References

1. Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a System of Linear Diophantine
Equations with Lower and Upper Bounds on the Variables. Math. Op. Res. 25, 427–
442 (2000)

2. Cornuéjols, G., Dawande, M.: A Class of Hard Small 0-1 Programs. INFORMS J.
Computing 11, 205–210 (1999)

Counting Solutions of Knapsack Constraints 217

3. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of
Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

4. Pesant, G.: Counting Solutions of CSPs: A Structural Approach. In: Proc. IJCAI
2005, pp. 260–265. Professional Book Center (2005)

5. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

6. Trick, M.A.: A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints. Annals of Operations Research 118, 73–84 (2003)

7. Wassermann, A.: The Feasibility Version of the Market Split Problem (last consulted
on November 10, 2007),
http://did.mat.uni-bayreuth.de/∼alfred/marketsplit.html

8. Zanarini, A., Pesant, G.: Solution Counting Algorithms for Constraint-Centered
Search Heuristics. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 743–757.
Springer, Heidelberg (2007)

http://did.mat.uni-bayreuth.de/~alfred/marketsplit.html

From High-Level Model to Branch-and-Price

Solution in G12

Jakob Puchinger1, Peter J. Stuckey1, Mark Wallace2, and Sebastian Brand1

1 NICTA Victoria Research Laboratory
Department of Computer Science & Software Engineering

University of Melbourne, Australia
{jakobp,pjs,sbrand}@csse.unimelb.edu.au

2 School of Computer Science and Software Engineering
Monash University, Melbourne, Australia

mgw@mail.csse.monash.edu.au

Abstract. The G12 project is developing a software environment for
stating and solving combinatorial problems by mapping a high-level
model of the problem to an efficient combination of solving methods.
Model annotations are used to control this process. In this paper we ex-
plain the mapping to branch-and-price solving. G12 supports the selec-
tion of specialised sub-problem solvers, the aggregation of identical sub-
problems, automatic disaggregation when required by search, and the
use of specialised branching rules. We demonstrate the benefits of the
G12 framework on three examples: a trucking problem, cutting stock,
and two-dimensional bin packing.

1 Introduction

Combinatorial optimisation problems are easy to state, but hard to solve, and
they arise in a huge variety of applications. Branch-and-price is one of many
powerful methods for solving them. This paper describes how Dantzig-Wolfe
decomposition, column generation and branch-and-price are integrated into the
hybrid optimisation platform G12 [27]. The G12 project is developing a software
environment for stating and solving combinatorial problems by mapping a high-
level model of the problem to an efficient combination of solving methods. We call
such a combination of methods a hybrid algorithm. Because there is no method
for choosing the best way to solve a given problem, we believe the (human)
problem solver must be able to experiment with different hybrid algorithms. To
meet this purpose the G12 project is developing user-controlled mappings from
a high level model to different solving methods. These mappings must satisfy
three conflicting objectives. They must be

– efficient, enabling the human problem solver to tightly control the behaviour
of the algorithm if necessary for performance;

– flexible, allowing plug-and-play between different sub-algorithms;
– easy-to-use and easy-to-change for efficient experimentation with alternative

hybrid algorithms.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 218–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From High-Level Model to Branch-and-Price Solution in G12 219

The mapping to branch-and-price presented in this paper is designed to meet
all three objectives (in reverse order):

– The user can select branch-and-price and control its behaviour by annotating
a high-level model of the problem.

– The generated algorithm can use a separate solver for the subproblem. The
user can control the decomposition and select the subproblem solver by fur-
ther annotations.

– Inefficiencies arising as a result of identical subproblems are avoided by ag-
gregating them, but the user is still enabled to express search control in
terms of variables in the original model. The system also supports specialised
branching rules, allowing fine-grained control of search where necessary.

The G12 platform consists of three major components, the modelling lan-
guage Zinc [12], the model transformation language Cadmium [10], and several
internal and external solvers written and/or interfaced using the general-purpose
programming language Mercury [26]. All solvers and solver instances are spec-
ified in terms of their specific capabilities, i.e. the type of problems they can
solve, the type of information they can return, and how they solve a problem.

On the Mercury level these specifications are described using type classes.
Basic solvers such as a Finite Domain Constraint Programming (FD) solver or a
Linear Programming (LP) solver can be used as building blocks for other solvers.
The column generation and branch-and-price modules use and implement such
solver type classes. This system of pluggable components allows us to quickly
design new hybrid algorithms and to combine existing solvers in innovative ways.

Trucking problem. Consider the following trucking problem, inspired by [5].
We are given N trucks; each truck has a cost and an amount of material it can
load. We are further given T time periods; in each time period a given demand
of material has to be shipped. Each truck also has constraints on usage: in each
consecutive k time periods it must be used at least l and at most u times. The
Zinc model of the problem follows:

Trucking.zinc

int: P; type Periods = 1..P;
int: T; type Trucks = 1..T;
array[Periods] of int: Demand; array[Trucks] of int: Cost;
array[Trucks] of int: Load; array[Trucks] of int: K;
array[Trucks] of int: L; array[Trucks] of int: U;
array[Periods] of var set of Trucks: x;

constraint forall(p in Periods)(sum_set(x[p], Load) >= Demand[p]);

constraint forall(t in Trucks)(
sequence([bool2int(t in x[p]) | p in Periods], L[t], U[t], K[t]));

solve minimize sum(p in Periods)(sum_set(x[p], Cost));

At each time period we need to choose which trucks to use in order to ship
enough material and satisfy the usage limits. The sum set(s, f) function returns
Σe∈sf(e), while the sequence([y1, . . . , yn], l, u, k) constrains the sum of each

220 J. Puchinger et al.

subsequence of length k, yi + · · · + yi−k−1, 1 ≤ i ≤ n − k + 1 to be between l
and u inclusive. As it stands this model is directly executable in an FD solver
that supports set variables. There exist specialised propagators for sum set and
sequence. In Zinc we can control the search by adding an annotation on the
solve item, for example:

solve :: set_search(x, "first_fail", "indomain", "complete")
minimize sum(p in Periods)(sum_set(x[p], Loads) >= Demand[p]);

which indicates we label the set variables with smallest domain first
(first fail) by first trying to exclude an unknown element of the set and
then including it (indomain) in a complete search.

2 Dantzig-Wolfe Decomposition and Column Generation

Dantzig-Wolfe decomposition is a standard way to decompose an integer pro-
gramming model into a master problem and one or several subproblems [8,9].
The bound on the objective resulting from the LP relaxation of the decomposed
model is usually stronger than that of the original formulation (if the subprob-
lem does not have the integrality property). This can result in a smaller search
space in LP-based branch-and-bound algorithms.

The Original Problem has the form

OP: minimise
∑

k∈K
ckxk

subject to
∑

k∈K
Ak

j xk ≥ bj ∀j = 1 . . .M

xk ∈ Dk k ∈ K.

The Dk are finite sets of vectors in Z
Nk
+ implicitly defined by additional con-

straints. We view the elements of Dk to be indexed using an index set P k; that
is, we have Dk = {dk

p | p ∈ P k}. We can then alternatively write

Dk = {ek ∈ R
Nk | ek =

∑
p∈P k

dk
pλk

p,
∑

p∈P k
λk

p = 1; λk
p ∈ {0, 1} ∀p ∈ P k}.

Substituting the xk by the λk
p in OP, we obtain the Master Problem:

MP: minimise
∑

k∈K

∑
p∈P k

ckdk
pλk

p

subject to
∑

k∈K

∑
p∈P k

Ak
j dk

pλk
p ≥ bj ∀j = 1 . . .M (1)

∑
p∈P k

λk
p = 1 k ∈ K (2)

λk
p ∈ {0, 1} ∀p ∈ P k, k ∈ K.

Dantzig-Wolfe decomposition typically results in a Master Problem with
many variables. To deal with a possibly exponential number of variables, delayed
column generation [9] is used. Starting from a restricted LP-relaxation of the

From High-Level Model to Branch-and-Price Solution in G12 221

original problem, the Restricted Master Problem (RMP), variables (columns) are
lazily included in order to find an optimal solution.

The simplex algorithm for solving linear programs proceeds from one basic
feasible solution to the next one, always in direction of a potential improvement
of the objective function. This is achieved by adding a variable with profitable
reduced cost to the basis and by removing some other variable from it. Re-
duced costs can be seen as an optimistic estimate of the amount of improvement
achieved by a unit increase of their corresponding variable. This is the crucial
property of the simplex algorithm exploited in column generation. For every
Dk, a subproblem is solved to determine such variables. In case of a minimisa-
tion problem, the objective is to find feasible columns dk with negative reduced
cost:

(ck − πAk)dk − μk

where π are the dual variable values corresponding to the constraints (1) and μk

is the dual value of the kth convexity constraint (2). We do not need to find a
column with maximum profit; adding a “good” column is sufficient.

3 Solving with G12

The G12 system allows one to take a model written in Zinc, transform it to
various underlying solvers using Cadmium, and then execute it. We can use
standard or user-defined Cadmium transformations. Mappings from Zinc to
FD or LP models are available [6]. To control these transformations the user
can annotate the model. The trucking problem example illustrates the use of an
annotation to define search for an FD solver.

At the solver programming language (Mercury) level, G12 defines inter-
faces to solvers such as an FD solver, a continuous interval constraint solver,
and linear programming solvers using type classes. Various implementations
of these interfaces are provided, e.g. for LP/MIP solvers such as CPLEX,
COIN-OR/OSI, and others. The Dantzig-Wolfe decomposition column gener-
ation, default branch-and-bound, and branch-and-price solvers heavily rely on
the LP solver interfaces. These interfaces provide standard predicates for vari-
able creation, constraint posting, setting an objective function, and LP and MIP
optimisation.

The advantage of this architecture is that we can easily plug different LP
solvers into modules such as column generation and branch-and-bound.

3.1 Dantzig-Wolfe Decomposition and Column Generation in Zinc

In order to use Dantzig-Wolfe decomposition and column generation on a high-
level model in G12, we need to annotate the model to explain: what parts define
the sub-problems, which solver is to be used for each subproblem, and which
solver is to be used for the master problem.

222 J. Puchinger et al.

For instance, the trucking problem example can be annotated as follows:
array[Periods] of var set of Trucks: x :: colgen_var;

constraint forall(p in Periods)(
sum_set(x[p], Load) >= Demand[p] :: colgen_subproblem_constraint(p, "mip"));

solve :: colgen_solver("lp") :: lp_bb(x, most_frac, std_split)
minimize sum(p in Periods)(sum_set(x[p], Cost));

which exposes which variables x will be used in column generation. For each
Period a subproblem is defined in terms of its constraints and solver. Note that
we could have used a more specialised solver here since the subproblem is a
knapsack problem. Finally, the solver for the master problem and the search
specification, branch-and-bound selecting the most fractional variable first and
performing a standard split, are attached to the solve item.

We then perform a Dantzig-Wolfe decomposition on the model, separating
original, master, and subproblem variables, as well as adding constraints linking
those variables:

Trucking.zinc (changes)

array[Periods] of var set of Trucks: mx :: colgen_master_var;
array[Periods] of var set of Trucks: sx :: colgen_subproblem_var;

constraint forall(p in Periods)(
colgen_link_constraint([x[p]], mx[p], sx[p]);

constraint forall(p in Periods)(
sum_set(sx[p], Load) >= Demand[p] :: colgen_subproblem_constraint(p, "mip"));

constraint forall(t in Trucks)(
sequence([bool2int(t in mx[p]) | p in Periods], L[t], U[t], K[t]));

solve :: colgen_solver("lp") :: lp_bb(x, most_frac, std_split)
minimize sum(p in Periods)(sum_set(mx[p], Cost));

The so called master variables are place-holders representing the implicit sums
of the λ variables

∑
p∈P k dk

pλk
p as introduced in MP. Note that the search is still

expressed in terms of the original problem variables.
Since column generation is to be used, the transformation must linearise the

master constraints and objective function. The subproblem solver could use the
original set representation of the variables, but for this example it too requires
linearisation of the sub-problem constraints.

We can linearise the master and subproblem constraints giving linear defini-
tions for the sum set and sequence globals. This can be done in Zinc as:

function var int:sum_set(var set of $T:s, array[$T] of int: cost) =
sum(e in index_set(cost))(cost[e] * bool2int(e in s));

predicate sequence(array[int] of var int:y, int:l, int:u, int:k) =
forall(i in min(index_set(y)) .. max(index_set(y)) - k + 1)(

let { var int: s = sum(j in i .. i + k - 1)(y[j]) } in
s >= l /\ s <= u);

where index set returns the set of indices of its array argument, and bool2int
coerces a Boolean to 0..1. Finally, we transform the array of set variables x to
a two-dimensional array of 0..1 variables such that x[p,t] = 1 if t in x[p].

From High-Level Model to Branch-and-Price Solution in G12 223

3.2 Implementation

Column generation works by first transforming the original model to the form
demanded by the solvers. Then it builds the subproblems and attaches them
to the requested solvers. These solvers must support optimisation with a linear
objective function, and preferably support it in an incremental way.

Then the restricted master problem is defined and attached to a solver that
supports delayed column generation: currently LP solvers, although we are work-
ing on adding a hybrid volume algorithm/LP solver [3,2].

The G12 Dantzig-Wolfe decomposition and column generation solver interface
implements most of the standard functionality of the G12 LP solver interface.
From the outside it looks mostly like a standard LP solver set up with the
original problem using the original (linearised) variables. The mapping between
the original variables and the master problem variables is straight-forward; we
simply set

xk =
∑

p∈P k
dk

pλk
p .

The main difference lies in the initialisation of the column generation module.
First the subproblem solver instances have to be added, then the variables to be
decomposed are created, and finally the master problem constraints are posted.

Similarly to the simplex algorithm, column generation requires an initial fea-
sible solution. If it is not provided by the user, we introduce artificial variables
in order to determine it automatically. At the end of this first phase the artificial
variables are removed from the problem [29].

Since the column generation algorithm alone only solves the LP-relaxed ver-
sion of the problem, we have to branch in order to guarantee integrality of the
variables. The default branch-and-bound module is a simple, standard linear pro-
gramming based branch-and-bound algorithm branching on the original model
variables, which does not affect the subproblem structure [30].

The additional branching constraints could of course render the RMP infea-
sible. But, since we are usually not dealing with the complete master problem,
additional columns could restore feasibility of the RMP. Such columns are ob-
tained by solving a problem very similar to the pricing problem [15].

The availability of the original variables in the column generation solver is
the key to being able to use this solver in further hybrids. We can use it with an
arbitrary search strategy on the original variables, or for example in combination
with an FD solver, by communicating bounds on the original variables.

3.3 The Trucking Problem

We solved several different instances of our trucking example showing the ad-
vantages of using DW-decomposition. Table 1 shows results on five different in-
stances displaying the number of search nodes and the time required for solving
the model using an FD solver, using a linearised model with branch-and-bound
(LP-BB), and using DW-decomposition and column generation (DW). For the
trucking example the DW-decomposition is so strong that it yielded the optimal

224 J. Puchinger et al.

Table 1. The trucking example: finite domain model versus linearised branch-and-
bound versus DW-decomposition

Instance FD LP-BB DW
Trucks Periods Nodes Time Nodes LP opt. Time Columns LP/IP opt. Time

4 6 4655 0.80s 3282 177.0 0.55s 19 220.0 0.18s
4 6 5860 0.85s 1992 177.0 0.47s 12 210.0 0.16s
4 6 4607 0.77s 3102 177.0 0.55s 20 224.0 0.18s
4 8 39848 5.04s 25646 267.0 2.64s 24 324.0 0.18s
6 7 2361926 215.90s 194000 244.8 18.75s 18 287.0 0.18s

integral solution in the root node without a need to branch; so instead of nodes
we show the number of columns generated for the DW-decomposed problem. We
also display the value of the LP-relaxation at the root node for the linear models.
For this problem we used our own branch-and-bound module using CPLEX as
LP solver as well as IP subproblem solver. In general, any kind of LP solver (with
G12 interfaces) can be used as master solver, and also any kind of subproblem
solver is supported.

4 Identical Subproblems

Dantzig-Wolfe decomposition often results in highly symmetrical models because
of structurally identical subproblems, i.e. the objective coefficients, the master
problem constraints and the subproblem constraints are identical. A typical ex-
ample for such a model is the cutting stock problem [18,14].

4.1 Aggregating Identical Subproblems

Solving problems with identical subproblems by the pure Dantzig-Wolfe ap-
proach can be quite inefficient. This issue is usually overcome by aggregating
the identical subproblems. The set K of subproblem indices is partitioned into
sets Ks by grouping the indices of identical subproblems; s ranges over some S.
We turn ∑

k∈Ks

∑
p∈P k

dk
pλk

p into
∑

p∈P s
ds

pλ
s
p

where λs
p are integer variables satisfying 0 ≤ λs

p ≤ |Ks| and
∑

p∈P s λs
p = |Ks|.

The Master Problem MP becomes the Aggregated Master Problem:

AMP: minimise
∑

s∈S

∑
p∈P s

csds
pλ

s
p

subject to
∑

s∈S

∑
p∈P s

As
jd

s
pλ

s
p ≥ bj ∀j = 1 . . .M

∑
p∈P s

λs
p = |Ks| s ∈ S

λs
p ≤ |Ks|, λs

p ∈ Z+ ∀p ∈ P s, s ∈ S.

From High-Level Model to Branch-and-Price Solution in G12 225

4.2 Automatic Disaggregation When Branching on Original
Variables

The direct mapping between the original variables and the newly introduced
variables is not obvious anymore. In the aggregated case we have

xk =
∑

p∈P s
λs

pd
s
p/|Ks|.

Unfortunately, this usually leads to highly fractional values for the original vari-
ables, even if the λs

p variables take integer values. We therefore first decompose
the λs

p values into (non-aggregated) λk
p values preserving integrality as much as

possible, and then we use the mapping for the non-aggregated case.
In order to allow branching on the original variables we have to disaggregate

the problem as required by the branching. The column generation module al-
lows one to post any kind of linear constraint on the original problem variables
without affecting the subproblem structure. Each aggregated subproblem ap-
pearing in these constraints is automatically disaggregated and considered by
the column generation iterations in the subsequent nodes. Given K identical
subproblems, if a constraint is posted involving an original variable belonging
to the kth subproblem, this subproblem becomes different to the others and is
disaggregated (while the remaining K − 1 subproblems are kept aggregated). In
order to implement this complex behaviour, the column generation module main-
tains a mapping between the original variables and their associated subproblems.
It also tracks the aggregation status of all the subproblems by keeping a list of
active subproblems. The disaggregations are rolled back upon backtracking.

4.3 The Cutting Stock Problem

In the cutting stock problem, we are given N items with associated lengths and
demands. We are further given stock pieces with length L and an upper bound K
on the number of required stock pieces for satisfying the demand (a trivial upper
bound is the sum over all the demands). The following Zinc model corresponds
to the formulation by Kantorovich [18]:

CuttingStock.zinc

int: K; type Pieces = 1..K :: colgen_symmetric;
int: N; type Items = 1..N;
int: L;
array[Items] of int: i_length; array[Items] of int: i_demand;

array[Pieces] of var 0..1: pieces :: colgen_var;
array[Pieces, Items] of var int: items :: colgen_var;

solve :: lp_bb([pieces, items], most_frac, std_split)
:: colgen_ph(100, 10) :: colgen_solver("lp")

minimize sum([pieces[k] | k in 1..K]);

constraint forall(i in 1..N)(sum([items[k, i] | k in 1..K]) >= i_demand[i]);

constraint forall(k in 1..K)(
sum(i in 1..N)(items[k,i] * i_length[i]) <= pieces[k] * L

:: colgen_subproblem_constraint(k, "knapsack"));

226 J. Puchinger et al.

The original model is a linear program. The annotations for the column gen-
eration variables and subproblems are as before. But this time we introduce a
new annotation colgen symmetric which annotates a type. This indicates that
the model is symmetric in this dimension and the resulting column generation
should aggregate in this dimension. A Cadmium transformation can then be
used to create an aggregated version of the variables and constraints as follows:

CuttingStockAgg.zinc (changes)

var 0..1: s_pieces :: colgen_subproblem_var;
array[Items] of var int: s_items :: colgen_subproblem_var;
var int: m_pieces :: colgen_master_var;
array[Items] of var int: m_items :: colgen_master_var;

solve :: lp_bb([pieces, items], most_frac, std_split)
:: colgen_ph("mip", 100, 10) :: colgen_solver("lp")

minimize m_pieces;

constraint colgen_link(pieces, m_pieces, s_pieces);

constraint forall(i in Items) (
colgen_link([items[k,i] | k in Pieces], m_items[i], s_items[i])

);

constraint forall(i in 1..N)(m_items[i] >= i_demand[i]);

constraint sum(i in 1..N)(s_items[i] * i_length[i]) <= s_pieces * L
:: colgen_subproblem_constraint(1, "knapsack");

The colgen link constraints associate the aggregated master and subproblem
variables with the original problem variables. The m pieces and m items vari-
ables are place-holders representing the implicit sums of aggregated λ variables∑

p∈P s ds
pλ

s
p as introduced in the AMP. The s pieces and s items variables

are the actual subproblem variables. This model is similar to the well-known
column generation formulation first described by Gilmore and Gomory [14], al-
though that does not retain the original variables. Note that it is conceivable to
use Cadmium to detect symmetries and automatically add colgen symmetric
annotations.

In the following experiment we evaluate possible differences when using the
aggregated and the non-aggregated DW-decomposition. The results are shown in
Table 2. We display in percent how often an optimal solution, a feasible solution,
or no solution was found. We further give average objective values and number
of explored nodes where at least a feasible solution was found. Average run-times
over all the instances are also shown. The maximum run-time per instance was
5 minutes. We used CPLEX as LP solver and a specialised dynamic programming
algorithm implemented in Mercury for solving the knapsack subproblems. The
CPLEX MIP solver was used as primal heuristic to solve the restricted master
problem to integrality at every 100th node with a time limit of 10 seconds,
as specified using the colgen_ph annotation. The instances used are randomly
generated using CUTGEN1 [13]. Instances of Classes 1–12 have stock length
L = 1000; each class consists of 10 instances.

For almost all classes, aggregating identical subproblems presents an advan-
tage in the number of solved instances, solution quality and solving time.

From High-Level Model to Branch-and-Price Solution in G12 227

Table 2. Results for cutting-stock with a maximum run-time of 5 min.

Class Items No Aggregation Aggregation
Opt % Feas % No % Obj Nodes Time [s] Opt % Feas % No% Obj Nodes Time[s]

Class1 10 30 70 0 12.70 3325.80 210.40 30 70 0 12.60 3596.60 209.95
Class2 10 70 10 20 118.75 125 100.89 90 10 0 112.90 283.80 59.36
Class3 20 30 0 70 23.33 766.67 242.52 20 80 0 24.50 823.10 250.05
Class4 20 0 0 100 n.a. n.a. 298.63 10 30 60 222.50 400 268.17
Class5 10 100 0 0 49.50 75.20 6.07 100 0 0 49.50 0 0.32
Class6 10 80 10 10 518.56 38.89 68.39 100 0 0 494.90 143.40 21.84
Class7 20 70 20 10 90.22 212.22 105.18 90 10 0 90 225.90 50.00
Class8 20 60 0 40 947.83 16.67 184.24 90 10 0 893.50 40.60 30.51
Class9 10 100 0 0 64 20 2.04 100 0 0 64 50 1.79
Class10 10 80 10 10 657.67 43.78 70.08 90 10 0 639.70 169 39.27
Class11 20 70 10 20 117.75 104.75 95.10 80 20 0 115.50 253.60 60.15
Class12 20 70 10 20 1182.25 10.25 154.79 80 20 0 1146.90 120.60 50.06

Average 63.33 11.67 25 330.74 457.60 128.19 73.33 21.67 5 327.46 514.61 86.79

5 Specialised Branching Rules

In order to overcome symmetry issues, specialised branching rules for specific
problem types were developed; see e.g. [4]. They usually require changes to the
subproblems during the branch-and-bound process. G12 enables users to imple-
ment such specialised branching rules, changing the structure of the subprob-
lems, but preserving aggregations.

The column generation module allows one to ask for fractional columns of
the DW-decomposed model. It returns their values as well as their entries in
the constraint matrix of the master problem. Using this information the user
can define specialised branching rules by introducing constraint branches on
subproblem variables. In the master problem these constraint branches can be
enforced by setting forbidden columns to zero in their respective branch. The
column generation module provides a predicate by which the user can specify
a list of column patterns that have to be set to zero. In our current system
the specialised branching rules are implemented in Mercury. We are working
on extensions to Zinc so that users will be able to specify such rules at the
modelling level.

The Two-Dimensional Bin Packing Problem

In order to demonstrate the effectiveness of specialised branching rules we imple-
mented a simple, well-known rule for the two-dimensional bin packing problem.
It is similar to the one described in [22], which is based on a well known branch-
ing rule for set partitioning [25]. The solution space is divided by branching on
whether two different items are in the same bin. We always choose the two high-
est items appearing in a pattern whose corresponding column generation master
variable λ has an LP solution value closest to 0.5.

In the two-dimensional bin packing problem (2DBPP), we are given N rect-
angular items of given height and width. These items have to be placed on (or

228 J. Puchinger et al.

cut out) of bins of height H and width W, of which there are at most K. The
variant we consider here does not allow items to be rotated; only level packings
are allowed. Each bin can be divided into several levels, and each level contains
the items beside each other [19]. For ease of modelling, we assume that the items
are sorted by non-increasing heights. The formulation in Zinc is as follows:

2DBinPacking.zinc

int: K; type Bins = 1..K :: colgen_symmetric;
int: N; type Items = 1..N;

int: W; array[Items] of int: ItemWidth;
int: H; array[Items] of int: ItemHeight;

array[Bins] of var 0..1: bin :: colgen_var;
array[Bins, Items] of var 0..1: item :: colgen_var;

solve :: bp([bin, item], most_frac_master, special_split)
:: colgen_ph("mip", 100, 10) :: colgen_solver("lp")

minimize sum(k in Bins)(bin[k]);

constraint forall(j in Items)(sum(k in Bins)(item[k, j]) >= 1);

constraint forall(k in Bins)(
is_feasible_packing(bin[k], [item[k, j] | j in Items])

:: colgen_subproblem_constraint(k, "mip"));

set of tuple(Items, Items): Idx = {(i, j) | i, j in Items where j >= i};

predicate
is_feasible_packing(var 0..1: l_bin, array[Items] of var 0..1: l_item) =

let { array[Idx] of var 0..1: x } in
forall (i in Items)(

sum(j in i..N)(ItemWidth[j] * x[i, j]) <= W * x[i, i])
/\
sum(i in Items)(ItemHeight[i] * x[i, i]) <= l_bin * H
/\
forall(j in Items)(l_item[j] = sum(i in 1..j)(x[i, j]));

The bp annotation to the solve item tells the system to use the branch-and-price
algorithm choosing the most fractional master variable and using the specialised
branching rule.

Table 3 displays the results of applying standard branching on the original vari-
ables or using the specialised branching rule. We tested these approaches on the set
of 500 instances described in [19]. They are divided in 10 classes of 50 instances
each, with item numbers ranging from 20 to 100 in each class. While many in-
stances could be solved to optimality in the root node, our specialised branching
rules did reach optimal solutions more often in the given limited run-time.

6 Related Work and Conclusion

The practical usefulness of column generation and branch-and-price has been
well-established over the last 20 years [9,4]. More recently it has emerged that
column generation provides an ideal method for combining approaches, such as
constraint programming, local search, and integer/linear programming. Columns
can be generated by constraint programming or application-specific algorithms,
while the master problem is handled using branch-and-price [17,31,24,22].

From High-Level Model to Branch-and-Price Solution in G12 229

Table 3. Results for two-dimensional bin packing with a maximum run-time of 5 min.

Class Std. Branching Sp. Branching
Opt % Feas % No % Obj Nodes Time [s] Opt % Feas % No% Obj Nodes Time[s]

Class1 68 22 10 19.49 45.87 109.90 90 8 2 39.90 41.14 53.54
Class2 26 0 74 1.31 0 223.24 30 2 68 64.19 6.19 203.08
Class3 70 10 20 13.05 10 116.37 84 8 8 13.85 11.87 82.90
Class4 26 0 74 1.31 0 228.76 26 0 74 1.31 0 228.74
Class5 84 6 10 17.40 8.89 69.65 90 2 8 17.61 3.93 53.13
Class6 24 0 76 1.08 0 228.03 24 0 76 1.08 0 227.97
Class7 76 16 8 16.30 33.70 80.52 88 10 2 16.78 57.18 57.52
Class8 78 10 12 15.73 14.77 89.48 84 6 10 15.98 13.60 77.04
Class9 96 4 0 42.62 6.72 13.94 100 0 0 42.60 0.32 2.17
Class10 48 4 48 7.46 18.15 155.95 52 0 48 7.46 7.54 149.39

Average 59.6 7.2 33.2 17.95 17.58 131.58 66.8 3.6 29.6 23.65 18.38 113.55

For systems such as G12 that support hybrid algorithms, Dantzig-Wolfe de-
composition, column generation and branch-and-price provide an elegant way
for the different solving techniques to be combined. However, the specification
of this form of hybrid is quite complex, as it requires adaptation of simplex-
based approaches to support the lazy generation of columns. Thus systems such
as ABACUS [16], MINTO [20], OPL script [28], MAESTRO [7], COIN/BCP [23],
and SCIP [1] offer facilities to support the implementation of branch-and-price
on top of generic integer/linear programming packages. However, these systems
still require the user to understand the technical details of branch-and-price:
the purpose was to support algorithm implementation rather than problem
modelling.

Certainly column generation is technical, but for people trying to solve com-
binatorial problems the most important requirement is to be able to try out
an algorithm, or more generally a hybrid algorithm, quickly and easily with-
out rewriting the problem specification. The first attempt to provide a column
generation library was in ECLiPSe [11]. This system introduced the idea of an
aggregate variable appearing in the master problem to represent a set of values
returned as columns from multiple solutions to identical subproblems. However
this library assumes a fixed set of variables in each subproblem, and precludes
search choices which break some of the subproblem symmetries. In order to
achieve tight control over branch-and-price, sophisticated ECLiPSe users have
required special adaptations of the column generation library in order to be able
to work directly with low level primitives [21].

The facility to annotate the same Zinc model in two different ways, as in
the examples above, and thus have the problem solved by the FD solver, or by
column generation according to the annotation, is completely novel. Moreover
the facility to perform search on user variables and have any symmetries which
are dynamically broken during search still correctly and efficiently handled au-
tomatically by the column generation solver is also new. Thirdly the facility to
define specialised search still using the mapping provided by the library provides
the full flexibility needed by the expert user.

230 J. Puchinger et al.

The G12 scheme is to add annotations to a conceptual problem model, and
thus turn it into a design model that maps to a specific algorithm. Annotating
a constraint, occurring in the conceptual model, with the (name of the) solver
that will handle it, is a simple example of this scheme.

Column generation is an interesting challenge because it does not naturally
fit into the above scheme. Certainly we view the column generation module as
a solver in the normal way (as discussed in Section 3). However annotating a
constraint with the column generation solver is not enough: the solver needs to
know which subproblem the constraint belongs to, the master problem or the
subproblem. Moreover there is not one column generation solver: the master
problem might be sent to one underlying solver and the subproblem to another.
Finally branch-and-price search is closely connected with the column generation
solver, and annotations to control the search can be crucial to the performance
of the algorithm.

Each requirement has been satisfied in Zinc by having a sufficiently expres-
sive annotation language. For example an annotation with a compound term
(colgen_subproblem_constraint(p, "mip")) was used to specify the subprob-
lem solver in Section 3.1, and the search was specified by multiple annotations.

The next particular challenge of column generation is that the variables (and
constraints) used in the conceptual model of the problem are quite different from
those needed in the design model. Our column generation module automates this
mapping using G12’s Cadmium mapping language. To ensure the annotations
are still meaningful with respect to the new variables, the annotations have to
be transformed by Cadmium in the same way. Moreover the search control as
illustrated in Section 4 must be mapped to search steps expressed in terms of
the design model variables.

The greatest design and implementation challenge was to have these still
work, fully automatically, when handling symmetry by generating aggregated
variables (used when solving the subproblem) and dynamically disaggregating
some of them during search. Indeed, each symmetry-breaking search step causes
the design model to be updated so as to operate on a new set of variables.

The design model is expressed in terms of a simplified version of Zinc, il-
lustrated in Section 4.3. The specification of our language for expressing design
models is still fluid, and so currently the translation to the Mercury code –
which is very similar, but uses different syntax – is by hand.

One interesting challenge arising out of this work is how to automatically de-
tect identical subproblems. This is a completely novel form of automated sym-
metry detection, which is of significant practical value, as the results in Table 2
reveal.

We plan to implement the search annotation transformations necessary to
enable specialised branching schemes to be expressed in Zinc. We also plan to
build in an implementation of the generic branching scheme described in [29]. We
further intend to address issues related to adding multiple columns and column
pool management.

From High-Level Model to Branch-and-Price Solution in G12 231

Finally we envisage to explore the use of the column generation module for
solving a subproblem within a larger problem – thus supporting, for example, a
combination of row and column generation.

Acknowledgements

We would like to thank the members of the G12 team at NICTA VRL for helpful
discussions and implementation work.

NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. Achterberg, T.: SCIP - a framework to integrate constraint and mixed in-
teger programming. Technical Report 04-19, Zuse Institute Berlin, (2004),
http://www.zib.de/Publications/abstracts/ZR-04-19/

2. Anbil, R., Forrest, J., Pulleyblank, W.: Column generation and the airline crew
pairing problem. In: Documenta Mathematica, Extra Volume ICM (1998)

3. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with
a subgradient method. Mathematical Programming 87(3), 385–399 (2000)

4. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch-and-price: Column generation for solving huge integer programs. Opera-
tions Research 46(3), 316–329 (1998)

5. Boland, N., Surendonk, T.: A column generation approach to delivery planning
over time with inhomogeneous service providers and service interval constraints.
Annals of Operations Research 108, 143–156 (2001)

6. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, rule-based constraint
model linearisation. In: Hudak, P., Warren, D. (eds.) Practical Aspects of Declar-
ative Languages (PADL 2008). LNCS, vol. 4902, pp. 68–83. Springer, Heidelberg
(2008)

7. Chabrier, A.: Génération de Colonnes et de Coupes utilisant des sous-problèmes
de plus court chemin. PhD thesis, Université d’Angers, France (2002)

8. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations
Research 8(1), 101–111 (1960)

9. Desaulniers, G., Desrosiers, J., Solomon, M. (eds.): Column Generation. GERAD
25th Anniversary Series. Springer, Heidelberg (2005)

10. Duck, G.J., Stuckey, P.J., Brand, S.: ACD term rewriting. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 117–131. Springer, Hei-
delberg (2006)

11. Eremin, A.: Using Dual Values to Integrate Row and Column Generation into
Constraint Logic Programming. PhD thesis, Imperial College London (2003)

12. Garcia de la Banda, M., Marriott, K., Rafeh, R., Wallace, M.: The modelling
language Zinc. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 700–705.
Springer, Heidelberg (2006)

13. Gau, T., Wäscher, G.: CUTGEN1: a problem generator for the standard
one-dimensional cutting stock problem. European Journal of Operational Re-
search 84(3), 572–579 (1995)

http://www.zib.de/Publications/abstracts/ZR-04-19/

232 J. Puchinger et al.

14. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem (part I). Operations Research 9, 849–859 (1961)

15. Gunluk, O., Ladanyi, L., Vries, S.D.: A branch-and-price algorithm and new test
problems for spectrum auctions. Management Science 51(3), 391–406 (2005)

16. Jünger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algo-
rithms in integer programming and combinatorial optimization. Software: Practice
and Experience 30(11), 1325–1352 (2000)

17. Junker, U., Karisch, S.E., Kohl, N., Vaaben, B., Fahle, T., Sellmann, M.: A frame-
work for constraint programming based column generation. In: Jaffar, J. (ed.) CP
1999. LNCS, vol. 1713, pp. 261–274. Springer, Heidelberg (1999)

18. Kantorovich, L.V.: Mathematical methods of organizing and planning production.
Management Science 6(4), 366–422 (1960)

19. Lodi, A., Martello, S., Vigo, D.: Models and bounds for two-dimensional level
packing problems. Journal of Combinatorial Optimization 8(3), 363–379 (2004)

20. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed IN-
Teger Optimizer. Operations Research Letters 15, 47–58 (1994)

21. Papadakos, N.: Integrated airline scheduling. Computers and Operations Research,
available online (August 27, 2007) (to appear, 2007)

22. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research 183(3), 1304–1327 (2007)

23. Ralphs, T., Ladanyi, L.: COIN/BCP users manual (2001)
24. Rousseau, L.-M., Gendreau, M., Pesant, G., Focacci, F.: Solving VRPTWs with

constraint programming based column generation. Annals of Operations Re-
search 130(1), 199–216 (2004)

25. Ryan, D.M., Foster, B.: An integer programming approach to scheduling. In: Wren,
A. (ed.) Computer scheduling of public transport urban passenger vehicle and crew
scheduling, pp. 269–280. North Holland, Amsterdam (1981)

26. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury, an
efficient purely declarative logic programming language. Journal of Logic Program-
ming 29(1-3), 17–64 (1996)

27. Stuckey, P.J., Garcia de la Banda, M., Maher, M.J., Marriott, K., Slaney, J.K.,
Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent
models to efficient solutions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
13–16. Springer, Heidelberg (2005)

28. Van Hentenryck, P., Michel, L.: OPL Script: Composing and controlling models.
In: Apt, K.R., Kakas, A.C., Monfroy, E., Rossi, F. (eds.) Compulog Net WS 1999.
LNCS (LNAI), vol. 1865, pp. 75–90. Springer, Heidelberg (2000)

29. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Technical Report
U-05.14, Applied Mathematics, University Bordeaux 1, France (2005)

30. Villeneuve, D., Desrosiers, J., Lübbecke, M.E., Soumis, F.: On compact formu-
lations for integer programs solved by column generation. Annals of Operations
Research 139(1), 375–388 (2005)

31. Yunes, T.H., Moura, A.V., de Souza, C.C.: A hybrid approach for solving large
scale crew scheduling problems. In: Pontelli, E., Santos Costa, V. (eds.) PADL
2000. LNCS, vol. 1753, pp. 207–293. Springer, Heidelberg (2000)

Simpler and Incremental Consistency Checking

and Arc Consistency Filtering Algorithms for
the Weighted Spanning Tree Constraint

Jean-Charles Régin

ILOG Sophia Antipolis
Les Taissounières HB2,
1681 route des Dolines,
06560 Valbonne, France

regin@ilog.fr

Abstract. The weighted spanning tree contraint is defined from a set
of variables X and a value K. The variables X represent the nodes of
a graph and the domain of a variable x ∈ X the neighbors of the node
in the graph. In addition each pair (variable, value) is associated with a
cost. This constraint states that the graph defined from the variables and
the domains of the variables admits a spanning tree whose cost is less
than K. Efficient algorithms to compute a minimum spanning tree or to
establish arc consistency of this constraint have been proposed. However,
these algorithms are based on complex procedures that are rather difficult
to understand and to implement. In this paper, we propose and detail
simpler algorithms for checking the consistency of the constraint and for
establishing arc consistency. In addition, we propose for the first time
incremental algorithms for this constraint, that is algorithms that have
been designed in order to be efficiently maintained during the search for
solution.

1 Introduction

In this paper, we consider the weighted spanning tree constraint (wst constraint).
Several filtering algorithms for constraints based on graph theory and par-

ticularly on trees have been proposed. For instance, the robust spanning tree
problem1 with interval data has been addressed in [2]; the ”tree” constraint has
been studied in [3] (this constraint enforces the partionning of a digraph into
a set of vertex-disjoint anti-arborescences), and recently, the ”Not-Too-Heavy
Spanning Tree” constraint has been introduced in [7]. This constraint is defined
on undirected graph G and a tree T and it specifies that T is a spanning tree
of G whose total weight is at most a given value I, where the edge weights are
defined by a vector. The wst constraint is a simplified form of this constraint.
1 From [2]:the robust spanning tree problem, given an undirected graph with interval

edge costs, amounts to finding a tree whose cost is as close as possible of that
minimum spanning tree under any possible assignment of costs.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 233–247, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 J.-C. Régin

In order to define it without introducing set variables or graph variables, we
recall first the definition of a spanning tree and then we present the neighbor
variables representation of a graph in CP.

A tree is a connected and acyclic graph. A tree T = (X ′, E′) is a spanning
tree of G = (X, E) if X ′ = X and E′ ⊆ E. In addition, if each edge of G is
associated with a cost then the cost of a spanning tree of G is the sum of the
costs of the edges of the tree.

The neighbor variables representation of a graph G consists of a variable set
X corresponding to the nodes of G (i.e. xi is associated with the node i in G and
conversely) such that the domain of a variable xi is equivalent to the neighbors
of i in G (i.e. j ∈ D(xi) ⇔ j ∈ N(i) of G). Then, there is an equivalence
between the cost of an edge in G and the cost of a value of a variable (i.e.
cost(i, j) = cost(xi, j)).

The weighted spanning tree constraint (wst constraint) is a constraint defined
on the neighbor representation of a graph G each of whose edges has an associ-
ated cost, and associated with a global cost K. This constraint states that there
exists in G a spanning tree whose cost is at most K.

This kind of constraint is not often present directly in real world applications,
but it is used frequently as a lower bound of a more complex problems like
hamiltonian path or node covering problems. For instance the minimum spanning
tree is a well known bound of the traveling salesman problem.

It is straightforward to see that checking the consistency of this constraint is
equivalent to finding a minimum spanning tree and to check if its cost is less than
K. Moreover, arc consistency filtering algorithms are based on the computation
for every edge e of the cost of the minimum spanning tree subject to the condition
that the tree must contain e [7]. These two problems were solved for a long time.
The search for a minimum spanning tree can be solved by several methods and
we will consider here the Kruskal’s algorithm. The second problem is close of
another problem called ”Sensitivity Analysis of Minimum Spanning Trees” [14].
The best algorithms solve this problem in linear time. Unfortunately they are
quite complex to understand and to implement (see [6] or [11] for instance).

Therefore, in this paper, we propose a simpler and easy to implement consis-
tency checking and filtering algorithms for the wst constraint, because, currently,
there is no CP Solver which contains such a constraint. This algorithm is based
on the creation of a new tree while running Kruskal’s algorithm for computing
an mst. Then, we find lowest common ancestors (LCA) in this tree by using the
equivalence between the LCA and the range minimum query problem. A recent
simple preprocessing leads to an O(1) algorithm to find any LCA.

In addition, we will consider an important aspects of the algorithms which is
usually ignored: the incremental aspect. This aspect is quite important in CP
as shown for instance in[12] because the consistency checking algorithms and
the filtering algorithms are systematically called during the search for solution.
Thus, it is worthwhile to design algorithms that are able to exploit the previous
computations in order to solve more quickly the problems they consider. In this

Simpler and Incremental Consistency Checking 235

case and because the algorithms are called very often with only few modifications
between two calls, any real saving is beneficial in practice.

The paper is organized as follows: First, we recall some concepts of graph
theory and constraint programming. Then, we formally define the propositions
on which the consistency and the arc consistency of the weighted spanning tree
constraint are based. Next, we introduce a new data structure named tree of con-
nected components which will lead us to propose a simple algorithm to establish
arc consistency. Afterwards, we modify this algorithm in order to maintain it ef-
ficiently during the search for solution when some modifications happen or when
a backtrack occurs. At last, we conclude.

2 Preliminaries

2.1 Graph Theory

A tree is a connected and acyclic graph. A tree T = (X ′, E′) is a spanning tree
of G = (X, E) if X ′ = X and E′ ⊆ E. The edges of E′ are the tree edges of
T and the edges of E − E′ are the nontree edges of T . A forest is a disjoint
union of trees.

There are different methods to traverse all the nodes of a tree, we recall the
one we will use in this paper: the inorder traversal. To traverse a non-empty
binary tree in inorder, perform the following operations: 1. Traverse the left
subtree in inorder. 2. Visit the root. 3. Traverse the right subtree in inorder.

2.2 Constraint Programming

A finite constraint network N is defined as a set of n variables X = {x1, . . . ,
xn}, a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite
set of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent the
set of initial domains of N . on which constraint definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a
subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir) that specifies
the allowed combinations of values for the variables xi1 , . . . , xir . An element of
D0(xi1) × · · · × D0(xir) is called a tuple on X(C). A value a for a variable x
is often denoted by (x, a). Let C be a constraint. A tuple τ on X(C) is valid
if ∀(x, a) ∈ τ, a ∈ D(x). C is consistent iff there exists a tuple τ of T (C)
which is valid. A value a ∈ D(x) is consistent with C iff x �∈ X(C) or there
exists a valid tuple τ of T (C) with (x, a) ∈ τ . A constraint is arc consistent iff
∀xi ∈ X(C), D(xi) �= ∅ and ∀a ∈ D(xi), a is consistent with C.

Definition 1. A weighted spanning tree constraint is a constraint C de-
fined on X the neighbor variable representation of a graph G, and associated
with cost a cost function on the edge of G, and an integer K such that
T (C) = { τ such that τ is a tuple on X(C)

and the graph defined by τ is a tree whose cost is less than K}
It is denoted by wst(X, cost, K).

236 J.-C. Régin

3 Consistency Checking

Proposition 1. The constraint wst(X, cost, K) is consistent if and only if the
graph G defined by X has a minimum spanning tree T ∗ with cost(T ∗) ≤ K.

We propose to use Kruskal’s algorithm for searching for a mst. Kruskal’s algo-
rithm is a greedy algorithm that finds a minimum spanning tree for a connected
weighted graph. The algorithm starts with a forest where each node in the graph
is a separate tree. Then, it adds edges which join two nodes belonging to differ-
ent trees of the forest and merges the two trees into one. The particularity of
the algorithm is that the edges are selected in regards to their costs. For each
step the edge which connects two distinct trees and whose cost is minimum is
selected. Thus, Kruskal’s algorithm can be easily implemented by traversing the
edges in nondecreasing order of their costs and by adding edges connecting two
disjoint trees, until all nodes of the graph are in the same connected component.
The main issue to obtain an efficient implementation is to detect whether two
nodes belong to the same tree or not. This operation can be efficiently performed
by using the well known union-find data structure of Tarjan [15]. By combin-
ing the path compression and the union by rank heuristics, m operations on the
union-find performed on a set of n elements run in O(mα(m, n)) time [15], where
α(m, n) is a functional inverse of Ackerman’s function. Thus, we have:

Property 1. If the list of edges ordered by non decreasing cost is available then
Kruskal’s algorithm can be implemented in O(mα(m, n)).

Algorithm 1. Kruskal’s algorithm for computing a minimum spanning tree
getCCRoot(i): return find(i)
mergeCC(ri, rj): union(ri, rj)
initCC(n): for i = 1 to n do makeSet(i)
addEdge(ccT, T, ri, rj , {i, j})

mergeCC(ri, rj)
1 updateCCTree(ccT, ri, rj , {i, j})

add {i, j} to T

MinimumSpanningTree(nonDecrEC): (mst,ccTree)
initCC(n)

2 initCCTree(ccT, n)
T ← ∅
for each {i, j} ∈ nonDecrEC while |T | < n − 1 do

ri ← getCCRoot(i); rj ← getCCRoot(j)
if ri �= rj then addEdge(ccT, T, ri, rj , {i, j})

return (T, ccT)

Algorithm 1 is a possible implementation of Kruskal’s algorithm using the
union-find data structure. The algorithm returns the largest forest that can be
built. At this point, we recommend to ignore lines 2 and 1 and parameter ccT .

Simpler and Incremental Consistency Checking 237

Functions makeSet, find and union are the classical union-find functions:
makeSet(x) :{ p[x] ← x; rank[x] ← 0 }
find(x): { if p[x] �= x then p[x] ← Find(p[x]) endif; return p[x] }
link(x, y) :{ if rank[x] > rank[y] then p[y] = x else p[x] = y endif
. if rank[x] = rank[y] then rank[y] ← rank[y] + 1 endif }
union(x, y): {link(find(x),find(y)) }

4 Arc Consistency Filtering Algorithm

For each nontree edge {i, j}, we have to find the cost of a minimum spanning
tree subject to the condition that the tree must contain the edge {i, j}. First,
we recall the Optimality Conditions of a mst:

Theorem 1
• [Path Optimality Condition]. A spanning tree T ∗ is a minimum span-

ning tree if and only if it satisfies the following path optimality conditions: for
every nontree edge {i, j} of G, cost(i, j) ≥ cost(u, v) for every edge {u, v} con-
tained in the path in T ∗ connecting nodes i and j.

• [Cut Optimality Condition]. A spanning tree T ∗ is a minimum span-
ning tree if and only if it satisfies the following cut optimality conditions: for
every tree edge {i, j} of G, cost(i, j) ≤ cost(u, v) for every edge {u, v} contained
in the cut formed by deleting edge {i, j} from T ∗.

We will call {i, j}-tree, a tree which must contain the edge {i, j}. Then:

Property 2. Let G = (X, E) be a graph, {i, j} ∈ E be an edge of G, and v be
the minimum of the edge costs minus 1. Then, a minimum spanning {i, j}-tree of
G is the mst of G when the cost of {i, j} is equal to v. The cost of the minimum
spanning {i, j}-tree is then equal to the cost of the mst plus cost(i, j) − v.

Proof. Since {i, j} is the edge with the minimum cost when its cost is equal to
v, then it will necessary be a tree edge of any mst. �
For the sake of clarity we will consider that T ∗ is a minimum spanning tree of
G. The filtering algorithm is based on the following Proposition [7]:

Proposition 2. Let {i, j} be a nontree edge of G, and {u, v} be the edge with
the maximum cost contained in the path in T ∗ connecting nodes i and j.
The tree T corresponding to the tree T ∗ in which the edge {u, v} has been replaced
by the edge {i, j} is a minimum spanning {i, j}-tree of G.

Proof. If the edge {i, j} is added to the tree then a cycle is created and the
Path Optimality Condition implies that the edge of the cycle having the largest
cost must be removed. Since an {i, j}-tree is wanted and from Property 2, we
consider that {i, j} has the smallest cost. So the edge that must be removed is
{u, v} because it has the largest cost. Thus a tree T is obtained. This tree sat-
isfies the Path Optimality Condition for all the nontree edges because T ∗ does

238 J.-C. Régin

and {i, j} is considered as having the smallest cost. T also satisifies the path
optimality condition for {u, v}. �

Let minEC(T) and maxEC(T) be the cost of the edge of T having respectively
the minimum and the maximum cost. We deduce two corollaries:

Corollary 1. All the nontree edges {i, j} such that
(i) cost(i, j)> K− cost(T ∗) + maxEdgeCost(T ∗) are not consistent with C
(ii) cost(i, j) ≤ K − cost(T ∗) + minEdgeCost(T ∗) are consistent with C

So, we can immediately delete all the edges satisfying Corollary 1.(i) and avoid
studying the edges satisfying Corollary 1.(ii). For the other edges, we have:

Definition 2. Let {i, j} be a nontree edge of G which does not satisfy Corollary
1, and {u, v} be the edge with the maximum cost contained in the path in T ∗

connecting nodes i and j. Then, {u, v} is called a support of {i, j}, and S(u, v)
is the list of nontree edges that are supported by {u, v}.

Proposition 3. Let {i, j} be an nontree edge of T ∗ which does not satisfy Corol-
lary 1, {u, v} be the support of {i, j}.
{i, j} is consistent with C if and only if cost(i, j) ≤ K − cost(T ∗) + cost(u, v).

We propose to efficiently compute the supports by introducing a new tree while
running Kruskal’s algorithm,

4.1 Tree of Connected Components Merges

Kruskal’s algorithm proceeds by merging disjoint trees. Each time an arc is added
to the spanning tree, two trees are merged together. We propose to explicitly
represent these operations by creating a specific tree called: connected com-
ponent tree or ccTree. Every merge is represented by a node in the ccTree.

A bottom-up creation of this tree is used. The leaves correspond to the nodes
of the graph, because, in Kruskal’s algorithm, initially each node defines a tree.
Each time an edge is added to the mst by Kruskal’s algorithm, a new ccTree node
is created. This ccTree node has two children: one for each tree (so the ccTree is
binary) that have been merged. Each tree created in Kruskal’s algorithm has a
pointer to the ccTree node which represents it. The ccTree contains at most 2n−1
nodes. Figure 1 gives a minimum spanning tree of a graph and Figure 2 shows
a tree of connected components obtained after running Kruskal’s algorithm on
this graph. The ccTree involves the following data:

− ccT. size: the current number of nodes of the tree
− ccT. p[r]: the ccTree leaf corresp. to the canonical element of node r of G
− ccT. left[k] and ccT. right[k]: the left and the right child of the ccTree node k
− ccT. parent[k]: the parent of the ccTree node k
− ccT. Gedge[k]: the edge of G which lead to the creation of the ccTree node k
− ccT. inorder[i]: the ith ccTree node visited by the inorder traversal
− ccT. pos[k]: the inorder index of the ccTree node k

− ccT. height[k]: the height (distance from the root) of ccTree node k

Simpler and Incremental Consistency Checking 239

0

633 0

257 390 0

91 661 228 0

412 227 169 383 0

150 488 112 120 267 0

80 572 196 77 351 63 0

134 530 154 105 309 34 29 0

259 555 372 175 338 264 232 249 0

505 289 262 476 196 360 444 402 495 0

353 282 110 324 61 208 292 250 352 154 0

324 638 437 240 421 329 297 314 95 578 435 0

70 567 191 27 346 83 47 68 189 439 287 254 0

211 466 74 182 243 105 150 108 326 336 184 391 145 0

268 420 53 239 199 123 207 165 383 240 140 448 202 57 0

246 745 472 237 528 364 332 349 202 685 542 157 289 426 483 0

121 518 142 84 297 35 29 36 236 390 238 301 55 96 153 336 0

0 1 2

3

81 11 5

6

7

5

1 6

1 3 1 4

2 1 0

4

1

9
7 0 4 7

2 7

1 7 5

9 51 5 7

2 9

2 9

3 4

9 6

5 7

5 3 6 1

1 1 0 1 5 4

2 2 7

Fig. 1. The lower triangular matrix of problem gr17 of the TSPLIB and a Minimum
Spanning Tree of this Graph

12 3 7 6 16 5 0 14 2 13 10 4 9 11 8 15 1

(1 2 , 3) 2 7 (7 , 6) 2 9 (1 4 , 2) 5 3 (1 0 , 4) 6 1 (1 1 , 8) 9 5

(6 , 1 6) 2 9 (1 4 , 1 3) 5 7 (1 1 , 1 5) 1 5 7

(7 , 5) 3 4

(1 2 , 6) 4 7

(1 2 , 0) 7 0

(1 6 , 1 3) 9 6

(1 0 , 2) 1 1 0

(1 0 , 9) 1 5 4

(8 , 3) 1 7 5

(4 , 1) 2 2 7

indice 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (12,3) (7,6) (6,16) (7,5) (12,6) (14,2)

indice 23 24 25 26 27 28 29 30 31 32
value (14,13) (10,4) (12,0) (11,8) (16,13) (10,2) (10,9) (11,15) (8,3) (4,1)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
H 10 9 10 6 10 9 10 8 10 7 10 5 10 4 10 9 10 8 10 3 10 9 10 2 10 1 10 9 10 8 10 0 10

inorder 12 17 3 21 7 18 6 19 16 20 5 25 0 27 14 22 2 23 13 28 10 24 4 29 9 31 11 26 8 30 15 32 1

Pos 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
value 12 32 16 2 22 10 6 4 28 24 20 26 0 18 14 30 8 1 5 7 9 3 15 17 21 11 27 13 19 23 29 25 31

Fig. 2. Tree of Connected Components Merges of mst of problem gr17. The nodes that
are not leaves contain the edge of G and its cost. Array of indices, array H, inorder
and Pos are also represented.

240 J.-C. Régin

The creation of the ccTree can be easily done while running Kruskal’s algo-
rithm as shown by Algorithm 1 (See Line 1.). Function updateCCTree (ccT :
tree, ri , rj , {i, j}) creates a new node in the ccTree whose children are p[ri]
and p[rj] and with Gedge = {i, j}, Function initCCTree creates n leaves cor-
responding to the node of G, and Function inorderTreeTraversal performs
an inorder tree traversal of the ccTree.

Once the ccTree is built, the support of any edge {i, j} is the Gedge associated
with the ccTree node created when the tree containing i and the tree containing
j have been merged together. This node is the least common ancestor of the
ccTree node i and the ccTree node j.

Definition 3. Lowest Common Ancestor (LCA)
For nodes u and v of tree T , query LCAT (u, v) returns the lowest common
ancestor of u and v in T , that is, it returns the node farthest from the root that
is an ancestor of both u and v.

Proposition 4. Let i and j be two nodes of G, and ccT be the connected com-
ponent tree built while running Kruskal’s algorithm on G.
Then, ccT.Gedge[LCAccT (i, j)] is the edge that merged the tree of i and the tree
of j while running Kruskal’s algorithm on G.

Proof. First, note that a node i of G corresponds to the node i of ccT which
is leaf. From the definition of ccT each node which is not a leaf corresponds to
the merge of two trees. Therefore, the lowest common ancestor of two leaves of
ccT corresponds to the merge of two disjoint trees of G that are identified by
the extremities of the edge merging them. The Gedge data associated with this
ccTree node contains it. �

Corollary 2. Let T ∗ be a mst of G, ccT be the connected component tree built
while running Kruskal’s algorithm and {i, j} be a nontree edge of T ∗. Then
{u, v} = ccT.Gedge[LCAccT (i, j)] is the support of {i, j}.

Proof. By definition of the ccTree and the LCA, the LCA corresponds to the arc
with the greatest cost in the path from i to j in T ∗.� The are several methods
to solve directly the LCA problem, starting with [1] and improved by [10] and
[13]. Unfortunately these methods are complex especially when the binary tree
is not well balanced, which happens in our case. Another approach to solve the
LCA problem in a non direct way has been introduced in [9]: the LCA problem is
linearly equivalent to the Range Minimum Query Problem. Thus, by efficiently
solving the RMQ problem, we obtain an efficient solution of the LCA problem.

Definition 4. Range Minimum Query (RMQ)
Let A be a length n array of numbers. For indices i and j between 1 and n, query
RMQA(i, j) returns the index of the smallest element in the subarray A[i, ..., j].

We will use the simple and nice transformation of LCA to RMQ proposed by
[8]: ”Let T be a rooted binary tree with n nodes.

Simpler and Incremental Consistency Checking 241

• First perform an inorder tree walk in T and store it in an array inorder[1, n].
• Store the heights of each node: H [i] is the height of node inorder[i] in T .
• Let Pos be the inverse array of inorder, i.e., inorder[Pos[i]] = i. It is easy

to see that LCAT (v, w) = inorder[RMQH(Pos[v], Pos[w])]: the elements in
inorder between Pos[v] and Pos[w] are exactly the nodes encountered between
v to w during an inorder tree walk in T , so the RMQ returns the position k in
H of the shallowest such nodes. As the LCA of v and w must be encountered
between v and w during the inorder tree walk, LCA(v, w) = inorder[k]”.

Figure 2 gives an example of ccTree, inorder traversal, H and Pos arrays. For
instance, LCAT (10, 6) = inorder[RMQH(Pos[10], Pos[6])] which is equal to
inorder[RMQH(20, 6)] = inorder[19] = 28 that is the index of the edge {10, 2}.

Now, the goal is to solve some RMQ requests as fast as possible. Harel and
Tarjan [10] have shown that if several requests will be made then it is worthwhile
to spend some time on preprocessing the tree in order to answer future queries
faster. In [8] an O(n) preprocessing is given, and with it any RMQ problem
request for two values can be answered in O(1). Unfortunately, this algorithm is
quite complex and the authors doubt about its advantages in practice. Thus, we
will use the much simpler algorithm proposed by [4]. It has a simple preprocessing
step which is in O(n log(n)) and solve each problem RMQ(i, j) in O(1) with only
computing the minimum of two values. It is based on the fact that the RMQ
problem for two values i and j can be easily solved if we have previously solved
the RMQ problems for four values i, u, v, j such that i ≤ v ≤ u ≤ j:

Property 3. [4] Given i, j, u, v four integers such that i ≤ v ≤ u ≤ j,
riu =RMQ(i, u) and rvj =RMQ(v, j). Then,
If A[riu] ≤ A[rvj] then RMQ(i, j) = riu else RMQ(i, j) = rvj

Then, the nice idea is to work only with intervals whose length is a power of
two, because any interval [i, j] can be splitted into two such intervals:

Corollary 3. [4] Given i, j two integers such that i ≤ j, and k = �log2(i)
,
r1 =RMQ(i, i + 2k − 1) and r2 =RMQ(j − 2k + 1, j). Then,
If A[r1] ≤ A[r2] then RMQ(i, j) = r1 else RMQ(i, j) = r2

If all the intervals whose length is a power of two are precomputed, then:

Corollary 4. [4] Let A be an array of n values, and M [i][k] =RMQ(i, i+2k−1)
with i = 1..n and k = 0..�log2(n)
. Then, each RMQ(i, j), with 1 ≤ i < j ≤ n
can be computed in O(1).

The number of intervals [i, p] with p ≤ n and whose length is a power of 2
is in O(log(n)). Since there are n starting values, the overall complexity is in
O(n log(n)). Algorithm 2 is a possible implementation of the RMQ Problem.
Note that this algorithm uses the arrays Log2Array and Pow2Array which
contain respectively for a value k the result of mathematical operations: �log(k)

and 2k. The values of these arrays can be computed in O(n + log(n)) and this
can be done once for all when the constraint is defined.

242 J.-C. Régin

Algorithm 2. AC Filtering Algorihtm based on LCA Problem
precomputeRMQ(Rmq, n)

for i = 1 to n do M [i][0] ← i
for j = 1 to Log2Array[n] do

for i = 1 to n − Pow2Array[j + 1] do
minL ← Rmq.M [i][j − 1]
minR ← Rmq.M [i + Pow2Array[j − 1]][j − 1]
if Rmq.A[minL] ≤ Rmq.A[minR] then Rmq.M [i][j] ← minL
else Rmq.M [i][j] ← minR

RangeMinimumQuery(Rmq, i, j): Integer
logWidth ← Log2Array[j − i + 1]
minL ← Rmq.M [i][logWidth]
minR ← Rmq.M [j − Pow2Array[logWidth] + 1][logWidth]
if Rmq.A[minL] ≤ Rmq.A[minR] then return minL
else return minR

LowestCommonAncestor(ccT, Rmq, i, j): Integer
pi ← ccT. pos[i]; pj ← ccT. pos[j]
return ccT.inorder[RangeMinimumQuery(Rmq,pi, pj)]

computeAllSupports(ccT, SE)
reduceCCTree(ccT,nonIncrEC)
inorderTreeTraversal(ccT)
Rmq.A ← ccT. height
precomputeRMQ(Rmq, ccT. num)
for each {i, j} ∈ SE do

lca ← LowestCommonAncestor(ccT, Rmq, i, j)
{u, v} ← ccT. Gedges[lca]
append {i, j} to S(u, v); support(i, j) ← {u, v}

computePendingEdges(nonIncrEC, ccT): return ∅
computeEnteringEdges(nonIncrEC, T1, T2): Edge Set

return {{i, j} ∈ nonIncrEC s.t. cost(i, j) > K − cost(T2) + minEC(T2)}
ACFilter(nonIncrEC, oldT, oldccT, R, T, ccT)

for each {i, j} ∈ nonIncrEC while cost(i, j) > K − cost(T) + maxEC(T)
do deleteEdge({i, j}, nonIncrEC)
SE ← computeEnteringEdges(nonIncrEC, oldT, T)
SE ← SE ∪ computePendingEdges(R,oldccT)
computeAllSupports(ccT, SE)
for each {u, v} ∈ T do

for each {i, j} ∈ S(u, v) while cost(i, j) > K − cost(T) + cost(u, v) do
deleteEdge({i, j}, nonIncrEC)

The preprocessing step is in θ(n log(n)) because the computation needs to be
systematically done. However, it can be transformed into a maximum complexity
because we can consider less than n nodes. The nodes that are not an extremity
of an edge for which we need to compute a support are not needed in the ccTree,

Simpler and Incremental Consistency Checking 243

so we can remove them. In order to maintain a binary tree, after a removal each
node having only one child is contracted that is the node is deleted and its child
becomes the child of its father. These operations have an amortized cost of O(1)
per removal. Thus, the number of nodes of the ccT ree is less than or equal to
2n and so the complexity of the preprocessing step of the RMQ Problem is in
O(n log n). Function reduceCCTree implements this idea.

The main function for implementing an AC filtering algorithm are given in
Algorithm 2. The first call of a weighted spanning tree constraint can be imple-
mented as follows (we consider that the set of edges has been sorted first):

(T, ccT) ← minimumSpanningTree(nonDecrEC)
if |T | < n − 1 or cost(T) > K then trigger a failure
ACFilter(nonIncrEC − T, ∅, ∅, ∅, T, ccT)

Proposition 5. Arc consistency of the weighted spanning tree constraint can be
established in O(n + m + n log(n))

5 Maintenance During the Search

First, we consider the incremental aspects of the problem, that is we study
the computation of the consistency of the constraint or the establishement of
arc consistency when some modifications happen. Then, we will consider the
problem of the restoration of the data structures when a backtrack occurs.

Note that the list of ordered edges is easy to maintain because we have just
to manage the deletion of elements. So if any edge knows its previous and its
next element in the ordered list then it can be removed from that list in O(1).

There are two possible events: either a nontree edge is removed or a tree edge
is removed. In the first case, the minimum spanning tree remains a minimum
spanning tree and the condition of consistency or arc consistency remain satisi-
fied (See Propositions 1 and 2).So, there is nothing to do. This case may happen
frequently because there are m edges and only n − 1 tree edges. The latter case
is more complex and deserves a careful study, because a new spanning tree must
be computed, so the ccTree may change and the lists of supported values also.
This is the purpose of the next section.

5.1 Consistency Checking

If we accept an O(n) complexity when some modifications happen, there is no
need to maintain the union find and the ccTree data structures. In fact, each
involves at most 2n elements. The new minimum spanning tree can be built from
the current one by using its tree edges, and some computations can be saved if
we rerun Kruskal’s algorithm:

Proposition 6. Let T ∗ = (X, A) be a mst of G and {i, j} a tree edge. There
exists a mst of G − {i, j} containing the set of edges A − {i, j}.
Proof. Let be {u, v} be the edge with the minimum cost contained in cut forming
by deleting {i, j} from T ∗. Let T be the tree corresponding to T ∗ where {i, j}

244 J.-C. Régin

has been replaced by {u, v} then T satisifies the Cut Optimality Condition of
G − {i, j} and so is a minimum spanning tree of G − {i, j} and T contains the
edges A − {i, j}. �
Proposition 7. Let T ∗ = (X, A) be a mst of G and R = {r1, ..., rk} be a subset
of the tree edge set. There exists a mst of G−R containing the set of edges A−R
and a set S = {s1, ..., sk} of edges such that for each i = 1..k ri ≤ si .

Proof. by induction on the number of element of R. From Prop. 6, this is true
for 1 that is for R = r1, because the cost of the mst of G − r1 is greater than
the cost of T ∗ so s1 ≥ r1. Suppose it is true until i, that is for R = r1, ...ri. This
means that we can build a tree T containing the edges of A − {r1, ...ri}. Now
from Prop.6 if the edge ri+1 is removed then we can build another tree that wil
contain the edges of T minus ri+1. This tree will also contain an arc si+1 such
that cost(si+1) ≥ cost(ri+1) because T is a mst of G−{r1, ..., ri}. Therefore this
is true for i + 1 and the proposition holds. �

Consider that the sets A and R of edges are ordered w.r.t. the cost of the edges.
While traversing the edges of E to build the new mst T , we can add the edges
of A − R and avoid considering some edges of E. Suppose that we search for an
edge si replacing the edge ri and that we have found replacement edges for all
the edges of R smaller than ri. If si is smaller than ri+1 then we can immediatly
add to T all the edges of A − R between ri and ri+1 and we can search for a
replacement of ri+1 from that position in E (See Algorithm 3.).

5.2 AC Filtering Algorithm

The computation of a new mst changes the boundaries of Corollary 1. Thus, some
edges can be immediately deleted and some supports must be computed for the
first time for some other edges, named entering edges. In addition, the ccTree has
been rebuilt when checking the consistency, so some support lists may be no longer
correct. Consider ccT ∗ the ccTree associated with the old mst T ∗ and ccT the
ccTree associated with the new mst T . We need first to run again the preprocessing
of the RMQ problems for ccT . Then, we need to identify the edges for which their
support is no longer valid or for which the validity must be verified. These edges are
called pending edges, These are the edges belonging to any support list S(u, v)
where the node of ccT ∗ associated with the edge {u, v} or a descendant of this
node in ccT ∗ is associated with an edge of G which has been removed. Once these
lists have been identified, it is necessary to compute the supports for all the edges
contained in these lists and then to recompute new lists of supports. Then, all
the lists of supports can be checked. This is required because the cost of the mst
changed and so some edges that were consistant may become inconsistant. These
checks of consistency of edges within support lists can be greatly improved if the
elements are sorted, due to the structure of Proposition 3, so we need to sort the
elements contained in the union of all the unvalid lists of support. Fortunately, it
is possible to achieve such a sort in a very efficient way:

Proposition 8. Let G = (X, E) be a graph where E is ordered, and OE be the
array of ordered indices of E (i.e. OE[e] = k means that the edge e in in the kth

Simpler and Incremental Consistency Checking 245

Algorithm 3. Recomputation of a mst after modifications
RecomputeMST(T, R, nonDecrEC): (mst, ccTree)

initCC(n)
initCCTree(ccT, n)
A is the edge set of T ; newT is empty
{u, v} ← first(A)
while {u, v} ≤ last(A) do

ne ← next(A, {u, v})
if {u, v} ∈ (A − R) then

ri ← getCCRoot(i); rj ← getCCRoot(j)
addEdge(ccT, newT, ri, rj , {i, j})

else
cpt ← cpt + 1
for each {i, j} ∈ nonDecrEC from {u, v} while cpt > 0 do

ri ← getCCRoot(i); rj ← getCCRoot(j)
if {i, j} ≥ ne then

if {i, j} = ne then addEdge(ccT, newT, ri, rj , {i, j})
ne ← next(A,ne)

else
if ri �= rj then

addEdge(ccT, newT, ri, rj , {i, j})
cpt ← cpt − 1

{u, v} ← ne

return (newT, ccT)

position in E). Let F be a subset of E and n = |X |, m = |E|, m′ = |F |. Then,
we can sort the elements of F with the same order as for E in O(n + m′).

Proof. Consider a Least Significant Digit Radix Sort and b a base (or radix) used

to represent numbers. Such a sort is able to sort an array of numbers ranging from

0 to Δ − 1 in logb(Δ) calls to a stable sort [5]. A stable sort like counting sort [5] is

able to sort num numbers ranging from 0 to b − 1 in O(num + b). Therefore the time

complexity of a radix sort can be expressed as: logb(Δ) × O(num + b). The edge set

E is already sorted, and we can access for each edge to its position in E, so instead

of considering the value associated with each element, it is equivalent to consider the

position of the element in E. There are m possible positions, so to order F we need

to order elements taking their value in [0..m − 1]. With a Radix Sort combined with a

counting sort we can sort F in logb(m) × O(m′ + b), because Δ = m and num = m′ in

our case. If we use n as base b then we have logn(m) × O(m′ + n). We have m ≤ n2 so

logn(m) ≤ logn(n2) = 2 logn(n) = 2. Therefore logn(m) × O(m′ + n) is equivalent to

2 × O(m′ + n), that is O(m′ + n). 	

When used during the search for a solution the consistency checking and the arc
consistency filtering of a wst constraint can be implemnted as follows (See also
Algorithm 4). Let R be the set of edges of T that are deleted:

246 J.-C. Régin

Algorithm 4. Incremental AC Filtering Algorithm
computeEnteringEdges(nonIncrEC, T1, T2): Edge Set

if cost(T2) ≥ cost(T1) then
return {{i, j} ∈ nonIncrEC s.t.
K − cost(T2) + minEC(T2) < cost(i, j) ≤ K − cost(T1) + minEC(T1)}

else
return {{i, j} ∈ nonIncrEC s.t.
K − cost(T2) + maxEC(T2) < cost(i, j) ≤ K − cost(T1) + maxEC(T1)}

computePendingEdges(R, ccT): Edge Set
SE ← ∅
add to UN the nodes of ccT associated with edges of R
for each x ∈ UN do

SE ← SE ∪ S(ccT.Gedge[x])
S(ccT.Gedge[x]) ← ∅
if ccT.parent[x] �∈ UN then add(ccT.parent[x], UN)

sort(SE)
return SE

(newT, newccT) ← RecomputeMST(T, R, nonDecrEC)
if |newT | < n − 1 or cost(newT) > K then trigger a failure
ACFilter(nonIncrEC − newT, T, ccT, R, newT, newccT)
T ← newT ; ccT ← newccT

5.3 Restoration

There are two possible ways to deal with backtracks: either the state is exactly
restored or an equivalent state is defined [12]. With a boundary based constraint
the optimal solution at a node n may not be an optimal solution for the ancestors
of n, therefore it is needed to restore the same state when a backtrack occurs. For
the wst constraint, it means that we need to save all the modifications affecting
the current minimum spanning tree. Then, we can easily restore the previous
spanning tree because we know the set P of edges that have been deleted at a
given search node and the set R of edges that have been added to the mst for
this node (See Algorithm 5). All the restored edges must also be added to the
pending edges. Here is a possible procedure to restore the previous state:

Algorithm 5. Restoration of a mst
RestoreMST(T, P, R, nonDecrEC): (mst, ccTree)

initCC(n)
initCCTree(ccT, n)
A is the edge set of T ; newT is empty
for each {i, j} ∈ (A − R) ∪ P do

ri ← getCCRoot(i); rj ← getCCRoot(j)
addEdge(ccT, newT, ri, rj , {i, j})

return (newT, ccT)

Simpler and Incremental Consistency Checking 247

(newT, newccT) ← RestoreMST(T, P, R, nonDecrEC)
if |newT | < n − 1 or cost(newT) > K then trigger a failure
ACFilter(nonIncrEC − newT, T, ccT, R, newT, newccT)
T ← newT ; ccT ← newccT

6 Conclusion

In this paper we have presented simpler algorithms for checking the consistency
and for establishing arc consistency of the weighted spanning tree constraint.
We have detailed, by giving the pseudo-code, several versions of these algotihms
that are able to exploit the modifications that happen during the search for a
solution in order to save some computations . The complexity of all the proposed
filtering algorithms neither exceeds O(m + n log(n)) which is quite good.

References

1. Aho, A., Hopcroft, J., Ullman, J.: On finding lowest common ancestors in trees.
SIAM J. Comput. 5(1), 115–132 (1976)

2. Aron, I., Van Hentenryck, P.: A constraint satisfaction approach to the robust
spanning tree problem with interval data. In: Proc. of UAI, pp. 18–25 (2002)

3. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano,
M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

4. Bender, M., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms 57,
75–94 (2005)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

6. Dixon, B., Rauch, M., Tarjan, R.: Verification and sensitivity analysis of minimum
spanning trees in linear time. SIAM J. Comput. 21(6), 1184–1192 (1992)

7. Dooms, G., Katriel, I.: The not-too-heavy spanning tree constraint. In: Van Henten-
ryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59–70. Springer,
Heidelberg (2007)

8. Fischer, J., Heun, V.: Theoretical and practical improvements on the rmq-problem,
with applications to lca and lce. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006.
LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

9. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry
problems. In: Proc. of STOC, pp. 135–143 (1984)

10. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput. 13(2), 338–355 (1984)

11. Manku, G.: An o(m + n log* n) algorithm for sensitivity analysis of minimum
spanning trees (1994), citeseer.ist.psu.edu/manku94om.html

12. Régin, J.-C.: Maintaining arc consistency algorithms during the search without
additional space cost. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 520–
533. Springer, Heidelberg (2005)

13. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)

14. Tarjan, R.: Sensitivity analysis of minimum spanning trees and shortest path trees.
Information Processing Letters 14(1), 30–33 (1982)

15. Tarjan, R.E.: Data Structures and Network Algorithms. CBMS-NSF Regional Con-
ference Series in Applied Mathematics (1983)

citeseer.ist.psu.edu/manku94om.html

Stochastic Satisfiability Modulo Theories for

Non-linear Arithmetic�

Tino Teige and Martin Fränzle

Carl von Ossietzky Universität, Oldenburg, Germany
{teige,fraenzle}@informatik.uni-oldenburg.de

Abstract. The stochastic satisfiability modulo theories (SSMT) prob-
lem is a generalization of the SMT problem on existential and random-
ized (aka. stochastic) quantification over discrete variables of an SMT
formula. This extension permits the concise description of diverse prob-
lems combining reasoning under uncertainty with data dependencies.
Solving problems with various kinds of uncertainty has been extensively
studied in Artificial Intelligence. Famous examples are stochastic satisfi-
ability and stochastic constraint programming. In this paper, we extend
the algorithm for SSMT for decidable theories presented in [FHT08] to
non-linear arithmetic theories over the reals and integers which are in
general undecidable. Therefore, we combine approaches from Constraint
Programming, namely the iSAT algorithm tackling mixed Boolean and
non-linear arithmetic constraint systems, and from Artificial Intelligence
handling existential and randomized quantifiers. Furthermore, we evalu-
ate our novel algorithm and its enhancements on benchmarks from the
probabilistic hybrid systems domain.

1 Introduction

Papadimitriou [Pap85] proposed the idea of uncertainty for propositional satisfi-
ability by introducing randomized quantification in addition to existential quan-
tification. This yields the stochastic propositional satisfiability (SSAT) problem
where randomly quantified variables (randomized variables for short) are set to
true with a certain probability. The solution of an SSAT problem Φ is a strategy
to assign values to the existential variables that maximizes the overall satisfac-
tion probability of Φ. Since the quantifier ordering of Φ, called prefix, allows
an alternating sequence of existential and randomized quantifiers, the value of
an existential variable depends on the values of the randomized variables with
earlier appearance in the prefix. Consequently, in general such a solution is a
tree of assignments to the existential variables depending on the values of pre-
ceding randomized variables. The SSAT framework is –at least theoretically–
able to tackle many problems from Artificial Intelligence (AI) exhibiting un-
certainty, e.g. stochastic planning problems. We just briefly note that there is
� This work has been partially supported by the German Research Council (DFG)

as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 248–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 249

a lot of work done on efficiently transforming AI problems into SSAT formu-
lae, e.g. cf. [LMP01, ML98, ML03]. Littman [Lit99]1 proposed an algorithm for
SSAT which extends the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[DP60, DLL62] (DPLL is the basic algorithm of most modern propositional sat-
isfiability solver) with acceleration techniques like unit resolution, purification,
and thresholding. For a very comprehensive survey about stochastic satisfiability
confer [LMP01]. More recently, Majercik further improved the DPLL-style SSAT
algorithm by introducing non-chronological backtracking [Maj04].

There are several attempts to extend the stochastic framework beyond the
purely propositional case. Doing so yields stochastic constraint programming
[Wal02, TMW06, BS06, BS07] in which the domains for all variables, also non-
quantified variables, are so far still finite. In [BS07] it was shown that the stochas-
tic constraint satisfaction problem (SCSP) is PSPACE-complete also for multiple
objectives by describing an algorithm for SCSPs in non-prenex form. The au-
thors of [FHT08] introduced the stochastic satisfiability modulo theories (SSMT)
problem and its application for the reachability analysis of probabilistic hybrid
automata. Moreover, they described an algorithm for SSMT for decidable theo-
ries, e.g. linear arithmetic over the reals and integers. Although quantified vari-
ables in an SSMT problem still have finite domains, this restriction is relaxed
for non-quantified variables or, equivalently, the innermost set of existentially
quantified variables.

In this paper, we extend and benchmark the ideas from [FHT08]. First, we
propose an SSMT algorithm for non-linear arithmetic over the reals and inte-
gers. (Note that for the non-linear case the SSMT problem becomes undecid-
able in general.) Second, we implement this algorithm and prove its concept
by presenting empirical results. Third, in addition to the thresholding prun-
ing rules we adapt the promising idea of solution-directed backjumping [Maj04]
to our setting. The algorithm described in this paper is strongly based on the
iSAT algorithm [FHT+07] for solving non-linear arithmetic constraint systems
(involving transcendental functions) with complex Boolean structure over real-
and integer-valued variables.2 The iSAT approach tightly integrates the DPLL
algorithm with interval constraint propagation (ICP, cf. [BG06] for an extensive
survey) enriched by enhancements like conflict-driven clause learning and non-
chronological backtracking. For a very detailed description of the iSAT algorithm
the reader is referred to the original paper, in particular to the example on pages
217–219. As the core algorithm, iSAT is implemented in the constraint solver
HySAT-II3 which has been specifically designed for bounded model checking of
hybrid (discrete-continuous) systems.

1 We remark that the problem in this paper, called P-Sat, additionally contains uni-
versal quantification.

2 Note that the input formula of iSAT is rewritten into conjunctive normal form be-
forehand and all arithmetic constraints are decomposed into primitive constraints
[FHT+07, Section 2].

3 A HySAT-II executable, the tool documentation, and benchmarks can be found on
http://hysat.informatik.uni-oldenburg.de.

250 T. Teige and M. Fränzle

(0, 0.6)(0, 0.6)

x = 0

Pr = 0 Pr = 1 Pr = 1 Pr = 1

Pr = 0.6 · 1 + 0.4 · 1 = 1

2a · sin(4b) ≥ 3
2a · sin(4b) < 1

2a · sin(4b) ≥ 3
2a · sin(4b) < 1

x

unsat satsat

Pr = 0.6 · 0 + 0.4 · 1 = 0.4

(1, 0.4)

sat

(1, 0.4)

y y

x = 1

Pr(Φ) = max(0.4, 1) = 1

Φ = ∃x ∈ {0, 1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x > 0 ∨ 2a · sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1)

Fig. 1. Semantics of an SSMT formula depicted as a tree

Structure of the paper. In Section 2 we recall the definition of an SSMT prob-
lem while Section 3 presents an algorithm for SSMT for non-linear arithmetic
theories. An experimental evaluation of that algorithm is given in Section 4.
Section 5 concludes the paper and lists some directions for future work.

2 Stochastic Satisfiability Modulo Theories

The satisfiability modulo theories (SMT) problem (cf., e.g., [RT06]) is a decision
problem for logical formulae wrt. combinations of background theories. Thus,
SMT generalizes the well-known propositional satisfiability (SAT) problem. The
stochastic SMT (SSMT) problem extends SMT to support randomized quantifi-
cation over discrete variables as known from SSAT and SCSP.

Let ϕ be an SMT formula in conjunctive normal form (CNF) over some
quantifier-free potentially non-linear arithmetic theory T over the reals, inte-
gers, and Booleans. I.e., ϕ is a logical conjunction of clauses, and a clause is
a logical disjunction of (atomic) arithmetic predicates from T , as in ϕ = (x >
0 ∨ 2a · sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1). An SSMT problem

Φ = Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) : ϕ

is specified by a prefix Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) binding the vari-
ables xi to the quantifier Qi,4 and an SMT formula ϕ, also called the matrix.
We require that the domains dom(x) of quantified variables x are finite (and
thus discrete). A quantifier Qi, associated with variable xi, is either existential,
denoted as ∃, or randomized, denoted as

R

di where di is a discrete probabil-
ity distribution over dom(xi). The value of a variable xi bound by a random-
ized quantifier (randomized variable for short) is determined stochastically by
the corresponding distribution di, while the value of an existentially quantified
variable can be set arbitrarily. We usually denote such a probability distribu-
tion di by a list 〈(v1, p1), . . . , (vm, pm)〉 of value pairs, where pj is understood
as the probability of setting variable xi to vj . The list satisfies vj 	= vk for
j 	= k, ∀j : pj > 0,

∑m
j=1 pj = 1, and dom(xi) = {v1, . . . , vm}. For instance,

4 Not all variables occurring in the formula ϕ need to be bound by a quantifier.

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 251

R

{(0,0.2),(1,0.5),(2,0.3)}x ∈ {0, 1, 2} means that the variable x is assigned the value
0, 1, or 2 with probability 0.2, 0.5, and 0.3, respectively.

The semantics of an SSMT problem is defined by the maximum probability
of satisfaction. Intuitively, for an SSMT formula Φ = ∃x1 ∈ dom(x1)

R

d2x2 ∈
dom(x2) ∃x3 ∈ dom(x3)

R

d4x4 ∈ dom(x4) : ϕ determine the maximum proba-
bility s.t. there is a value for x1 s.t. for random values of x2 there is a value for
x3 s.t. for random values of x4 the SMT formula ϕ is satisfiable. (As standard,
an SMT formula ϕ (in CNF) is satisfiable iff there exists a valuation σ of the
variables in ϕ s.t. each clause is satisfied under σ, i.e., iff at least one atom in
each clause is satisfied under σ. Otherwise, ϕ is unsatisfiable.) More formally,
the maximum probability of satisfaction Pr(Φ) of an SSMT formula Φ is defined
recursively by the following rules where ϕ denotes the matrix.

1. P r(ϕ) = 0 if ϕ is unsatisfiable.

2. P r(ϕ) = 1 if ϕ is satisfiable.

3. P r(∃xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)
= maxv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

4. P r(

R

dixi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)
=

∑
(v,p)∈di

p · Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).
For an example see Fig. 1.

3 SSMT Algorithm for Non-linear Arithmetic

In this section we present our algorithm SiSAT for calculating the maximum
probability of satisfaction of an SSMT formula. More precisely, for a given SSMT
formula Φ and a lower and upper target threshold tl, tu ∈ [0, 1] with tl ≤ tu, the
algorithm returns a witness value p ≤ Pr(Φ) s.t. p > tu iff Pr(Φ) > tu, a value
p < tl iff Pr(Φ) < tl, or otherwise (i.e., if tl ≤ Pr(Φ) ≤ tu) the value p = Pr(Φ).
If we wish to compute the exact value of Pr(Φ) we may thus simply set tl = 0 and
tu = 1. SiSAT is an extension of the iSAT algorithm with an additional tightly
integrated top layer for dealing with existential and randomized quantifiers. In
the iSAT context, and thus in SiSAT, variables are interpreted over interval val-
uations which are manipulated during the proof search. As the iSAT algorithm
is employed as the underlying core engine, we have to decompose all arithmetic
predicates into so called primitive constraints by introducing additional auxil-
iary variables. A primitive constraint consists of exactly one relational operator,
at most one arithmetic operator, and at most three variables. Note that for
each (arithmetic) SMT formula there is an equi-satisfiable linearly-sized SMT
formula in CNF just containing primitive constraints. For the input syntax of
iSAT confer [FHT+07, Section 2]. As an example, the matrix of Φ from Fig. 1
can be rewritten to, e.g., (x > 0 ∨ h1 · h2 ≥ 3) ∧ (y > 0 ∨ h1 · h2 < 1) ∧ (h1 =
2a) ∧ (h2 = sin(h3)) ∧ (h3 = 4b). All algorithmic enhancements of iSAT are
naturally inherited, such as conflict-driven clause learning & non-chronological
backtracking, the two-watching scheme, as well as the combined unit and interval

252 T. Teige and M. Fränzle

Algorithm 1. SiSAT(Pre, tl, tu)
In: A prefix Pre, lower and upper thresholds tl, tu.
Out: The satisfaction probability of the SSMT formula wrt. the thresholds.
1: while true do
2: while true do
3: result := deduce(). {Deducing.}
4: if result = CONFLICT then
5: resolved := analyze conflict(). {Learning & Backjumping.}
6: if not resolved then
7: return 0. {No solution for subproblem.}
8: end if
9: else if result = SOLUTION then

10: return 1. {Solution found.}
11: else
12: break. {Leave loop for branching.}
13: end if
14: end while

{Existential quantifier.}
15: if head(Pre) = ∃x ∈ dom(x) then
16: v ∈ dom(x), set(x = v), dom(x) := dom(x) − {v}.
17: p0 = SiSAT(tail(Pre), tl, tu).
18: if p0 > tu or p0 = 1 or dom(x) = ∅ then
19: return p0. {Upper threshold exceeded or maximum possible probability

reached or all branches investigated.}
20: end if
21: p1 = SiSAT(Pre,max(p0, tl), tu). {Neglect probabilities less than p0.}
22: return max(p0, p1). {Return maximum probability.}
23: end if

{Randomized quantifier.}
24: if head(Pre) =

R

dx ∈ dom(x) then
25: v ∈ dom(x), (v, pv) ∈ d, set(x = v), dom(x) := dom(x) − {v}.
26: premain =

∑
v′∈dom(x),(v′,p′)∈d p′.

27: p0 = SiSAT(tail(Pre), (tl − premain)/pv, tu/pv).
28: if (pv · p0) > tu or (pv · p0) = 1 or dom(x) = ∅ then
29: return pv ·p0. {Upper threshold exceeded or maximum possible probability

reached or all branches investigated.}
30: end if
31: if premain < (tl − pv · p0) then
32: return pv ·p0. {Lower threshold cannot be reached by remaining branches.}
33: end if
34: p1 = SiSAT(Pre, tl − pv · p0, tu − pv · p0). {Update thresholds.}
35: return pv · p0 + p1. {Return weighted sum.}
36: end if

{No quantifier left. Start iSAT branching.}
37: if not decide next branch() then
38: return 1. {Approximative solution found.}
39: end if
40: end while

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 253

constraint propagation. For more details about iSAT the reader is referred to
[FHT+07, THF+07].

Although we implemented SiSAT in an iterative manner, we present the basic
ideas in a more intuitive recursive fashion (cf. Algorithm 1). Let Φ = Pre : ϕ be
the SSMT formula to be solved and tl, tu be the lower and upper target thresh-
olds, respectively. For the initial call SiSAT(Pre, tl, tu) the matrix ϕ, i.e. the
clauses, of the SSMT formula Φ will be stored in a global database. New learned
conflict clauses will be added to this database and, thus, will be public for all
subproblems to be solved. The main loop of the SiSAT algorithm consists of the
deduction phase, conflict resolution, and branching. Within the deduction phase
the algorithm tries to conclude tighter intervals for the variables by chopping
off non-solutions, starting from the domains of the variables as initial intervals.
This is done by unit propagation and interval constraint propagation. Whenever
a conflict occurs during search, i.e. if all constraints in a clause of the matrix
are inconsistent with the current interval valuation, SiSAT analyzes the conflict.
If the conflict can be resolved without revoking any assignment to a quantified
variable then clause learning and backjumping are performed. Otherwise, i.e.
if conflict resolution calls for undoing assignments to quantified variables, the
function analyze conflict() returns false indicating unsatisfiability of the cur-
rent subproblem. Further backtracks concerning quantified variables are handled
by the recursive nature of the algorithm. The branching step in the SiSAT frame-
work corresponds to splitting an interval of a non-quantified variable or selecting
a value for a quantified variable from its current domain. If a subproblem is de-
cided to be satisfiable or unsatisfiable, the algorithm returns the probability 1
or 0 for that subproblem, resp., according to the semantics of Section 2. For
the soundness of Algorithm 1, we require that the deduce() function returns
SOLUTION only if the current quantifier prefix Pre is empty, i.e. branching for
all quantified variables was performed beforehand.

The quantification issue is mainly treated within the branching step. In con-
formity with the semantical definition of the maximum probability, the branches
for the quantified variables of the prefix are explored from left to right, and the
resulting probabilities are combined correspondingly. The functions head(Pre)
and tail(Pre) return the leftmost element Q x ∈ dom(x) of prefix Pre and the
prefix originating from Pre where the leftmost element, i.e. head(Pre), is elim-
inated, respectively. For a quantified variable x, we first select a value v from
dom(x), assign v to x, and exclude v from dom(x). Then, we compute the proba-
bility for the branch x = v by recursively calling the SiSAT procedure where the
head element Q x ∈ dom(x) of the prefix is removed and the target thresholds
are updated as follows: If x is existential then we simply preserve tl, tu. If x is
randomized then we take the probability pv for the value v and the maximum
possible remaining probability premain =

∑
v′∈dom(x),(v′,p′)∈d p′ for all remaining

values v′ 	= v of x into account. I.e., the lower and upper target thresholds for
this call are (tl − premain)/pv and tu/pv, resp., since if tl − premain cannot be
reached by branch x = v then tl cannot be reached at all. (We remark that
tl − premain can be a negative number and thus the new lower thresholds can

254 T. Teige and M. Fränzle

be negative. This fact, however, does not influence the correctness since the
termination criterion concerning lower thresholds applies only if the remaining
probability premain ≥ 0 is strictly less than the (updated) lower threshold.)

We exploit some pruning rules concerning the target thresholds which allow to
return a result without visiting all branches. These rules are generalizations of the
thresholding rules for the propositional case from [LMP01]. Let p0 be the result
of the SiSAT call. Whenever the computed probability for the branch x = v, i.e.
either p0 or pv · p0, exceeds the upper threshold tu, we can skip investigation
of all other branches and return the (positive) result. Note that the same holds
if the domain dom(x) becomes empty or the maximum possible probability 1
is computed. For the randomized case, it could also happen that the maximum
possible probability of all remaining branches premain cannot reach the new lower
target threshold tl − pv · p0. Then we are also allowed to immediately return the
(negative) result without further exploration of the remaining subtree. For the
remaining subtree, i.e. ∀v′ 	= v : x = v′, we set the target thresholds as follows:
If x is existential then the new lower and upper thresholds are max(p0, tl) and
tu, resp., since we can neglect probabilities of the remaining subtree less than
the already computed value p0. If x is randomized then both new thresholds
decrease by the computed probability pv · p0. Let p1 be the result of the second
SiSAT call, then we combine the computed probabilities in accordance with the
SSMT semantics, namely max(p0, p1) for the existential and pv · p0 + p1 for the
randomized case, and return the result.

If all quantified variables are currently assigned to some values, i.e. the prefix
Pre is empty (Pre = head(Pre) = ∅), the algorithm applies the usual iSAT
branching for all non-quantified (Boolean, integer, and real-valued) variables by
splitting their intervals. Note that the iSAT algorithm is in general not able to find
a solution of any mixed Boolean and non-linear arithmetic constraint formula or to
prove its absence, since search algorithms based on interval splitting and interval
constraint propagation over the reals are incomplete deduction systems. In order
to avoid a potentially infinite sequence of splitting intervals, branching stops if
for each (non-quantified) variable z the width ω(z) of the current interval of z is
less than a predefined value ε > 0, i.e. ω(z) < ε. In such a case, the algorithm
found a hull consistent interval valuation (for more details cf. [FHT+07]) which
we consider as an approximative solution. Thus, we return the probability 1.

3.1 Solution-Directed Backjumping

For stochastic Boolean satisfiability, solution-directed and conflict-directed back-
jumping was introduced by Majercik [Maj04]. We note, however, that this idea
was first proposed for quantified Boolean satisfiability in [GNT03]. We adapt the
promising technique of solution-directed backjumping to the stochastic mixed
Boolean and (non-linear) arithmetic framework. The idea of solution-directed
backjumping (SDB) is to avoid exploring the remaining branches of a quantified
variable x, whenever the truth value of the formula remains the same if the cur-
rent value of x changed. I.e., the probability of all such subtrees are the same as
for the current branch.

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 255

x = 0 x = 0

(0, 0.3)

Pr = 1
x x

b b b b

y

Pr = 1Pr = 0 Pr = 1 Pr = 0Pr = 1 Pr = 0

false false true false falsetrue true true

x = 1 x = 1

(1, 0.7)

Pr(Φ) = 1

Pr = 0

Pr = 1

Pr = 1

Fig. 2. Decision tree for Φ

Motivating this heuristics we first consider an example. Given the following
SSMT formula

Φ =

R

〈(0,0.3),(1,0.7)〉y ∈ {0, 1} ∃x ∈ {0, 1} : (¬b ∨ x ≥ 1) ∧ (b ∨ y < 1)

where b ∈ B is a Boolean variable5. The decision tree for Φ is depicted in Fig. 2.
Calling the SiSAT algorithm on Φ, branching for the randomized variable y, say
(1) y = 1, implies that b = true (i.e. b = 1) by the second clause. Hence, the
domain of b is narrowed to [1, 1] by SiSAT’s deduce() procedure. Then, by the
first clause it follows that x ≥ 1 has to hold, i.e. the domain of x is contracted
to {1}. Thus, the only possibility for branching on the existential variable x
is (2) x = 1. Here, deduce() returns SOLUTION. Consequently, the probability
of branch (2) is 1. Since 1 is the maximum possible probability, SiSAT returns
value 1 as the result for branch (1). I.e., the intermediate maximum satisfaction
probability of Φ is 0.7 · 1 = 0.7. At this point, we take the idea of solution-
directed backjumping into account: The assignment y = 1 has no impact on
the satisfaction of the matrix (cf. Fig. 2). I.e., all other assignments to y also
satisfy the formula and lead to the same probability. Hence, also the branch
y = 0 results in probability 1 which means that we are able to conclude that
Pr(Φ) = 0.7 + 0.3 · 1 = 1 without visiting the subtree for y = 0.

To be more formal, we first define a reason for a solution (analogously to
a reason for a conflict). Given an SSMT formula Φ = Pre : ϕ. Let ρ be a
satisfying interval valuation of the matrix ϕ, i.e. ρ(ϕ) = true. If we consider
hull consistency as an approximative solution then it is sufficient that ρ is hull
consistent with ϕ, denoted as ρ(ϕ) = hc. We call a set r ⊆ {a : a ∈ c ∈ ϕ} of
atoms from ϕ a reason for the satisfaction of ϕ under ρ if the following hold:

1. ∀c ∈ ϕ ∃a ∈ c : a ∈ r, and
2. ∀a ∈ r : ρ(a) = true (resp. ρ(a) = hc)

5 The Boolean domain B is represented by the integer interval [0, 1], where the values
0 and 1 correspond to the truth values false and true, respectively.

256 T. Teige and M. Fränzle

where ρ(a) for an atom a gives the truth value of a under the interval valuation
ρ(x) of its variables x. Note that such a set r exists (while not being unique)
whenever ρ(ϕ) = true (resp. ρ(ϕ) = hc) holds. By sat reasons(ϕ, ρ) we denote
the set of all reasons r for the satisfaction of ϕ under ρ. In our example above,
the only reason for the satisfaction is {x ≥ 1, b} where ρ is given by ρ(y) =
[1, 1], ρ(x) = [1, 1], ρ(b) = [1, 1].

Given a reason r ∈ sat reasons(ϕ, ρ), a quantified variable x, and the current
domain Dx of x, the predicate no impact(r, ρ, x, Dx) returns true only if the
current interval ρ(x) of x has no impact on the satisfaction. More precisely,

no impact(r, ρ, x, Dx) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

true ; ∀a ∈ r ∀vx ∈ Dx :
x /∈ vars(a) ∨
ρ[vx/x](a) = true (resp. ρ[vx/x](a) = hc)∧
∀y ∈ vars(a) s.t. y 	= x : y /∈ qvars(Φ)

false otherwise

where vars(a) gives the set of all variables occurring in atom a, qvars(Φ) gives
the set of all quantified variables occurring in the SSMT formula Φ, and ρ[vx/x]
is the modified interval valuation ρ defined by ρ[vx/x](x) = [vx, vx] and ∀y 	= x :
ρ[vx/x](y) = ρ(y).

If no impact(r, ρ, x, Dx) = true then each assignment x = vx with vx ∈ Dx

for x also satisfies each atom a from r. If x occurs in an atom a ∈ r together
with another quantified variable y, e.g. a = (x ≥ y), the return value is always
false. This definition allows to perform solution-directed backjumping for each
quantified variable locally without considering the mutual interplay with other
quantified variables. For x ≥ y, the solution ρ(x) = [1, 1], ρ(y) = [0, 0], and the
current domains Dx = [0, 1], Dy = [0, 1], we could otherwise wrongly conclude
that the values 1 for x and 0 for y have no impact on the satisfaction, since
∀vx ∈ Dx : vx ≥ 0 and ∀vy ∈ Dy : 1 ≥ vy. However, the assignment x =
0, y = 1 does not satisfy x ≥ y. For our set of benchmarks, the SSMT formulae
do not contain atoms with more than one quantified variable as we will see
in Section 4. Thus, the definition of no impact(r, ρ, x, Dx) is sufficient for our
application domain. However, in future work we will develop a more general and
more global reasoning mechanism to tackle this issue.

The extended SiSAT algorithm supporting solution-directed backjumping is
enriched by two more pruning rules which are only applied if a solution ρ with
a fixed reason r ∈ sat reasons(ϕ, ρ) was found. Let x be an existential variable
in rule 1 and a randomized variable in rule 2, dom(x) be the updated domain
of x, and p0 be the currently computed probability. If x is randomized then pv

is the probability of the currently processed branch and premain the sum of the
probabilities of the remaining branches (cf. Algorithm 1). The solution-directed-
backjumping rules are as follows:

1. if no impact(r, ρ, x, dom(x)) then return p0.
2. if no impact(r, ρ, x, dom(x)) then return pv · p0 + premain · p0.

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 257

4 Evaluation of the Algorithm

In this section, we evaluate our algorithm on SSMT formulae encoding discrete-
time probabilistic hybrid automata. A probabilistic hybrid automaton (PHA) as
described, e.g., in [FHT08] extends the notion of a hybrid automaton, where the
non-deterministic selection of a transition is enriched by a probabilistic choice
according to a distribution over variants of the transition. I.e., each transition
carries a (discrete) probabilistic distribution. Each probabilistic choice within
such a distribution leads to a potentially different successor mode while per-
forming some discrete actions. For our case study, we are especially interested in
k-bounded model checking (BMC) problems, i.e., we want to prove or disprove
whether a given property P is satisfied with probability greater or equal p in
a probabilistic hybrid automaton H along all its traces of length up to k. The
automata considered for the experiments are shown in Fig. 3. These benchmarks
are hand-made and serve as a first indicator for proving the concept of the ap-
proach and showing its current limits as well as the impact of the suggested
algorithmic enhancements.

4.1 Description and Encoding of the Case Studies

Let us consider the probabilistic automaton H1 depicted in Fig. 3. H1 is not
hybrid since it lacks continuous state components but serves as an illustration
of the idea of a probabilistic choice. The initial mode of H1 is s1 (indicated
by the incoming edge). The system can change its current mode by taking an
outgoing transition if its transition guard evaluates to true. In our example,
there is just one outgoing transition t1 with the trivially satisfied guard true.
After nondeterministically selecting a transition, the follower mode and action
performed is given by a discrete distribution. Taking t1 in H1, the probability of
reaching s1 and s2 are 0.9 and 0.1, respectively. For a given reachability property
P , say reaching mode s2 in H1, the problem is to determine the maximum
probability of satisfying P in k steps. I.e., the underlying problem is to find
a strategy s.t. selecting a transition maximizes the probability of satisfying P .
For 1 step, the probability Pr of reaching s2 obviously is 0.1, for 2 steps Pr =
0.1 + (0.9 · 0.1) = 0.19, and in general for k ≥ 1 steps Pr =

∑k−1
i=0

(
0.1 · 0.9i

)
.

For H1 there are no alternative transitions over which a maximization could
be achieved. However, the initial mode s1 in H2 has two outgoing transitions.
Assume that ky = 1 and c = 0, then both transitions are enabled, i.e. the guards
y > c of t1 and true of t3 are true. Thus, we have to opt for either t1 or t3. For
each step depth, we cannot reach the target state s2 without taking t1. Hence,
the selection of t3 does never yield the maximum probability of satisfying the
reachability property.

We encoded the next state relation of H1, H2, and H3 as SSMT formulae
and unwind these up to some depth k. To gain an impression of that encoding,
we exemplify it for H1. For more details confer [FHT08]. Let k be the unwind-
ing depth. Then, for each step i = 1, . . . , k and for the transitions t1, t2 we
introduce existential variables ei

t1 , e
i
t2 encoding the nondeterministic choice and

258 T. Teige and M. Fränzle

1.0

0.9

0.1

s2

t1 t2

s1

true true

H1

1.0

y = y + 1

1.0
0.9

0.1

s2

t1t3 t2

s1

y > c

y = ky

true true

H2

y = ky

x = kx

x = x · y

1.0

y = y + 1
x = kx

1.0
0.7

0.2

0.1

0.88

y = y2 · x x = x · y

0.5

0.5

0.12

s2

s3

t1t3

t4

t2

t5

s1

y > x

y > x2

x = kx

true

true true

H3

Fig. 3. Probabilistic hybrid automata H1 (top), H2 (middle), and H3 (bottom)

randomized variables ri
t1 , r

i
t2 encoding the probabilistic choice.6 I.e., the prefix

of the SSMT formula for step i is given by ∃ei
t1 ∈ {0, 1} R

〈(0,0.9),(1,0.1)〉ri
t1 ∈

{0, 1} ∃ei
t2 ∈ {0, 1} R

〈(0,1.0)〉ri
t2 ∈ {0}. The matrix is constructed as follows. The

initial condition is s0
1 ∧ ¬s0

2, and the target property is (s0
2 ∨ . . . ∨ sk

2), where si
n

is a Boolean variable encoding whether H1 is in mode sn before step i + 1 is
executed. At each point of time, the system has to be in exactly one mode, and
exactly one transition has to be taken for a mode change. I.e., si

1 + si
2 = 1 and

ei
t1 + ei

t2 = 1. The transition relation is encoded as:

(si−1
1 ∧ (ei

t1 = 1) ∧ (ri
t1 = 0) ∧ si

1) ∨
(si−1

1 ∧ (ei
t1 = 1) ∧ (ri

t1 = 1) ∧ si
2) ∨

(si−1
2 ∧ (ei

t2 = 1) ∧ (ri
t2 = 0) ∧ si

2)

Note that an equi-satisfiable linearly-sized formula in CNF can be obtain effi-
ciently. Moreover, we can simply arrange all sub-prefixes in front of the formula

6 Note that [FHT08] describes an alternative approach where only one existential and
one randomized variable are required per step i. For the sake of clarity, we opt for
the simpler one here.

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 259

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

ru
nt

im
e

[s
ec

]

unwinding depth

Pr > 0.6 Pr > 0.8
exact
t=0.0
t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

ru
nt

im
e

[s
ec

]

unwinding depth

Pr > 0.4 Pr > 0.6
exact
t=0.0
t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

Fig. 4. Impact of thresholding for H1 (left) and H2 where ky = 1, c = 4 (right)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

ru
nt

im
e

[s
ec

]

unwinding depth

Pr > 0.25 Pr > 0.5 Pr > 0.73

no SDB, exact
SDB, exact

SDB, t=0.25
SDB, t=0.5

SDB, t=0.75 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14

S

A
T

 b
ra

nc
he

s

unwinding depth

Pr > 0.25 Pr > 0.5 Pr > 0.73

no SDB, exact
SDB, exact

SDB, t=0.25
SDB, t=0.5

SDB, t=0.75

Fig. 5. Impact of solution-directed backjumping for H3: runtime (left) and number of
found SAT branches (right)

(in ascending index-order), since all quantified variables in the transition relation
for i do not occur in any other transition relation j 	= i. This yields an SSMT
formula as required in Section 2.

For the hybrid case the encoding follows the same idea but we have to take
account of the potentially non-linear real arithmetic guards of the transitions
and actions to be performed for the probabilistic distributions. E.g., transition
t5 of H3 is encoded as:

(si−1
3 ∧ (ei

t5 = 1) ∧ (yi−1 > (xi−1)2) ∧ (ri
t5 = 0) ∧ si

2) ∨
(si−1

3 ∧ (ei
t5 = 1) ∧ (yi−1 > (xi−1)2) ∧ (ri

t5 = 1) ∧ (xi = xi−1 · yi−1) ∧ si
3)

where the real-valued variables xi−1 and yi−1 represent the values of the real-
valued system variables x and y, resp., before step i is executed.

4.2 Experimental Results

This subsection compiles empirical results of the implemented algorithm SiSAT
for the benchmarks from Subsection 4.1 encoded as SSMT formulae. The prop-
erty to be checked for all automata is whether the mode s2 can be reached.

260 T. Teige and M. Fränzle

Table 1. Empirical results for H3 where kx = 0, ky = 2

exact t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0
unwinding depth 1: 38 vars + 10 quantified vars, 111 clauses
witness value 0.1 0.006 0.0 0.0 0.0 0.0 0.0
#SATs 4 1 0 0 0 0 0
#conflicts 0 0 0 0 0 0 0
runtime (sec) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
unwinding depth 2: 69 vars + 20 quantified vars, 212 clauses
witness value 0.194 0.000252 0.092944 0.0392 0.0392 0.0042 0.0
#SATs 136 1 66 24 24 8 0
#conflicts 0 0 0 0 0 0 0
runtime (sec) 0.04 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01
unwinding depth 3: 100 vars + 30 quantified vars, 313 clauses
witness value 0.2809 1.058e-05 0.201 0.1492 0.07734 0.02022 0.0
#SATs 3,248 1 2,743 1,390 832 320 0
#conflicts 6 0 6 2 0 0 0
runtime (sec) 1.43 < 0.01 1.22 0.63 0.37 0.15 < 0.01
unwinding depth 4: 131 vars + 40 quantified vars, 414 clauses
witness value 0.3603 4.445e-07 > 0.2 0.242 0.1339 0.04349 0.0
#SATs 67,360 1 16,167 42,891 21,088 8,380 0
#conflicts 21 0 6 20 10 10 0
runtime (sec) 41.48 < 0.01 9.81 26.42 13.02 5.13 < 0.01
unwinding depth 5: 162 vars + 50 quantified vars, 515 clauses
witness value 0.4323 1.867e-08 0.2002 0.4001 0.1908 0.0844 0.0
#SATs 1,322,700 1 213,560 1,126,492 447,616 201,252 0
#conflicts 35 0 21 35 29 29 0
runtime (sec) 1,044.0 < 0.01 167.7 903.6 352.2 158.6 < 0.01

All benchmarks were performed on an 1.83 GHz Intel Core 2 Duo machine with
1 GByte physical memory running Linux. Concerning the issue of the approxima-
tive nature of solutions obtained by interval constraint propagation, we remark
here that due to the deterministic assignments and the use of rational functions
in the considered PHAs (cf. Fig. 3), we have obtained exact solutions on all
benchmark runs. Hence, the computed probabilities are exact.

Concerning the performance of the SiSAT algorithm, Fig. 4 and 5 show that
the runtimes dramatically grow over the BMC unwinding depths. As one can
expect, the length of the quantifier prefix determines the runtimes. One acceler-
ation technique we considered to battle against the high complexity is threshold-
ing. Fig. 4 and Table 1 show a comparison for different thresholding parameters
where exact means tl = 0 and tu = 1, and t = k means tl = k and tu = k. These
results empirically prove the expected fact that thresholding leads to significant
performance gains if the threshold parameters are not close to the exact maxi-
mum probability of satisfaction. Consider, e.g., the results for unwinding depth 5
of H3 in Table 1. The exact satisfaction probability is 0.4323. To compute this,
SiSAT needed 1044 seconds, thereby visiting more than 1.3 millon satisfying
branches. Setting tl = tu = t = 0.4 yields nearly the same performance while for
thresholds t < 0.4 and t > 0.4 the runtimes quickly decrease. For the extreme
values t = 0, i.e. finding just one solution, and t = 1, i.e. randomized quantifiers
change to universal quantifiers, SiSAT terminates within fractions of a second.

Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic 261

While the impact of thresholding strongly depends on the pre-defined lower
and upper target thresholds, solution-directed backjumping is independent from
such settings but exploits the structure of the formula. Surprisingly, solution-
directed backjumping yields performance gains of multiple orders of magnitude.
The results for the more complex PHA H3 are illustrated in Fig. 5. For unwinding
depth 5, the speedup factor obtained for the exact version is 567. This shows
that the idea of skipping branches for which the probability remain the same
actually works for our case studies. As shown on the right in Fig. 5, an enormous
number of satisfying branches to be visited could be skipped when SDB was
enabled. While the exact version without SDB was just able to solve the first 5
BMC unwindings of H3 within 100 minutes, the exact version with SDB solved
11 instances in the same time. The SSMT formula for depth 11 contains 110
quantified variables, 348 non-quantified variables, and 1121 problem clauses.
Fig. 5 also indicates that on most of the BMC instances the combination of SDB
and thresholding further increases the efficiency of the solver.

5 Conclusion and Future Work

In this paper, we presented an algorithm for stochastic SMT problems for non-
linear arithmetic over the reals and integers together with experimental results
from the reachability analysis of probabilistic hybrid automata. We showed that
algorithmic enhancements like thresholding and solution-directed backjumping
have a significant impact on the performance of the tool.

In future work, we will explore further techniques and heuristics to accelerate
the SiSAT tool: For instance, further forms of backjumping within the quantified
part of the decision tree. Another important aspect to improve the performance
of search algorithms is to find suitable value and variable orderings. In the con-
text of bounded model checking PHAs, we will work on an automatic transla-
tion of PHAs into SSMT formulae and bounded-model-checking optimizations
like clause reusing and shifting [FH07]. Concerning the issue of approximate
solutions, we will modify SiSAT to handle confidence intervals of probabilities
instead of values s.t. we are able to obtain safe lower and upper bounds on the
satisfaction probability when using also transcendental functions like sin or exp.
Within the AVACS project7, we will apply the SiSAT solver on benchmarks
which deal with the impact of cooperative, distributed traffic management on
flow of road traffic. These benchmarks are representative for a large number of
hard scheduling and allocation problems and naturally show uncertain behavior.

Acknowledgements

The authors would like to thank Christian Herde, Holger Hermanns, Ralf Wim-
mer, Joost-Pieter Katoen, and Stephen Majercik for valuable discussions on
SMT, probabilistic systems, and stochastic SAT algorithms. Furthermore, the
authors are very grateful to the anonymous reviewers for their helpful comments.
7 www.avacs.org

262 T. Teige and M. Fränzle

References

[BG06] Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Pro-
gramming. Foundations of Artificial Intelligence, pp. 571–603. Elsevier,
Amsterdam (2006)

[BS06] Balafoutis, T., Stergiou, K.: Algorithms for Stochastic CSPs. In: Ben-
hamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg
(2006)

[BS07] Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction
framework. In: SAC, pp. 316–320. ACM, New York (2007)

[DLL62] Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem
Proving. CACM 5, 394–397 (1962)

[DP60] Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory.
Journal of the ACM 7(3), 201–215 (1960)

[FH07] Fränzle, M., Herde, C.: HySAT: An Efficient Proof Engine for Bounded
Model Checking of Hybrid Systems. FMSD 30, 179–198 (2007)

[FHT+07] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient
Solving of Large Non-linear Arithmetic Constraint Systems with Complex
Boolean Structure. JSAT Special Issue on SAT/CP Integration 1, 209–236
(2007)

[FHT08] Fränzle, M., Hermanns, H., Teige, T.: Stochastic Satisfiability Modulo The-
ory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems.
In: Proceedings of the 11th International Conference on Hybrid Systems:
Computation and Control (HSCC 2008) (2008)

[GNT03] Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for quantified
Boolean logic satisfiability. Artif. Intell. 145(1-2), 99–120 (2003)

[Lit99] Littman, M.L.: Initial Experiments in Stochastic Satisfiability. In: Proc.of
the 16th National Conference on Artificial Intelligence, pp. 667–672 (1999)

[LMP01] Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean Satisfiabil-
ity. Journal of Automated Reasoning 27(3), 251–296 (2001)

[Maj04] Majercik, S.M.: Nonchronological backtracking in stochastic Boolean sat-
isfiability. Ictai 00, 498–507 (2004)

[ML98] Majercik, S.M., Littman, M.L.: MAXPLAN: A New Approach to Proba-
bilistic Planning. Artificial Intelligence Planning Systems, pp. 86–93 (1998)

[ML03] Majercik, S.M., Littman, M.L.: Contingent Planning Under Uncertainty
via Stochastic Satisfiability. Artificial Intelligence Special Issue on Planning
With Uncertainty and Incomplete Information 147(1-2), 119–162 (2003)

[Pap85] Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2),
288–301 (1985)

[RT06] Ranise, S., Tinelli, C.: Satisfiability modulo theories. IEEE Intelligent Sys-
tems 21(6) (2006)

[THF+07] Teige, T., Herde, C., Fränzle, M., Kalinnik, N., Eggers, A.: A Generalized
Two-watched-literal Scheme in a mixed Boolean and Non-linear Arithmetic
Constraint Solver. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA
2007. LNCS (LNAI), vol. 4874, pp. 729–741. Springer, Heidelberg (2007)

[TMW06] Tarim, A., Manandhar, S., Walsh, T.: Stochastic constraint programming:
A scenario-based approach. Constraints 11(1), 53–80 (2006)

[Wal02] Walsh, T.: Stochastic constraint programming. In: Proc. of the 15th Euro-
pean Conference on Artificial Intelligence (ECAI 2002), IOS Press, Ams-
terdam (2002)

A Hybrid Constraint Programming / Local Search
Approach to the Job-Shop Scheduling Problem

Jean-Paul Watson1 and J. Christopher Beck2

1 Discrete Math and Complex Systems Department,
Sandia National Laboratories,

Albuquerque, New Mexico, USA
jwatson@sandia.gov

2 Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario, Canada

jcb@mie.utoronto.ca

Abstract. Since their introduction, local search algorithms – and in particular
tabu search algorithms – have consistently represented the state-of-the-art in so-
lution techniques for the classical job-shop scheduling problem. This is despite
the availability of powerful search and inference techniques for scheduling prob-
lems developed by the constraint programming community. In this paper, we in-
troduce a simple hybrid algorithm for job-shop scheduling that leverages both the
fast, broad search capabilities of modern tabu search and the scheduling-specific
inference capabilities of constraint programming. The hybrid algorithm signifi-
cantly improves the performance of a state-of-the-art tabu search for the job-shop
problem, and represents the first instance in which a constraint programming al-
gorithm obtains performance competitive with the best local search algorithms.
Further, the variability in solution quality obtained by the hybrid is significantly
lower than that of pure local search algorithms. As an illustrative example, we
identify twelve new best-known solutions on Taillard’s widely studied benchmark
problems.

1 Introduction

Local search algorithms for the traditional makespan-minimization formulation of the
job-shop scheduling problem (JSP) have dominated the state-of-the-art for at least the
past 15 years. These include Nowicki and Smutnicki’s landmark TSAB tabu search
algorithm [13], Balas and Vazacopoulos’ guided local search algorithm [1], Nowicki
and Smutnicki’s follow-on i-TSAB tabu search algorithm [14], and most recently Zhang
et al.’s hybrid tabu search / simulated annealing algorithm [25]. These algorithms are
all built upon a foundation of one or more powerful, problem-specific move operators,
which are able to efficiently identify promising feasible and high-quality solutions in the
neighborhood of a given solution. Metaheuristic search strategies then leverage these
move operators to perform global search for minimal-cost solutions; the complexity of
these strategies ranges from simple tabu search (in the case of TSAB) to highly intricate
hybridizations of tabu search, path relinking, and elite pool maintenance schemes (in
the case of i-TSAB).

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 263–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 J.-P. Watson and J.C. Beck

On established benchmark problems [19,20], the progression of local search algo-
rithms has consistently established new upper bounds over time, perhaps leading one
to question the utility of further research in the area. We address such criticism with
the following observations. First, on the most difficult benchmark instances, there is no
indication that the upper bounds are necessarily close to the optimal solutions, i.e., there
likely remains significant room for performance improvements. Second, although the
aforementioned local search algorithms collectively have established the best-known
solutions to benchmark instances, no single algorithm can consistently generate these
solutions. Consequently, improved algorithms yielding reductions in performance vari-
ability are desirable. Third, proportionally little research is dedicated to understanding
why local search algorithms are so effective on the job-shop scheduling problem; de-
veloping such knowledge is foundational to consistently achieving high-performance in
other problem domains.

Perhaps somewhat paradoxically, constraint programming (CP) algorithms are more
commonly used than their local search counterparts to obtain solutions to real-world
scheduling problems, e.g., using ILOG’s Scheduler software library [17]. This is widely
attributed to a combination of the ability to easily incorporate various idiosyncratic
“side” constraints that are pervasive in real-world scheduling problems (such constraints
can require significant redesign of local search algorithms) and to effectively deduce,
via powerful domain-specific constraint propagators, the implications of various sched-
uling decisions. However, despite the level of research effort dedicated to the devel-
opment of scheduling-specific constraint propagation and search techniques (e.g., see
[2,4]), the performance of CP algorithms on the traditional JSP has significantly lagged
that of their local search counterparts. To date, the strongest CP-based algorithm is
solution-guided multi-point constructive search [3], although the performance of even
this algorithm lags that of modern tabu search algorithms for the JSP [9] in terms of
both time and final solution quality.

Hybridization of local search and CP on JSPs without side constraints does not,
therefore, immediately appear to be a promising research direction. However, the fol-
lowing two unexplored aspects of these algorithms provide what we feel to be contrary
evidence, and motivate the line of research developed in this paper:

– The strong propagation techniques in CP are more efficient in constrained search
states. That is, the polynomial time inference algorithms are more likely to be able
to find implied constraints, and to reduce the search space, in states that are al-
ready highly constrained. When a good solution has been found, strong “back-
propagation” from the upper bound on the makespan results in such a highly con-
strained search state. Therefore, we conjecture that while CP is unable to compet-
itively find good solutions, once given a good solution, it may be able to improve
on it more quickly than a local search approach.

– A popular conceptualization of the power of modern local search algorithms is
that they balance intensification with diversification [9]. Intensification, which can
loosely be understood as searching “near” an existing good solution, is often im-
plemented by repeatedly restarting search from a good solution that has been found
earlier. Diversification, in contrast, tries to distribute the search effort in unexplored
areas of the search space. It is often implemented by maintaining a varied set of

A Hybrid Constraint Programming 265

promising solutions and combining them in a variety of ways, such as via path re-
linking [7]. However, modern tabu search algorithms seem to do a relatively poor
job of intensification. Watson [22] showed that a relatively small number of itera-
tions after restarting from a good solution, tabu search is a considerable distance
from the starting solution. Further, a posteriori analysis of algorithmic traces indi-
cates that tabu search often fails to locate high-quality solutions that are quite close
to high-quality solutions located by tabu search [22]. In contrast, solution-guided
constructive search performs a much more focused search around its guiding so-
lution [3]. Therefore, we conjecture that improved performance may result from
using CP to strongly intensifying around a diverse set of high-quality solutions
generated by tabu search.

The remainder of this paper is organized as follows. We begin in Section 2 with a
brief discussion of the job-shop scheduling problem and the benchmark instances used
in our analysis. The foundational algorithms for our hybrid approach – iterated simple
tabu search (i-STS) and solution-guided multi-point constructive search (SGMPCS) –
and our simple hybrid are described in Section 3. Our experimental methodology is
introduced in Section 4, followed by a description of empirical performance results in
Section 5. Section 6 details some implications of our results, followed by our conclu-
sions in Section 7.

2 Problem Description and Benchmark Instances

We consider the well-known n × m static, deterministic JSP in which n jobs must be
processed exactly once on each of m machines [5]. Each job i (1 ≤ i ≤ n) is routed
through each of the m machines in a pre-defined order πi, where πi(j) denotes the jth
machine (1 ≤ j ≤ m) in the routing order of job i. The processing of job i on machine
πi(j) is denoted oij and is called an operation. An operation oij must be processed on
machine πi(j) for an integral duration τij > 0. Once initiated, processing cannot be pre-
empted and concurrency on individual machines is not allowed, i.e., the machines are
unit-capacity resources. For 2 ≤ j ≤ m, oij cannot begin processing until oi(j−1) has
completed processing. The scheduling objective is to minimize the makespan Cmax, i.e.,
the maximal completion time of the last operation of any job. Makespan-minimization
for the JSP is NP -hard for m ≥ 2 and n ≥ 3 [6].

An instance of the n×m JSP is uniquely defined by the set of nm operation durations
τij and n job routing orders πi. In nearly all benchmark instances, the τij are uniformly
sampled from the interval [1, 99], while the πi are given by random permutations of
the integer sequence 1, . . . , m. As discussed in Section 4, our experimental results are
generated using a subset of Taillard’s benchmark instances, specifically those labeled
ta11 through ta50 [19]. This subset contains 10 instances of each of the following
problem sizes: 20×15, 20×20, 30×15, and 30×20. We have selected these instances
because they are widely studied (all competitive algorithms introduced since 1995 have
been tested on these instances), are known to be very challenging (even state-of-the-art
algorithms fail to consistently find solutions with makespans equal to the best known
solutions), and there remains “headroom” for improvement in best-known makespans
(as illustrated by the often large gap between those values and the best-known lower

266 J.-P. Watson and J.C. Beck

bounds). For these same reasons, we ignore the easier instances in Taillard’s problem
suite, in addition to many historical instances (e.g., the “ft”, “la”, and “orb” instances)
for which modern JSP algorithms can consistently locate optimal solutions.

3 Algorithms

In this section, we discuss the two foundational algorithms in detail before presenting
the simple hybridization we investigate in this paper.

3.1 Iterated Simple Tabu Search

Beginning with an early approach by Taillard [21], tabu search algorithms have consis-
tently represented the state-of-the-art in obtaining high-quality solutions for the JSP. A
variety of researchers have introduced tabu search algorithms of increasing effective-
ness and complexity. Specific algorithmic advances of note in this progression include
the introduction of (1) the highly restrictive N5 critical path-based move operator [13],
(2) search intensification mechanisms in conjunction with sets of “elite” or high-quality
solutions [13], and (3) search diversification mechanisms in the form of path relink-
ing [14]. These techniques are simultaneously embodied in Nowicki and Smutnicki’s
i-TSAB algorithm, which has represented the state-of-the-art since 2003. With the ex-
ception noted below, the sole competitor is a hybrid tabu search / simulated annealing
algorithm introduced by Zhang et al. [25]. The Zhang et al. algorithm uses simulated
annealing to generate an initial set of elite solutions, which are then processed via tabu
search-driven intensification. The primary differences between the Zhang et al. algo-
rithm and i-TSAB are the lack of an explicit diversification mechanism (path relinking
is used in i-TSAB) and the use of the N6 move operator introduced by Balas and Vaza-
copoulos [1] (i-TSAB employs the N5 move operator).

Although remarkably effective, i-TSAB is an extremely intricate and complex algo-
rithm. Such complexity is a significant drawback to researchers, as in practice it im-
pedes reproducibility, adoption, and subsequent study. In the specific case of i-TSAB,
the intricacy makes it difficult to assess the contribution of the various algorithmic com-
ponents to its overall performance. Toward this goal, we previously introduced a sim-
plified version of i-TSAB, which we denote iterated simple tabu search, or i-STS [9].
As discussed below, i-STS contains the key algorithmic ingredients of i-TSAB while
reducing the overall complexity and maintaining near-equivalent performance.

A basic tabu search lies at the core of i-STS, built around the N5 move operator.
Short-term memory is used to prevent inversion of recently swapped pairs of adjacent
operations on a critical path. Following [21], the tabu tenure is periodically and ran-
domly sampled from a fixed interval [L, U]. Search in i-STS proceeds in two phases.
In the first phase, the basic tabu search algorithm is executed for a small, fixed number
of iterations from each of |E| different random initial solutions. The best solution from
each iteration-limited run is saved, and forms the initial set E of elite solutions.

In the second phase of i-STS, the elite solutions, E, are iteratively processed by both
intensification and diversification mechanisms, each selected at any given iteration with
respective probabilities pi and pd, pi + pd = 1. To perform search intensification, a

A Hybrid Constraint Programming 267

single elite solution e ∈ E is selected at random and an iteration-limited tabu search is
executed from e. Due to tie-breaking during move selection, facilitated by the pervasive-
ness of plateaus of equally fit neighboring solutions in the JSP [23], different trajectories
can locate solutions of variable quality. If a solution e′ with a lower makespan than e
is located, e′ replaces e in E. To perform diversification, two elite solutions e1, e2 ∈ E
are selected at random. Path relinking is then performed to generate a solution e′ that
is approximately equi-distant from both e1 and e2. Iteration-limited tabu search is then
executed from e′, as is performed in the intensification process. If a solution e′′ is iden-
tified with a lower makespan than e1, then e′′ replaces e1 in E. The second phase of
i-STS continues until an aggregate number of basic tabu search iterations M have been
executed, with the best solution e ∈ E returned upon completion.

3.2 Solution-Guided Multi-point Constructive Search

Solution-guided multi-point constructive search (SGMPCS) is a recently proposed al-
gorithm that combines constructive tree search, randomized restart, and heuristic guid-
ance from good solutions found earlier in the search [3]. The basic approach is a CP
tree search with a limit on the number of dead-ends (“fails”) that are encountered be-
fore restarting. Each tree search is guided by using an existing sub-optimal solution as
a value-ordering heuristic. Once a variable to be assigned has been chosen (see below),
the value chosen is the one in the guiding solution, provided that value is still in the
domain of the chosen variable. Otherwise, any other value-ordering heuristic may be
used. As in i-STS, a small set of “elite” solutions is maintained, one of which is chosen
with uniform probability to guide a given tree search. When a tree search exhausts its
fail limit, it returns the best solution it has found (if any). That solution, if it exists,
replaces the guiding solution in the elite pool.

Beck [3] showed that SGMPCS has strong, but not state-of-the-art, performance on
job shop scheduling, makespan minimization problems. While finding significantly bet-
ter solutions than chronological backtracking and randomized restart (using the same
propagators, heuristics, and, in the latter case, fail limit sequences), SGMPCS was not
able to perform as well as i-STS.

Details. A simplified version of SGMPCS is used in this paper. This version fixes
a number of the parameters in the full algorithm. As the version presented here is a
particular parametrization of the full version, we continue to refer to it as SGMPCS.
Readers interested in the full version are referred to Beck [3].

Pseudocode for SGMPCS is shown in Algorithm 1. The algorithm initializes a set, E,
of elite solutions and then enters a while-loop. In each iteration, a chronological back-
tracking search is guided with a randomly selected elite solution (line 6). If a solution,
s, is found during the search, it replaces the starting elite solution, r. Each individual
search is limited by a fail bound: a maximum number of fails that can be incurred. The
entire process ends when the problem is solved, proved insoluble within one of the tree
searches, or when some overall bound on the computational resources (e.g., CPU time
or number of fails) is reached.

More formally, a search tree is created by asserting a series of choice points of the
form: 〈Vi = x〉 ∨ 〈Vi �= x〉, where Vi is a variable and x is the value assigned to Vi.

268 J.-P. Watson and J.C. Beck

Algorithm 1. SGMPCS: Solution-Guided Multi-Point Constructive Search
SGMPCS():

1 initialize elite solution set E
2 while not solved and termination criteria unmet do

3 r := randomly chosen element of E
4 set upper bound on cost function
5 set fail bound, b
6 s := search(r, b)
7 if s is better than r then

8 replace r with s

9 return best(E)

SGMPCS can use any variable-ordering heuristic to choose the variable to assign. The
choice point is formed using the value assigned in the guiding solution or, if the value in
the guiding solution is inconsistent, a heuristically chosen value. Let a guiding solution,
r, be a set of variable assignments, {〈V1 = x1〉, 〈V2 = x2〉, . . . , 〈Vm = xm〉}, m ≤ n,
where n is the number of decision variables. Let dom(Vi) be the set of possible values
(i.e., the domain) of variable Vi. The variable-ordering heuristic has complete freedom
to choose a variable, Vi, to be assigned. If xi ∈ dom(Vi), where 〈Vi = xi〉 ∈ r, the
choice point is made with x = xi. Otherwise, if xi /∈ dom(Vi), any value-ordering
heuristic can be used to choose x ∈ dom(Vi).

At line 4 in the pseudocode, an upper bound is placed on the cost function for the
subsequent search. We use two different methods in our experiments. The local upper
bound is one less than cost of the guiding solution (i.e., cost(r)−1). The global upper
bound is one less than the best solution that has been found (i.e., cost(best(E))−1). In-
tuitively, the local upper bound allows a more heuristic search since local improvements
will be accepted into the elite set while the global upper bound tries to maximize the
impact of the inference algorithms as it always searches in the most constrained space
possible.

Given a large enough fail limit (line 5), an individual search can exhaust the search
space. Therefore, completeness depends on the policy for setting the fail limit. In our
experiments, we will use two fail sequence polices: Fixed and Luby. The Fixed limit
simply uses a constant fail-limit for each search. Obviously, such a policy is not com-
plete. The Luby limit is an evolving sequence that has been shown to be the optimal
sequence for satisfaction problems under the condition of no knowledge about the so-
lution distribution [12]. The sequence is as follows: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4,
8, That is, the fail limit for the first and second searches is 1, for the third search is
2, and so on. Following [24] and our own preliminary experimentation, we multiply the
elements of the sequence by a fixed constant. As the sequence increases without limit, a
single search will eventually have a fail limit that is sufficient to search the entire search
space and therefore the overall algorithm using the Luby fail limit is complete.

SGMPCS is a general framework for constructive tree search. To apply SGMPCS to
the JSP, solutions are encoded using the well known disjunctive graph representation.

A Hybrid Constraint Programming 269

Texture-based heuristics [4] are used to identify a machine and time point with max-
imum contention among the operations and to then choose a pair of unordered oper-
ations. The heuristic is randomized by specifying that the 〈machine, time point〉 pair
is chosen with uniform probability from the top 10% most critical pairs. The ordering
found in the guiding solution is asserted. Note that because the decisions are binary, the
pair in the solution must be locally consistent, otherwise the pair of operations would
already be sequenced in the opposite order. The standard constraint propagation tech-
niques for scheduling [15,10,11] (available via the ILOG Scheduler library) are also
used.

3.3 A Very Simple Hybrid Approach

Given the complexities of the two foundational algorithms, our approach to hybridiza-
tion in this paper is the most concise that we could envision. We begin by executing
i-STS for a fixed number of total iterations of the underlying tabu search algorithm.
The intent of this phase is to quickly generate a set of high-quality solutions. At the end
of these iterations, the best |E| solutions that have been found are used as the initial
elite set for SGMPCS (line 1 of the SGMPCS pseudocode). SGMPCS is then run for a
fixed, comparatively larger (in contrast to i-STS) CPU time and the best solution found
is returned.

There is clearly much more we could do. However, this simple (and perhaps, simple-
minded) hybrid directly and concisely addresses the two motivations we had for this
research, as described in Section 1.

4 Experimental Methodology

Our analysis is based on multiple runs of the hybrid on each of the Taillard benchmark
instances we consider. Each run consists of executing i-STS for 5M iterations, which
requires a few minutes of CPU time, depending on the problem size. For each run, we
use an elite pool size of 8, and pi = pd = 0.5; these parameter settings were chosen
based on prior empirical studies of both i-TSAB [14] and i-STS [9]. All remaining
free parameters of i-STS are set identically to that reported in [9]. At the end of 5M
iterations, the best |E| elite solutions are used as the starting elite set for SGMPCS.
SGMPCS is then run for 30 CPU minutes and reports the best solution found. Each
problem instance is run 10 times independently for a given parameter configuration.
i-STS is implemented in C++ while SGMPCS uses ILOG Scheduler 6.5 (also in C++).
All code was compiled using the GNU gcc compiler. Experiments were executed on
a cluster containing 2GHz Dual Core AMD Opteron 270 nodes, each with 2GB RAM
running Red Hat Enterprise Linux 4.

Given an experimental setup for a problem instance (10 runs per instance, fixing
the behavior of i-STS), we next consider the various configurations of the remaining
free SGMPCS parameters. Following [3], we perform a full factor experimental design,
considering: (1) |E| ∈ {1, 4, 8} (for SGMPCS; in i-STS, |E| is fixed to 8), (2) local and
global upper bounds, and (3) a fixed fail limit of 500, in addition to scaled Luby limits
with parameters 100 and 200. We observe that when |E| = 1, local and global upper

270 J.-P. Watson and J.C. Beck

bounding strategies are equivalent. Consequently, we execute a set of 10 runs on each
of Taillard’s instances under fifteen distinct configurations of SGMPCS.

5 Results

Our analysis is broken into four components: parameter sensitivity (Section 5.1), per-
formance relative to state-of-the-art algorithms for the JSP (Section 5.2), best-known
upper bounds (Section 5.3), and proving optimality (Section 5.4).

5.1 Parameter Sensitivity

We first analyze the performance of the various SGMPCS parameterizations relative
to one another, in an effort to determine parameter sensitivity and a sole candidate for
comparison of the hybrid algorithm with other state-of-the-art JSP algorithms. We per-
formed a two-way (factorial) ANOVA on the resulting data.1 The three independent
variables are elite pool size, fail limit, and upper bound method, while the sole de-
pendent variable is the makespan of the best solution obtained. The outcome of this
experiment indicated that there were no significant main or interaction effects between
the SGMPCS parameters and the quality of the final solution obtained. The largest p
value obtained was for |E|, and was equal to 0.499. This result is in direct contrast to
[3], in which all main factors and interactions were statistically significant. The sole
difference in the experimental designs is the mechanism used to initialize the elite so-
lution set for SGMPCS (i-STS versus random solutions). It appears that while different
parameterizations of SGMPCS influence the degree to which the algorithm can im-
prove upon random initial solutions, this sensitivity disappears once solution quality is
“sufficiently” good, e.g., as is the case for i-STS solutions.

Next, we examine the absolute difference in performance between the various al-
gorithm configurations. For a given problem instance and solution makespan M , we
define the relative error as RE = (M − LB)/LB ∗ 100, where LB is the largest known
lower bound for the instance. For our analysis, we take LB from [20], where such val-
ues have been recorded by Taillard since the introduction of these problem instances.
Consider a specific parameterization of SGMPCS in our hybrid algorithm, and one of
the following statistics defined over the set of 10 runs on a given problem instance: best
makespan, average makespan, and worst makespan. The mean relative error, or MRE,
for the given parameterization and makespan statistic is then computed simply as the
mean RE taken over the 40 problem instances.

The resulting MRE statistics for our hybrid algorithm are shown in Table 1. Bold-
faced entries indicate that the corresponding SGMPCS parameterization yielded the
best performance with respect to the given makespan statistic. We exclude results for
parameterizations with the Luby 100 fail limit, as they generally, though marginally,
under-perform the respective Luby 200 fail limit strategy. Consistent with the two-way
ANOVA analysis, the differences in all makespan statistics are minimal in absolute
terms, varying at most by 0.20% in any given column. Although no parameterization
stands out as a winner, the parameterization with |E| = 8, a fixed fail limit of 500,

1 All statistical analyses were performed using the publicly available R software package.

A Hybrid Constraint Programming 271

Table 1. Mean relative error (MRE) statistics for the i-STS / SGMPCS hybrid on Taillard’s bench-
mark instances for various parameter configurations. Bold-faced entries in an MRE column indi-
cate the configuration obtaining the best performance.

|E| Fail Limit Upper Bound Best MRE Mean MRE Worst MRE
1 Fixed 500 Local/Global 3.146 3.490 3.897
1 Luby 200 Local/Global 3.178 3.502 3.886
4 Fixed 500 Local 3.134 3.392 3.705
4 Luby 200 Local 3.143 3.424 3.718
4 Fixed 500 Global 3.129 3.408 3.726
4 Luby 200 Global 3.136 3.425 3.746
8 Fixed 500 Local 3.123 3.369 3.706
8 Luby 200 Local 3.142 3.397 3.691
8 Fixed 500 Global 3.103 3.400 3.709
8 Luby 200 Global 3.148 3.409 3.694

Table 2. MRE statistics for i-TSAB, Zhang et al.’s hybrid tabu search / simulated annealing
algorithm, and our hybrid i-STS / SGMPCS algorithm, on Taillard’s benchmark instances

Instance Best i-TSAB Zhang Hybrid
Group Known Best Mean Best Mean Worst
ta11-20 2.29 2.81 2.37 2.92 2.26 2.45 2.83
ta21-30 5.38 5.68 5.44 5.97 5.52 5.71 6.00
ta31-40 0.46 0.78 0.55 0.93 0.50 0.68 0.85
ta41-50 4.02 4.70 4.07 4.84 4.22 4.63 5.15

Overall 3.04 3.49 3.11 3.67 3.13 3.37 3.71

and the local upper bound obtained the most consistent performance, as measured in
terms of average makespan of solutions obtained. For this reason, we emphasize this
parameterization of SGMPCS in subsequent analyses.

5.2 Performance Relative to the State-of-the-Art

Having established the relative insensitivity of our hybrid algorithm performance to
SGMPCS parameter settings, we now analyze performance relative to state-of-the-art
search algorithms for the JSP. We select two baselines for comparison: Nowicki and
Smutnicki’s i-TSAB tabu search algorithm [14] and Zhang et al.’s hybrid tabu search /
simulated annealing algorithm [25]. The i-TSAB algorithm represents the state-of-the-
art from 2003 onwards, while Zhang et al.’s algorithm is a recently introduced com-
petitor. A single “winner” is not easily determined, lacking carefully controlled exper-
iments and availability of the source code of the two algorithms. However, it is clear
from published MRE performance analysis that these two algorithms are superior to
all predecessors. Finally, we do not compare the performance of our hybrid with that of
previously published CP algorithms, e.g., [16], as those algorithms have not historically
proved competitive on the standard JSP; to the best of our knowledge, SGMPCS is the
best-performing pure CP algorithm for the JSP, as reported in [3].

272 J.-P. Watson and J.C. Beck

As indicated previously in Section 5.1, we consider the performance of our hybrid
algorithm obtained with the best overall mean performance, obtained with |E| = 8,
a fixed fail limit of 500, and the local upper bound. While it may be argued that the
comparison should be based on the mean MRE obtained across all parameter settings,
Nowicki and Smutnicki document significant parameter tuning in the development of i-
TSAB, and Zhang et al. undoubtedly performed similar experimentation, although it is
not explicitly documented in [25]. The MRE performance statistics for the two compar-
ative baselines and our hybrid algorithm are shown in Table 2; in addition, we compute
the MRE for the best-known solutions recorded in [20] as of November 30, 2007. Un-
fortunately, Nowicki and Smutnicki [14] only report results for a single run of i-TSAB,
complicating interpretation. Absent a rigorous alternative, we treat the corresponding
MRE results as representative of mean i-TSAB performance. The Zhang et al. statis-
tics are taken over 10 independent runs of their algorithm on each problem instance.
Without the actual sample populations, it is not possible to make statistical inferences
regarding the relative superiority of the Zhang et al. algorithm and our hybrid algorithm.
Consequently, we proceed with a qualitative analysis.

First, we compare the performance of our hybrid with that of i-TSAB. On all but the
ta21-30 problem group, the hybrid outperforms i-TSAB in terms of mean MRE. Over-
all, the hybrid outperforms i-TSAB by 0.12% in terms of mean MRE; again, we are
treating the individual i-TSAB samples as representative of mean performance. While
the percentage advantage is small in absolute terms, we observe that due to the difficulty
of these instances, apparently small differences have historically differentiated state-of-
the-art algorithms from second-tier competitors. Although we cannot rigorously deter-
mine whether our hybrid performance dominates that of i-TSAB, it is clear that the
performance is, at a minimum, indistinguishable.

Next, we compare the performance of our hybrid with that of Zhang et al.’s algo-
rithm, hereafter referred to simply as Zhang’s algorithm. In terms of mean MRE, the
hybrid algorithm dominates the Zhang algorithm both overall and in each problem sub-
group; overall, the advantage is 0.30%. In terms of best MRE, each algorithm domi-
nates on two of the four problem groups, with Zhang holding a slight 0.02% advantage
overall. Of particular interest is the excellent worst MRE performance of our hybrid
algorithm. On two of the problem groups, the worst MRE of the hybrid is better than
the mean MRE of the Zhang algorithm. Overall, the hybrid worst MRE performance is
only slightly worse that the Zhang mean MRE performance, with a difference of only
0.04%. Clearly, a significant advantage of our hybrid algorithm is the consistency of
the state-of-the-art performance, which is often elusive (e.g., in the case of the Zhang
algorithm) on very difficult benchmark problems.

A major issue in comparative assessment of state-of-the-art algorithms for the JSP
involves quantification of computational effort. In addition to issues involving the use
of disparate computing hardware, software engineering decisions and coding skill make
such comparisons notoriously problematic. We do not address these issues here. Rather,
we observe that from analyses of published performance reports [14,25], all three test
algorithms were executed on modern computing hardware (Pentium III or greater) and
the allocated run-times on the larger problem instances were all within a factor of three.

A Hybrid Constraint Programming 273

Table 3. The makespan of new best-known solutions identified by the hybrid i-STS / SGMPCS
algorithm for Taillard’s benchmark problems

Instance Prev. Best-Known New Best-Known Instance Prev. Best-Known New Best-Known
ta11 1359 1357 ta19 1335 1332
ta21 1644 1643 ta24 1646 1645
ta32 1795 1794 ta34 1829 1828
ta40 1674 1671 ta41 2018 2006
ta46 2015 2011 ta47 1903 1899
ta49 1967 1966 ta50 1926 1924

Finally, an obvious question is: Does our hybrid outperform the basic i-STS algo-
rithm? In other words, does the premature termination of i-STS followed by SGMPCS
outperform the full-length i-STS algorithm. Drawing from our previously analysis of
i-STS [9], the best and mean MREs of i-STS are respectively 3.30% and 3.55%. From
Table 2, this represents an under-performance of of 0.17% and 0.18% for best and worst
MRE, respectively, relative to our hybrid algorithm. Such large differences provide very
strong evidence that our hybrid algorithm significantly outperforms the original i-STS
baseline, as is confirmed by subsequent non-parametric two-sample tests.

5.3 Best-Known Upper Bounds

Given the strong performance of our hybrid i-STS / SGMPCS algorithm, it is worth not-
ing that various runs, under various parameterizations of SGMPCS, yielded a remark-
able twelve new best-known solutions to Taillard’s benchmark instances. Although our
main research goal is not to enter “horse-race” competitions of the type that are partic-
ularly common in Operations Research [8], the ability of an algorithm to establish new
best-known solutions in a given domain is a common (albeit heuristic, because it fails
to account for factors such as run-time, coding ability, machine, and related factors)
benchmark for establishing the state-of-the-art in performance. At the very least, the
ability of an algorithm to establish new best-known solutions with reasonable comput-
ing effort provides strong evidence of general effectiveness. Consequently, we record
both the previous and our newly obtained best-known solutions to Taillard’s benchmark
instances in Table 3. Of particular note is the ability of our algorithm to establish new
best-knowns for five of the ten 30×20 instances, which are among the most difficult JSP
benchmarks – especially given that we did not scale allocated CPU time in proportion
to problem instance size.

For the single parameterization of SGMPCS used in Table 2 (|E| = 8, Fixed 500,
local upper bound), Table 4 indicates the number of problem instances in each group
for which the best solution found by the parameterization over its 10 runs is better
than, equals, or is worse than the best-known solutions. The best-known solutions are
the lowest makespans in Taillard’s table [20] and Zhang et al’s results [25]. As can be
observed, this single parameterization of the hybrid algorithm is able to meet or improve
upon the current best known solutions in 33 of the 40 instances. This is an impressive
result given that the best-known solutions are the best solutions found by a wide variety
of algorithms rather than those of a single algorithm.

274 J.-P. Watson and J.C. Beck

Table 4. The number of instances in each group for which the best solution found by the hybrid
(with parameters |E| = 8, Fixed 500, local upper bound) is better than, equal to, or worse than
the current best known. Each instance group contains 10 instances.

Instance Group # New Best # Equal Best Known # Worse
ta11-20 0 10 0
ta21-30 1 6 3
ta31-40 3 7 0
ta41-50 5 1 4

Overall 9 24 7

Table 5. The number of runs (out of 10) for which the hybrid algorithm found and proved the
optimal solution. Note that no use is made of existing lower bounds for these proofs.

Hybrid Parameters ta14 ta31 ta34 ta35 ta36 ta38 ta39
|E| = 8, Fixed 500, Local 10 10 1 0 10 4 10
|E| = 8, Luby 200, Local 10 10 1 1 10 2 9

5.4 On Proving Optimality

Unlike previous state-of-the-art algorithms for JSP, our hybrid (when using the Luby
bound) is a complete algorithm. It is therefore possible to find and prove an optimal
solution directly rather than based on previously known lower bounds. Even when using
a fixed fail limit, it may be possible to find a proof of optimality on some instances.

Table 5 displays the number of runs (out of 10) for which two parameterizations of
SGMPCS were able to find and prove optimal solutions. That is, in each case, an indi-
vidual tree search exhausted the search space without reaching its fail limit. The other
parameterizations had similar performance. Again, we observe relatively consistent per-
formance in proving optimality across different runs of the same parameterization and
instance. Of particular note is ta34 as, according to [20], this is the first time that the
optimal solution for this problem has been found and proved.

6 Discussion

Our strong empirical results are somewhat surprising given the very simple nature of
the hybrid algorithm. We have achieved state-of-the-art results by running two strong,
but not necessarily state-of-the-art, algorithms in sequence, using the best solutions
found by the first algorithm to initialize the second. While the underlying algorithms are
complex, the effort to hybridize them consisted almost entirely of writing a translation
between the solution representations of the two algorithms.

As noted in Section 1, this work was motivated by non-formalized ideas about dif-
ferences in the search styles of the two foundational algorithms. While our results are
positive, it is important to note that this paper does not test these ideas. The ideas need to
be examined through careful formalization and experimental design. It is possible that

A Hybrid Constraint Programming 275

there are other underlying explanations of our results, unrelated to these motivations.
More rigorous testing of these ideas will be the focus on follow-on research.

There are a number of other interesting observations arising from this study, which
we address in the balance of this section.

The Performance of |E| = 1: The strong performance of the hybrid with |E| = 1 is
quite surprising, though it is consistent with previous SGMPCS results [3]. When |E| =
1, the best solution found by i-STS is used as the only elite solution for SGMPCS. We
would expect that such an undiversified search would result in high variance: if we were
unlucky, the elite solution would not be in the vicinity of a better solution. However,
the results in Table 1 show that the worst MRE for |E| = 1 is not significantly worse
than that for the other values of |E|. We believe that for an explanation we will need
to understand more about both the distribution of solutions in the JSP search space and
the behavior of SGMPCS in searching that space.

The Impact of Solution Guidance: The main innovation in SGMPCS is the use of elite
solutions to guide constructive search. To evaluate the importance of this aspect of the
algorithm, we also ran the hybrid but replaced SGMPCS with chronological backtrack-
ing and randomized restart. In both cases, we ran i-STS for 5M iterations, as above. In
the case of chronological backtracking, one less than the cost of the best solution found
by i-STS was used as the upper bound on the cost function and the same randomized
heuristics and propagators described above were used. The only differences are that the
value ordering was always determined by the min-slack heuristic [18] and there was
no restarting of the search (i.e., the fail limit was infinite). For randomized restart, the
upper bound on the cost function, the propagators, and the heuristics were identical
to that of chronological backtracking. We experimented with the same three fail limit
sequences used for SGMPCS.

Overall, performance was poor. Over the 400 runs of chronological backtracking
(10 runs per instance), an improvement over the i-STS starting solution was found
in only one run. The improvement reduced the makespan by one time-unit. Similarly,
over the 1200 runs of randomized restart (10 runs by 3 fail limits by 40 instances), an
improvement was only found in 6 runs. Again each of these improvements only reduced
the makespan by one time-unit.

The randomized restart results are particularly interesting because the only difference
with SGMPCS (with global upper bound) is the value-ordering heuristic. We conclude,
therefore, that elite solution guidance is a critical component of the hybrid.

7 Conclusions and Future Research Directions

Historically, the performance of constraint programming approaches – despite the avail-
ability of strong, domain-specific propagation and heuristic search techniques – has
lagged that of local search algorithms on the classical job-shop scheduling problem.
We introduced a simple hybrid algorithm that leverages the broad search capabilities of
a high-performance tabu search algorithm for the JSP (i-STS) with the domain-specific
inference capabilities of the state-of-the-art constraint programming algorithm for the

276 J.-P. Watson and J.C. Beck

JSP (SGMPCS). The performance of the hybrid algorithm is at least competitive with
the two state-of-the-art algorithms for the JSP: Nowicki and Smutnicki’s i-TSAB tabu
search algorithm and Zhang et al.’s hybrid tabu search / simulated annealing algorithm.
While various factors outside our immediate control prevent us from making a more
rigorous and precise statement regarding relative performance, we additionally observe
that our hybrid algorithm was able to locate 12 new best-known solutions to Taillard’s
notoriously difficult benchmark instances, providing additional evidence of the effec-
tiveness of our approach. Further, our hybrid algorithm provides two additional advan-
tages over the i-TSAB and Zhang et al. algorithms. First, we demonstrate that perfor-
mance is largely insensitive to the choice of the fundamental parameters underlying
the algorithm. Second, and perhaps most importantly, the hybrid is able to consistently
achieve excellent performance, e.g., the worst-case performance is roughly equivalent
to the mean performance of the Zhang algorithm.

While this paper focuses on the introduction and analysis of a hybrid algorithm
in terms of performance, our original motivation was to better understand why con-
straint programming algorithms for the JSP – in particular, SGMPCS – generally under-
perform their local search counterparts. Although it is now clear that SGMPCS has a
niche relative to local search in state-of-the-art algorithms for the JSP, we have only
begun preliminary investigations into understanding this niche and how SGMPCS ex-
ploits it. For example, we have preliminary evidence that SGMPCS acts primarily as an
intensification mechanism for the elite solutions generated by i-STS, and is empirically
more efficient than tabu search in that role. The insensitivity of SGMPCS performance
to parameter settings also raises a number of issues, for example, the need to better un-
derstand why elite pool size is not a major factor in CP-based search, while it appears
fundamental in local search. Overall, the present contribution establishes the hybrid i-
STS / SGMPCS algorithm as an interesting test subject; future research will analyze
these and other questions raised by this performance analysis.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada, the Canadian Foundation for Innovation, the Ontario Research
Fund, Microway, Inc., and ILOG, S.A.. Sandia is a multipurpose laboratory operated by
Sandia Corporation, a Lockheed-Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000

References

1. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job-shop
scheduling. Management Science 44(2), 262–275 (1998)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. Kluwer Academic Pub-
lishers, Dordrecht (2001)

3. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling. Journal
of Artificial Intelligence Research 29, 49–77 (2007)

4. Beck, J.C., Fox, M.S.: Dynamic problem structure analysis as a basis for constraint-directed
scheduling heuristics. Artificial Intelligence 117(1), 31–81 (2000)

A Hybrid Constraint Programming 277

5. Blażewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: Conventional and
new solution techniques. European Journal of Operational Research 93(1), 1–33 (1996)

6. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research 1(2), 117–129 (1976)

7. Glover, F., Laguna, M., Martı́, R.: Scatter search and path relinking: Advances and applica-
tions. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, Kluwer Aca-
demic Publishers, Dordrecht (2003)

8. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1, 33–42 (1996)
9. Howe, A.E., Watson, J.P., Whitley, L.D.: Deconstructing nowicki and smutnicki’s i-tsab tabu

search algorithm for the job-shop scheduling problem. Computers and Operations Research,
Anniversary Focused Issue on Tabu Search 33(9), 2623–2644 (2006)

10. Laborie, P.: Algorithms for propagating resource constraints in AI planning and scheduling:
Existing approaches and new results. Artificial Intelligence 143, 151–188 (2003)

11. Le Pape, C.: Implementation of resource constraints in ILOG Schedule: A library for the
development of constraint-based scheduling systems. Intelligent Systems Engineering 3(2),
55–66 (1994)

12. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Informa-
tion Processing Letters 47, 173–180 (1993)

13. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Man-
agement Science 42(6), 797–813 (1996)

14. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithms for the job shop problem.
Journal of Scheduling 8(2), 145–159 (2005)

15. Nuijten, W.P.M.: Time and resource constrained scheduling: a constraint satisfaction ap-
proach. PhD thesis, Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology (1994)

16. Nuijten, W.P.M., Le Pape, C.: Constraint-based job shop scheduling with ILOG Scheduler.
Journal of Heuristics 3, 271–286 (1997)

17. Scheduler. ILOG Scheduler 6.5 User’s Manual and Reference Manual. ILOG, S.A (2007)
18. Smith, S.F., Cheng, C.C.: Slack-based heuristics for constraint satisfaction scheduling. In:

Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI 1993),
pp. 139–144 (1993)

19. Taillard, E.D.: Benchmarks for basic scheduling problems. European Journal of Operational
Research 64, 278–285 (1993)

20. Taillard, É.D.: (November 2007),
http://ina.eivd.ch/collaborateurs/etd/default.htm

21. Taillard, É.D.: Parallel taboo search technique for the jobshop scheduling problem. Tech-
nical Report ORWP 89/11, DMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland (1989)

22. Watson, J.-P.: On metaheuristic “Failure Modes”: A case study in tabu search for job-shop
scheduling. In: Proceedings of the Fifth Metaheuristics International Conference (2005)

23. Watson, J.P.: Empirical Modeling and Analysis of Local Search Algorithms for the Job-
Shop Scheduling Problem. PhD thesis, Department of Computer Science, Colorado State
University (2003)

24. Wu, H., van Beek, P.: On universal restart strategies for backtracking search. In: Proceedings
of the Thirteenth International Conference on Principles and Practice of Constraint Program-
ming, pp. 681–695 (2007)

25. Zhang, C.Y., Li, P., Rao, Y., Guan, Z.: A very fast TS/SA algorithm for the job shop schedul-
ing problem. Computers and Operations Research 35(1), 282–294 (2008)

http://ina.eivd.ch/collaborateurs/etd/default.htm

Counting Solutions of Integer Programs Using
Unrestricted Subtree Detection

Tobias Achterberg1, Stefan Heinz2,�, and Thorsten Koch2

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany
tachterberg@ilog.de

2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{heinz,koch}@zib.de

Abstract. In the recent years there has been tremendous progress in
the development of algorithms to find optimal solutions for integer pro-
grams. In many applications it is, however, desirable (or even necessary)
to generate all feasible solutions. Examples arise in the areas of hardware
and software verification and discrete geometry.

In this paper, we investigate how to extend branch-and-cut integer
programming frameworks to support the generation of all solutions. We
propose a method to detect so-called unrestricted subtrees, which allows
us to prune the integer program search tree and to collect several solu-
tions simultaneously. We present computational results of this branch-
and-count paradigm which show the potential of the unrestricted subtree
detection.

1 Introduction

In the last decades much progress has been made in finding optimal solutions to
integer linear programs (IP) [6]. Recently, more attention has been given to the
task of finding all feasible solutions to a given IP, since it arises in applications,
for instance, in the context of hardware and software verification and the analysis
of polyhedra (see De Loera et al. [9] and references therein). Furthermore, for IP
problems that evolve from industry applications, it is desirable to find multiple
or even all optimal solutions as discussed in [8].

A common way to solve IP counting or enumeration problems is to transform
them into an equivalent binary representation and use specialized solvers. For
Boolean satisfiability instances an algorithm for counting solutions is introduced
in [13]. A method based on binary decision diagrams is stated in [4]. This al-
gorithm is capable of counting or enumerating all feasible solutions of binary
linear programs (BP), which are IPs containing only binary variables. Alterna-
tive methods for these type of problems are given in [7] and [10]. Both approaches
make use of a search tree. The first one additionally uses linear programming
(LP) relaxations to detect infeasible subproblems.

� Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 278–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Counting Solutions of Integer Programs 279

There are only few algorithms that count or enumerate all feasible solutions
of a general IP and work on the integer variable space. In [8] a branch-and-
cut based algorithm is introduced which is able to generate multiple or even all
(near) optimal solutions of a given IP (available in cplex). Setting the objective
function to zero forces this algorithm to enumerate all feasible solutions. Another
method which operates on the integer variable space is Barvinok’s algorithm [3].
This algorithm counts all lattice points inside a convex polytope in polynomial
time when the dimension is fixed.

In this paper, we introduce a branch-and-count method based on a branch-
and-cut framework to generate all solutions of a given IP. This method works on
the integer domain. Furthermore, we state a technique called unrestricted subtree
detection which collects several solutions simultaneously.

2 Problem Definition

We consider integer programs (IP) of the form

min{cT x | Ax ≤ b, l ≤ x ≤ u, x ∈ �n}

with A ∈ �m×n, b ∈ �m, and c, l, u ∈ �n. Note that all variables are bounded
and of integer type. We are addressing the task of computing the finite set
XIP = {x | Ax ≤ b, l ≤ x ≤ u, x ∈ �n} of all feasible solutions of a given IP.
We denote by X∗IP ⊆ XIP the set of all optimal solutions of the integer program,
that is, X∗IP = argmin{cT x | x ∈ XIP}. If c = 0, both sets are equal.

It is known that the above formulation is quite general. Maximization prob-
lems can be transformed to minimization problems by multiplying the objective
function coefficients by −1. Similarly, “≥” constraints can be multiplied by −1 to
obtain “≤” constraints. Equations can be replaced by two opposite inequalities.

In the next section, we discuss an approach to compute XIP. With this method
it is also possible to generate X∗IP. There are two natural ways to do this: one
is to first compute XIP and subsequently X∗IP by only keeping those elements of
XIP that minimize the objective function. The other possibility is to solve the
underlying IP to optimality, add an additional constraint of the form cT x ≤ c∗

to the IP, with c∗ being the optimal value of the IP, and finally, compute the
set XIP′ for the resulting IP′. Obviously, XIP′ is equal to X∗IP.

3 Branch-and-Count Approach

Currently, the most successful general technique to solve IPs (to optimality) is
branch-and-cut using LP-relaxations. For a detailed description of the work-flow
of branch-and-cut algorithms in general, we refer to Nemhauser and Wolsey [11].

Branch-and-cut algorithms can be adapted to enumerate all feasible solutions
of a given integer program, by traversing the whole search tree and collecting all
feasible solutions step-by-step. In this section we introduce a technique to speed
up the enumeration process of a brach-and-cut based algorithm.

280 T. Achterberg, S. Heinz, and T. Koch

3.1 Pruning by Detecting Unrestricted Subtrees

The basic idea of our approach is to find a way to deduce and construct all
solution vectors contained in a subtree. If this is possible, the whole subtree
can be pruned without explicitly enumerating all leaves. The two most simple
structures are subtrees which have no solutions and subtrees where any vari-
able assignment constitutes a feasible solution. We call these subtrees infeasible
subtrees and unrestricted subtrees, respectively.

The infeasible subtree detection is also an issue for a standard branch-and-cut
based algorithm focusing on optimal solutions. One way to improve infeasible
subtree detection is conflict analysis, see [1,12]. Unrestricted subtrees can be
detected in the following way: at every node S in the search tree, it is checked
whether each constraint is locally redundant, i.e., whether it is always satisfied
in the local domains.

Definition. A constraint is called locally redundant at subproblem S if it is
satisfied by all possible variable assignments of values in the local domains at
subproblem S.

Lemma 1. The subtree at a node S of the search tree is unrestricted if and only
if all constraints are locally redundant at node S.

Proof. Let x be an arbitrary vector in the local domains of subproblem S. If all
constraints are locally redundant, each constraint is satisfied by x and thus, x
is a feasible solution. Hence, the subtree below node S is unrestricted. On the
other hand, if the subtree below S is unrestricted, x must be feasible. Therefore,
it satisfies each individual constraint. It follows that each constraint is locally
redundant at node S. ��
A similar observation was made by Morgado et al. [10] with respect to BPs.
Their search algorithm detects feasible solutions if all constraints are locally
redundant (through previous variable fixings). Additionally, they have to add
so-called blocking clauses to prevent the algorithm to count the same solutions
several times. Branch-and-cut based algorithms find feasible solutions without
checking each constraint for locally redundancy. Therefore, the redundancy check
has to be performed explicitly in every search node to find unrestricted subtrees.

Example 1. Consider the following IP:

min{0T x | x0 + x1 + x2 ≤ 2,
x0 − x1 + x2 ≤ 1,
x0 + x1 − x2 ≤ 1,
x0 − x1 − x2 ≤ 0,

x ∈ {0, 1}3}.

In Figure 1 we depict different branching possibilities for the root node. Only
in the first case, where we branch on variable x0, the resulting subproblems
constitute an unrestricted and an infeasible subtree. More precisely, if variable x0
is fixed to zero, all constraints are locally redundant; setting variable x0 to one,
leads to an infeasible subproblem.

Counting Solutions of Integer Programs 281

assign-
ments

x0
x1
x2

x0

0
0
0

0
1
0

0
0
1

0
1
1

0

1
0
0

1
1
0

1
0
1

1
1
1

1

unrestricted
subtree

infeasible
subtree

x1

0
0
0

1
0
0

0
0
1

1
0
1

0

0
1
0

1
1
0

0
1
1

1
1
1

1

x2

0
0
0

1
0
0

0
1
0

1
1
0

0

0
0
1

1
0
1

0
1
1

1
1
1

1

infeasible solution
feasible solution

Fig. 1. Possible branching decisions in the root node for Example 1

Table 1. Results for chip verification instances

Instance basic approach unrestricted subtree detection

Name Cons Vars |XIP| time nodes depth time nodes depth unrest.

veri1 1589 1251 809 424 12.9 1 618 847 26 0.3 17 639 19 8 448
veri2 854 691 655 360 16.8 1 310 762 30 9.6 491 567 29 245 766
veri3 219 138 573 440 18.2 1 146 948 29 15.0 860 227 29 143 360
veri4 748 623 2 097 152 33.0 4 194 319 23 4.9 327 687 20 163 840
veri5 1631 1294 260 096 4.5 520 207 22 0.7 41 011 19 20 487
veri6 1140 901 100 980 1.6 201 959 22 0.1 2 087 13 1 044
veri7 2123 1683 >68 749 M >1800 >272 M 50 >1800 >111 M 42 >55 684 k
veri8 43 53 264 241 407 >1800 >237 M 34 77.1 4 316 909 31 2 122 366

3.2 Computational Results

We integrated the unrestricted subtree detection into the branch-and-cut frame-
work scip (Version 1.00.5) [2]. As an LP-solver we used soplex 1.3.3 [14]. All
computations presented in this section were run on computers with an Intel
Core 2 Quad CPU with 2.66 GHz, 4 MB cache, and 4 GB of RAM. A time limit
of 30 minutes was employed.

Due to the lack of space we first restrict our self to 8 real-world instances
which contain several ten-thousand solutions each. These instances arise from
chip verification problems and have been provided by OneSpin Solutions1. The
results are given in Table 1. The first four columns contain the problem instance
information, namely the name (“Name”), the number of constraints and variables
(“Cons”, “Vars”), and the number of feasible solutions (“ |XIP|”). Columns labeled
with “basic approach” and “unrestricted subtree detection” report the individ-
ual results for the branch-and-count framework without and with unrestricted
subtree detection, respectively; the first subcolumns report the running time in
seconds, the total number of search nodes, and the maximum search tree depth.
For the unrestricted subtree detection we further state the number of detected
(non-trivial) unrestricted subtrees (“unrest.”).

1 http://www.onespin-solutions.com

http://www.onespin-solutions.com

282 T. Achterberg, S. Heinz, and T. Koch

The unrestricted subtree detection leads to a substantial decrease in the num-
ber of needed search nodes. This comes along with a reduction in the total
running time and the maximum depth level of the search tree.

We also applied our method to the MIPLIB [5] instances that do not have
continuous variables to compute the sets X∗IP of all optimal solutions. The gen-
eration of all optimal solutions can be performed in less than 5 minutes for
each instance, except for cracpb1 and p2756. For p0548 the unrestricted subtree
detection was necessary to solve the instance within the time limit.

We compared our approach (scip) to existing methods, in particular azove [4],
cplex [8], LattE [9], and zerOne [7]. Our approach clearly dominates the
other solvers on the chip verification instances. For the MIPLIB instances the
branch-and-cut based algorithms, i.e., cplex, zerOne, and scip, are similar in
efficiency, while the other solvers are inferior.

References
1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4,

4–20 (2007)
2. Achterberg, T.: Constraint Integer Programming, PhD thesis, TU Berlin (2007)
3. Barvinok, A.I.: A polynomial time algorithm for counting integral points in poly-

hedra when the dimension is fixed. Math. Oper. Res. 19, 769–779 (1994)
4. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Work-

shop on Algorithm Engineering and Experiments (ALENEX) (2007)
5. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: A test set of mixed integer

programming problems. SIAM News 25, 16 (1992)
6. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and

practice – closing the gap. In: Powell, M., Scholtes, S. (eds.) Systems Modelling and
Optimization: Methods, Theory, and Applications, pp. 19–49. Kluwer, Dordrecht
(2000)

7. Bussieck, M.R., Lübbecke, M.E.: The vertex set of a 0/1-polytope is strongly P-
enumerable. Comput. Geom. 11, 103–109 (1998)

8. Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for
mixed integer programming problems. In: Fischetti, M., Williamson, D.P. (eds.)
IPCO 2007. LNCS, vol. 4513, pp. 280–294. Springer, Heidelberg (2007)

9. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point
counting in rational convex polytopes. J. Symb. Comput. 38, 1273–1302 (2004)

10. Morgado, A., Matos, P.J., Manquinho, V.M., Silva, J.P.M.: Counting models in
integer domains. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
410–423. Springer, Heidelberg (2006)

11. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley & Sons, New York (1988)

12. Sandholm, T., Shields, R.: Nogood learning for mixed integer programming, Tech.
Report CMU-CS-06-155, Carnegie Mellon University, Computer Science Depart-
ment (2006)

13. Thurley, M.: sharpSAT – Counting Models with Advanced Component Caching
and Implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 424–429. Springer, Heidelberg (2006)

14. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus, PhD the-
sis, TU Berlin (1996)

Rapidly Solving an Online Sequence of

Maximum Flow Problems with Extensions to
Computing Robust Minimum Cuts

Doug Altner and Özlem Ergun

H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology. Atlanta, Georgia

Abstract. We investigate how to rapidly solve an online sequence of
maximum flow problems (MFPs). Such sequences arise in a diverse col-
lection of settings including stochastic network programming and con-
straint programming. In this paper, we formalize the study of solving
a sequence of MFPs, introduce a maximum flow algorithm designed for
“warm starts” and extend our work to computing a robust minimum
cut. We demonstrate that our algorithms reduce the running time by an
order of magnitude when compared similar codes that use a black-box
MFP solver. In particular, we show that our algorithm for robust min-
imum cuts can solve instances in seconds that would require over four
hours using a black-box maximum flow solver.

Keywords: Maximum Flow; Reoptimization; Robust Minimum Cut.

1 Introduction

The Maximum Flow Problem (MFP) is a fundamental problem in discrete opti-
mization. Efficient, network algorithms exist to solve instances with thousands of
nodes in a matter of seconds. However, despite the existence of large sequences
of MFPs in a diverse selection of papers, there does not exist a formalized study
of solving a large sequence of MFPs. Given the existence of rapid and scalable
algorithms, it seems intuitive that there would be no substantial cost to using a
black-box maximum flow solver to solve a sequence of MFPs. The goal of this
paper, however, is to convince the reader that this may lead to an enormous
number of unnecessary computations.

We list a few examples of procedures that require solving a sequence of MFPs
in the operations research literature: repeatedly checking if the alldifferent
constraint is satisfied during constraint programming [9], computing market
clearing prices [4], bicriteria maximum flow network interdiction [10], estimating
the physical difference between two proteins [11], scheduling jobs on a dual-
processor machine in real-time [12], computing a robust minimum capacity s-t
cut using a polyhedral model of robustness, separating valid inequalities for the
Traveling Salesman Problem [2], and stochastic network programming [13].

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 283–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 D. Altner and Ö. Ergun

In the applications above, the MFPs are typically similar. Moreover, the
time it takes to sort the MFPs in advance usually exceeds any benefits from the
sorting. Thus, to model this, we study online sequences of MFPs.

To obtain an algorithm for the aforementioned, we modify the preflow-push
algorithm of Goldberg and Tarjan [7] to enable “warm starts.” We focus on
the algorithm of Goldberg and Tarjan because it is considered the fastest maxi-
mum flow algorithm in practice [3] and because there are nice properties of the
algorithm that can be exploited for efficient reoptimization techniques.

As a selected application, we choose to focus on the Robust Minimum Capac-
ity s-t Cut Problem (RobuCut). This problem models choosing a minimum s-t
cut under data uncertainty. This framework can be applied to open-pit mining
[8] or assigning jobs to two processors [12].

The contributions of this research are as follows: First, we have formalized
the study of solving an online sequence of MFPs. Second, we have designed
an effective algorithm for solving the maximum flow single arc reoptimization
problem that demonstrates to outperform a black-box maximum flow solver by
an order of magnitude. Third, we have designed a powerful algorithm for solving
RobuCuts. Our algorithm can solve instances in seconds that typically take over
four hours when using a black-box solver.

2 The Maximum Flow Single Arc Reoptimization
Problem

In this section, we study the special case of an online sequence of MFPs when
each MFP differs from the previous MFP in that exactly one arc has changed.
In addition to being a logical place to begin our study, this problem also has ap-
plications in real-time scheduling on a dual-processor machine and in computing
a robust minimum capacity s-t cut.

We informally define the Maximum Flow Single Arc Reoptimization Problem
(MFSAROP) as given a ground network and an online series of sub-networks,
find the maximum flow in each of the sub-networks. We note that this framework
also allows for changing the capacity of a single arc, which can be done with the
usage of parallel arcs, as well as for the addition or deletion of a single node,
which can be done with a split-node network.

Our algorithm for MFSAROP exploits the Maximum Flow Minimum Cut
Theorem of Ford and Fulkerson [5]. Simply put, this theorem states that the value
of the maximum flow in a network equals the value of the minimum capacity
cut.

Assume that we must solve the ith MFP and that we have already solved the
(i − 1)st MFP. If a single arc is to be modified before we must compute the new
maximum flow, then there are only four possible cases for reoptimization that
may be encountered:

1. An added arc is contained in all minimum cuts. In this case, a modified
maximum flow computation is necessary to recompute the new maximum
flow, which will increase in value.

Rapidly Solving an Online Sequence of Maximum Flow Problems 285

2. An added arc is not contained in all minimum cuts. In this case, the max-
imum flow in the network will not change. No further computations are
needed.

3. A removed arc was contained in at least one minimum cut. In this case, the
maximum flow will decrease by a known amount and the new maximum flow
can be computed with breadth-first search.

4. A removed arc was not contained in any minimum cut. It is possible that
a new minimum cut was created. In this case, we first try to compute the
maximum flow that was on the removed arc that can be recovered. All flow
that cannot be redirected is removed with breadth-first search.

To determine which reoptimization case we have encountered, we created a
data structure called a cut tripartition. For a given maximum flow, this data
structure stores a unique tripartition of the nodes: all of the nodes reachable from
the source in an optimal residual network form one partition, all of the nodes that
can reach the sink in an optimal residual network form another partition and all
other nodes are in the third partition. A cut tripartition contains two minimum
cuts. It also allows one to heuristically identify the appropriate reoptimization
case in constant time.

Our algorithm consists of three steps which are iteratively performed for each
subsequent MFP after the first MFP is solved. The first step is to transition
from the previous network to the next network. The second step is to use the
cut tripartition to heuristically identify the reoptimization case and to take the
appropriate action to recompute the maximum flow. The third step is to update
the cut tripartition.

3 Robust Minimum Capacity s-t Cuts

In this section, we discuss how to use maximum flow reoptimization techniques to
design an algorithm for the Robust Minimum Capacity s-t Cut Problem (Robu-
Cut). In [1], Bertsimas and Sim introduced a general model for robust combina-
torial optimization problems (RobuCOPs) along with an algorithm to solve an
arbitrary RobuCOP by solving a linear number of nominal COPs. Building on
their algorithm, we offer an algorithm for RobuCut that uses our reoptimization
heuristics.

RobuCut can be viewed as a Stackelberg game. Assume that a user has ini-
tially selected Γ to specify his desired level of conservative planning. First, the
user will choose a s-t cut. Then, an adversary will choose Γ arcs to set to their
highest capacity so as to maximize the capacity of the chosen cut. All other arcs
will assume their lowest capacity. The user’s objective is to choose a cut that
will be of minimum capacity after the adversary exercises his negative influence.
We formally define the Robust Minimum s-t Cut Problem as follows:

Robust Minimum s-t Cut Problem: Let N = (V, A) be a network with
source s and sink t and let ζ be the family of all minimum capacity s-t cuts
in N . Assume arc capacities ũe are uncertain but are known to take value in

286 D. Altner and Ö. Ergun

[ue, ue + de] ∀ e ∈ A. Compute a minimum cut under the assumption that at
most Γ > 0 of the arcs are assigned their highest capacity so as to maximally
adversely influence the objective value while all other arcs assume their lowest
capacity.

Minimize
∑

e∈C

ue + max{S|S⊆A,|S|≤Γ}
∑

j∈S∩C

dj

Subject to C ⊆ ζ

Theorem 1. RobuCut may be solved by computing exactly |A| + 1 maximum
flow computations.

Proof. Follows from Theorem 3 in [1] and the Maximum Flow Minimum Cut
Theorem. �

We can enumerate the |A|+1 nominal MFPs (NMFPs) such that the arc capaci-
ties are always increasing throughout the sequence of NMFPs. When we need to
solve the ith NMFP, we store an incremental network, which is an induced sub-
network on the set of all arcs whose capacity changed compared to the (i − 1)st
network of the NMFP. This network is stored as a heuristic technique to accel-
erate the computation time. Reoptimizing the maximum flow over the induced
sequence of incremental networks can be modeled as the MFSAROP.

Our strategy for solving RobuCut is as follows: First we solve the first NMFP.
Then, to solve the ith NMFP, we first use the (i−1)st incremental network to to
recompute the new maximum flow value in the ith incremental network. Then
we use the ith incremental network’s maximum flow and the maximum flow in
the (i − 1)st NMFP to construct a feasible solution for the ith NMFP to warm
start our maximum flow reoptimization algorithm.

4 Computational Results

We conducted a series of experiments on randomly generated instances of both
MFSAROP and RobuCut. The purpose of these experiments is to demonstrate
the computational savings from using our algorithms as opposed to using a
maximum flow solver as a black-box subroutine. For a black-box solver, we im-
plemented our own version of the Goldberg-Tarjan algorithm employing both
the gap and global relabeling heuristics described in [3]. Since using Goldberg’s
maximum flow code [6] as a black-box usually outperforms warm starting a
commercial linear programming solver for solving a sequence of maximum flow
problems, we restricted our computational study to comparing network-based
algorithms.

For MFSAROP, we created over 300 randomly generated instances. The num-
ber of nodes ranged from 100 to 1,000, and the number of reoptimizations re-
quired ranged from 100 to 500. In these instances, our reoptimization algorithm
demonstrated to require about 15% of the time that the black-box solver re-
quired. The larger instances took about 25 minutes with a black-box solver but
required only around 4 minutes with our reoptimization algorithm.

Rapidly Solving an Online Sequence of Maximum Flow Problems 287

For RobuCut, we created close to 300 randomly generated instances where the
number of nodes ranged from 100 to 500. In these instances, our implementation
always solved the instances in a matter of seconds while the black-box solver
required over 4 hours.

5 Conclusions

We have demonstrated that through the use of simple reoptimization heuris-
tics one can design effective algorithms for rapidly solving an online sequence of
MFPs and for rapidly computing RobuCuts.

Acknowledgements

Özlem Ergun was partially supported by the NSF Career grant DMI-0238815.

References

1. Bertsimas, D., Sim, M.: Robust Discrete Optimization and Network Flows. Math-
ematical Programming 98(1), 49–71 (2003)

2. Carr, R.: Separating Clique Trees and Bipartition Inequalities Having a Fixed
Number of Handles and Teeth in Polynomial Time. Mathematics of Operations
Research 22(2), 257–265 (1997)

3. Cherkassky, B., Goldberg, A.: On Implementing Push-Relabel Method for the Max-
imum Flow Problem. Algorithmica 19(4), 390–410 (1994)

4. Devanur, N., Papadimitriou, C., Saberi, A., Vazirani, V.: Market Equilibrium via a
Primal-Dual Algorithm for a Convex Program. In: Proceedings of the 43rd Annual
Symposium on Foundations of Computer Science (2002)

5. Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal
of Mathematics 8, 399–404 (1956)

6. Goldberg, A.: Andrew Goldberg’s Network Optimization Library,
http://avglab.com/andrew/soft.html

7. Goldberg, A., Tarjan, R.: A New Approach to the Maximum Flow Problem. Journal
of Associated Computing Machinery 35 (1988)

8. Hochbaum, D., Chen, A.: Improved Planning for the Open - Pit Mining Problem.
Operations Research 48, 894–914 (2000)

9. Régin, J.C.: A Filtering Algorithm for Constraints of Difference in Constraint Sat-
isfaction Problems. In: The Proceedings of the Twelfth National Conference on
Artificial Intelligence, vol. 1, pp. 362–367 (1994)

10. Royset, J., Wood, R.K.: Solving the Bi-objective Maximum-Flow Network-
Interdiction Problem. INFORMS Journal on Computing 19, 175–184 (2007)

11. Strickland, D., Barnes, E., Sokol, J.: Optimal Protein Structure Alignment Using
Maximum Cliques. Operations Research (to appear, 2008)

12. Stone, H.S.: Multiprocessor Scheduling with the Aid of Network Flow Algorithms.
IEEE Transactions on Software Engineering 3(1), 85–93 (1977)

13. Wallace, S.: Investing in Arcs in a Network to Maximize the Expected Max Flow.
Networks 17, 87–103 (1987)

http://avglab.com/andrew/soft.html

A Hybrid Approach for Solving Shift-Selection

and Task-Sequencing Problems

Ada Barlatt1, Amy M. Cohn1, and Oleg Gusikhin2

1 University of Michigan, Ann Arbor MI 48109, USA
abarlatt@umich.edu, amycohn@umich.edu

2 Ford Motor Company, Dearborn MI 48121, USA
ogusikhi@ford.com

Abstract. A common problem in production planning is to sequence a
series of tasks so as to meet demand while satisfying operational con-
straints. This problem can be challenging to solve in its own right. It be-
comes even more challenging when higher-level decisions are also taken
into account, such as which shifts should be selected to accommodate
production. In this paper, we introduce the Shift-Selection and Task Se-
quencing (SS-TS) problem, develop the hybrid Test-and-Prune algorithm
(T&P) to solve SS-TS, and present computational experiments based on
a real-world problem in automotive stamping to demonstrate its effec-
tiveness. In particular, we are able to solve, in very short run times, a
number of problem instances that could not be solved through traditional
integer programming methods.

1 Introduction

Production planning problems are typically premised on the assumption of a pre-
defined, fixed set of shifts in which tasks can be scheduled. Decreasing the number
of shifts used or the available capabilities of those shifts can result in significant
savings in overhead costs, which typically dominate the cost of performing the
actual tasks. We call the integration of the higher-level Shift-Selection (SS) deci-
sions with the more detailed Task-Sequencing (TS) decisions the Shift-Selection
and Task-Sequencing (SS-TS) problem.

TS problems are often quite challenging to solve by themselves (eg. [3], [6],
[8] ,[9]); integrating them with SS decisions yields even greater challenges ([4]),
including very large mixed integer programs (MIPs) with weak linear program-
ming (LP) relaxations. Due to these challenges, this problem has historically
been disaggregated to achieve tractability (eg. [5] and [10]), often at the expense
of solution quality.

We propose an alternative approach to SS-TS to overcome these challenges,
which we call Test-and-Prune (T&P). This algorithm leverages three key facts
common to many SS-TS problems. First, the SS costs greatly dominate the costs
associated with TS. Second, the set of SS decisions is discrete and fairly limited.
Third, when the shifts are pre-determined, we need only test the feasibility of
the corresponding TS problem.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 288–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Hybrid Approach for Solving Shift-Selection 289

In such cases, instead of modeling and solving SS-TS as a single optimization
problem, we propose to solve it by enumerating all solutions to SS (i.e. all sets
of SS decisions) and, for each of these, determining whether the corresponding
TS problem instance is feasible. We show that this approach, in conjunction
with pruning techniques (to limit the number of feasibility problems actually
solved), enables us to solve problems that are computationally intractable under
traditional IP-based approaches.

2 Problem Statement

2.1 Formal Problem Statement

– S is the set of SS decisions to be made – whether or not to operate each
given shift and, more broadly, decisions about what characteristics these
shifts might have.

– y is the decision vector associated with SS ; ys is the sth element of this
vector, i.e. the decision variable associated with SS decision s.

– Y is the set of valid SS solution, capturing any broader constraints that span
multiple decisions (for example, budgetary constraints). Note that we do not
require that Y can be represented as a mathematical program.

– f(y) is the cost function applied to SS solution y ∈ Y. There are no restric-
tions on f so long as it is easy to compute.

– x is the decision vector associated with TS.
– X defines any non-negativity constraints, integrality constraints, and up-

per/lower bounds on the TS decisions x.
– H is the coefficient matrix defining any constraints on x which do not depend

on y. We restrict these constraints to be linear.
– I is the set of linking constraints between x and y.
– gi and di are the row vectors defining the ith linking constraint.

Formulation

min f(y) (1)
s.t.

gi ∗ x − di ∗ y ≤ 0 ∀i ∈ I (2)
H ∗ x ≤ 0 (3)

x ∈ X (4)
y ∈ Y (5)

The objective function (1) computes the value of SS solution y. Constraints
(2) enforce limitations on the TS decisions relative to the upper limits provided
by the SS solution. For example, tasks cannot be performed during shift i unless
shift i has been selected. Constraints (3) are additional constraints to ensure the
feasibility of x. Finally, (4) and (5) enforce integrality, non-negativity, and other
restrictions on the vectors x and y.

290 A. Barlatt, A.M. Cohn, and O. Gusikhin

There are several structural aspects of SS-TS that can make this problem dif-
ficult to solve. First, the set Y may be non-linear, discrete, non-convex, or have
some other characteristic that makes it difficult (if not impossible) to represent as
a MIP. Second, the cost function f(y) may be non-linear, non-convex, or possi-
bly even not a closed-form function. Third, even when SS-TS can be formulated
as a MIP, it typically will poses a weak LP relaxation. This is because the objec-
tive value can be decreased in a fractional solution by matching the capacity of y
to the exact value required by the decisions x. In practice, very poor convergence
of the branch-and-bound tree is often observed in such problems. [See [1] and [7]
for examples of this in other problem domains.] Finally, the TS problem repre-
sented by H ∗ x ≤ 0, x ∈ X may itself be a large MIP. The integration of SS and
TS can exacerbate this, because it may prevent TS from being decomposed.

3 Test-and-Prune Algorithm

Our approach to overcome the challenges outlined in Section 2 is premised on
the simple idea of solving many easy feasibility problems instead of one difficult
optimality problem. Specifically, we enumerate all SS solutions. We select an
SS solution and solve its corresponding TS feasibility problem, then we use the
result to reduce the feasible region by removing the dominated SS solutions. We
repeat this process until we have determined the lowest-cost SS solution that is
TS feasible.

There are two phases to the T&P algorithm. First, we build the list of can-
didate SS solutions; we then process this list until it is empty and the optimal
solution has been found. The Build phase begins by looping through all combi-
nations of the binary SS decisions in S. For each such set of decisions (i.e. SS
solution vector y), we check its validity – testing to see if it is a member of the
set Y. If the solution is valid we compute its cost and add it to the Pending list.
If not, we delete it.

In the Process phase, we begin by removing a candidate solution y from the
Pending list and testing its TS feasibility. If it is feasible, we prune from the
list any pending SS solution with equal or higher cost; clearly such a solution is
sub-optimal. We then update the Current Best list with solution y. Conversely,
if y is infeasible, then we prune from the Pending list any SS solution ŷ for
which ŷs ≤ ys for all individual SS decisions s; such SS solutions constrain TS
even more tightly and thus will also be infeasible. We then choose another SS
solution vector from the (reduced) Pending list and repeat until the list is empty.
[In our experience, selecting from the middle of the list greatly enhances the
impact of pruning, although one open area of research is to evaluate strategies
for processing the list.]

4 Computational Results, Conclusions and Future
Research

To evaluate the performance of T&P, we considered the problem of schedul-
ing production in an automotive stamping facility. In this problem, body parts

A Hybrid Approach for Solving Shift-Selection 291

(hoods, fenders, doors, etc.) are stamped from sheet metal. The sequencing and
scheduling of the different part types is itself a difficult task ([2]), with complex
rules about when changeovers between part types can take place. In addition,
labor rules require that when someone is hired for a given shift on one day (there
are up to three eight-hour shifts operated each day), they must be hired for that
shift for the full planning horizon (here, two weeks). Thus, substantial savings
can be gained by scheduling all production into a reduced set of common shifts
(eg. only first and third shift).

Solving these two problems concurrently as a traditional MIP poses substan-
tial challenges. We considered an instance with 22 different presslines collectively
producing 130 different part types. Three different demand levels (high, medium,
and low) were evaluated. In all three cases, run time was limited to 10.5 hours.
For the low demand, the final solution after this run time had an optimality gap
of over 16%. The two other instances did not find any integer-feasible solutions
in this time period.

We then solved the problem using T&P. For each of the three shifts, there are
two characteristics: Is production permitted during this shift? Can changeovers
take place in this shift? [This is because there are two different types of labor
needed for these tasks.] As a result we have 26 = 64 candidate SS solutions
to evaluate. In contrast to the traditional approach, which could not even find
feasible solutions in over ten hours, the run times to find optimal solutions for
the three instances using T&P were 25, 77, and 509 seconds.

We then tested a larger problem instance, assuming fifteen candidate labor
types, for a total of 215 = 32, 768 SS solutions. In this case, the largest number
of feasibility problems that actually had to be solved across the three instances
was 18 (the remaining 32,750 were all pruned), and the longest runtime was 5
hours; the other two instances each solved in under 10 minutes.

These results suggest that T&P may be a viable option for solving complex
SS-TS problems.

There are several ways in which this research can be extended to provide
further benefits.

First, we need not restrict the shift attributes to binary decisions, but may
consider integer characteristics as well. For example, we might want to consider
not only whether a shift is “on” or “off,” but also how many laborers to staff in
that shift.

Second, T&P can naturally be extended to a broader class of problems in
which some high level set of (discrete) resources are being allocated (which
dominate system cost), while lower level decisions about how to utilize these
resources to complete a set of tasks (which dominate system complexity) must
be made.

Third, as parallel computing capabilities become increasingly more accessible
and affordable, these capabilities can naturally be applied to improve the per-
formance of T&P, by solving multiple TS feasibility problems concurrently. The
challenge is then to effectively control the interaction between sub-problems.

292 A. Barlatt, A.M. Cohn, and O. Gusikhin

Acknowledgments

The authors gratefully acknowledge Yakov Fradin, Sean Little, Mary Jo Luppino,
and Craig Morford for their help on this project.

This work was supported by the National Science Foundation Graduate Re-
search Fellowship Program, the Engineering Research Center for Reconfigurable
Manufacturing Systems of the National Science Foundation under Award Num-
ber EEC-9529125 and a Ford Motor Company University of Michigan Alliance
Grant.

References

1. Armacost, A., Barnhart, C., Ware, K.: Composite Variable Formulations for Ex-
press Shipment Service Network Design. Transportation Science 36, 1–20 (2002)

2. Barlatt, A., Cohn, A., Guisikin, O., Fradin, Y., Morford, C.: Using Compos-
ite Variable Modeling to Achieve Realism and Tractability in Production Plan-
ning: An Example from Automotive Stamping. Technical Report TR07-01 (2007),
http://ioe.engin.umich.edu/techrprt/pdf/TR07-01.pdf

3. Bernstein, D., Rodeh, M., Gertner, I.: On the Complexity of Scheduling Problems
for Parallel/Pipelined Machines. IEEE Transactions on Computers 39, 1308–1313
(1989)

4. Blazewicz, J., Lenstra, J., Rinnooy Kan, A.: Scheduling Subject to Resource Con-
straints: Classification and Complexity. Discrete Applied Mathematics 5, 11–24
(1983)

5. Gabbay, H.: Multi-Stage Production Planning. Management Science 25, 1138–1148
(1979)

6. Garey, M., Johnson, D., Sethi, R.: The Complexity of Flowshop and Jobshop
Scheduling. Mathematics of Operations Research 1, 117–129 (1976)

7. Klose, A.: An LP-Based Heuristic for Two-Stage Capacitated Facility Location
Problems. The Journal of the Operational Research Society 50, 157–166 (1999)

8. Monma, C., Potts, C.: On the Complexity of Scheduling with Batch Setup Times.
Operations Research 37, 798–804 (1989)

9. Potts, C., Kovalyov, M.: Scheduling with Batching: A Review. European Journal
of Operational Research 120, 228–249 (2000)

10. Qiu, M.M., Burch, E.E.: Hierarchical Production Planning and Scheduling in a
Multi-Product, Multi-Machine Environment. International Journal of Production
Research 35, 3023–3042 (1997)

http://ioe.engin.umich.edu/techrprt/pdf/TR07-01.pdf

Solving a Log-Truck Scheduling Problem with

Constraint Programming

Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau

Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT)

C.P. 6128, succursale centre-ville, Montreal, Canada H3C 3J7
{nizar,michelg,louism}@crt.umontreal.ca

Abstract. Scheduling problems in the forest industry have received sig-
nificant attention in the recent years and have contributed many chal-
lenging applications for optimization technologies. This paper proposes
a solution method based on constraint programming and mathematical
programming for a log-truck scheduling problem. The problem consists
of scheduling the transportation of logs between forest areas and wood-
mills, as well as routing the fleet of vehicles to satisfy these transportation
requests. The objective is to minimize the total cost of non-productive
activities such as waiting time of trucks and forest log-loaders and the
empty driven distance of vehicles. We propose a constraint programming
model to address the combined scheduling and routing problem and an
integer programming model to deal with the optimization of deadheads.

1 Introduction

The forest industry plays an important role in the economy of several countries
such as Chile, Canada, Sweden, Finland and New Zealand. Planning problems in
forestry cover a wide scope of activities ranging from planting and harvesting to
road building and transportation. Furthermore, in most problems, it is critical to
pay attention to important environmental issues, as well as to company-specific
goals and operating rules. In Quebec, transportation represents more than 30%
of the cost of provisioning for wood transformation mills.

The Log-Truck Scheduling Problem (LTSP) is closely related to some routing
problems encountered in other industries, in particular, so-called “pick-up and
delivery problems” (see for instance [6]). In our case, we consider a pick-up and
delivery problem such that for each request exactly one load of wood has to
be transported from its pick-up location (forest area) to its delivery location
(woodmill). A truck visits only one forest area and one mill on any given trip,
i.e., requests are served individually by trucks. After unloading at a mill from its
previous trip, a truck is usually sent back empty to its next forest destination. All
requests are also assumed to be known in advance. We first assume that at each
mill and each forest location, there is a single log loader that ensures the loading
and unloading of all trucks. When a truck arrives at a location, if the loader is
busy, then the truck has to wait until the loader becomes available. These waiting

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 293–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

294 N. El Hachemi, M. Gendreau, and L.-M. Rousseau

times can severely delay trucks and thus increase the cost of transportation; they
should therefore be avoided as much as possible.

Since the mid-1990s, several companies in the forestry sector have initiated
major projects aimed at improving the transportation portion of their activities,
in particular, the control and quality of truck scheduling [9,3,4,2]. Rönnqvist
[5] gives a detailed description of optimization in forestry.

However none of these techniques have addressed the issue of synchronizing
the schedules of both log-loaders and trucks. The contribution of this paper is
therefore a Constraint Programming (CP) model for the LTSP, which minimizes
all non-productive activities such as deadhead trips and waiting times. To speed
up the resolution process, we model the truck circulation as an Integer Program-
ming (IP) problem that, once solved, generates global cardinality constraints for
the CP scheduling model. To our knowledge this is the first time that IP and
CP models communicate through the use of structured global constraints.

2 Modelling the LTSP

Over the last years, constraint-based scheduling has become an important tool
for modeling and solving scheduling problems [1] and complex transportation
problem [8]. We thus present a CP model for the LTSP along the lines of this
paradigm. The decision variables of the problem are based on the ILOG Sched-
uler component of OPL studio 3.7 (see [7]). For each activity A, two finite
domain variables are created, As and Ae, which are associated respectively to
the beginning and the end of the activity. Let R be the set of requests, the model
is based on the following variables and definitions:

V : set of vehicles defined as alternative unary resources.
Lm : log loader in a mill m defined as a unary resource.
Lf : log loader in a forest area f defined as a unary resource.
Pr : pickup activity of duration dp associated to request r.
Dr : delivery activity of duration dd associated to request r.
Cr : combined activity of pickup, traveling and delivery.
Vr ∈ V, ∀r ∈ R : Vehicle assigned to request r.
Sr ∈ O, ∀r ∈ I : Successor of request r on the same vehicle.

In this first model, the objective function consists in minimizing the sum of dead-
heads costs (empty trips) and the cost of the waiting time of trucks and log-loaders.
The problem is essentially1 constrained by the fact that 1) Cr requires V , 2)
Pr requires Lf , 3) Dr requires Lm, 4) Pr precedes DR, 5) P s

r = Cs
r , 6) De

r =
Ce

r , 7) AllDifferent(S), and 8) VSr = Vr. Furthermore the scheduling part of the
model (activities and resources) is linked with the transportation variables (S and
V) through the use of the OPL constraint activityHasSelectedResource(Cr , V, v),
which holds if activity Cr has selected resource v in alternative resources V . The
search strategy consist of two steps: first, we generate a value for each successor

1 The complete model cannot be included here, for space consideration.

Solving a Log-Truck Scheduling Problem with Constraint Programming 295

variable Sr, ∀r ∈ I, secondly, once the successor variables are fixed, we try to
schedule each unloading request as soon as possible.

3 An Hybrid Approach

Preliminary experiments showed that the model had some difficulties identify-
ing good values for the successor variables. We thus proposed a decomposition
approach, where we modeled the circulation of trucks between the mills and the
forest as a network flow problem (with some additional constraints). This model
can be easily solved as an Integer Program (IP) where xij is number of empty
trucks driving from woodmill i to forest area j. It yields an optimal solution
with respect to the deadhead component of the objective functions, but it is,
however, not able to schedule the trucks and the log-loader. To link both IP and
CP models, we have considered three different approaches: 1) Solve the IP, note
the optimal objective value, and use it as a constraint on the deadhead compo-
nent of the objective function in the CP model. 2) Solve the IP, note the optimal
solution, and use it to fix the successor variables in the CP model. 3) Solve the
IP, look at the structure of the optimal solution, and impose it in the CP model
through the introduction of global constraints on successor variables.

Since the objective function of CP model is basically a large sum of small
elements, it unfortunately does not allows for good back propagation (bounding
the objective does not really trigger propagation and domain reduction). For
that reason, method 1 would not be very useful in our context. On the other
hand, since the IP model completely ignores the important scheduling aspects
of the problem, fixing the sequence of all requests in the CP model would be
over constraining the scheduler. Once the complete sequence is given, there is
not enough flexibility left to avoid waiting times. The objective thus remains
to identify a good solution to the deadhead problem, while still giving the CP
model enough flexibility to minimize waiting times in the final schedule.

For this reason we chose to migrate from the IP model only the minimal
information that would allow achieving the minimal deadhead value. Since all
full loads must be transported from their origin to their destination, we observed
that the optimal value is completely determined by the arcs representing empty
trips in the solution. It is thus not the global sequence that is important, but
rather the number of empty trips performed between each mill and forest site.

These numbers can be extracted from the IP optimal solution and imposed
in the CP model through the introduction of Global Cardinality Constraints
(GCC). Let us consider x∗ij the optimal solution of the IP model. We define
x∗i as the vector composed of the |F | entries of x∗ij . To introduce these news
constraints, we need to define a new variable J i

r which specifies which forest area
will be visited just after unloading request r at mill i. The added constraints
are thus GCC(x∗i , F, J i

r), ∀i ∈ M . We thus constrain the CP model to use the
correct number of deadhead trips between each mill-forest pair. Imposing this
structure considerably reduces the search space and speeds up the resolution.

296 N. El Hachemi, M. Gendreau, and L.-M. Rousseau

4 Experimental Results

We compared the two approaches presented and evaluated their respective per-
formances on two different case studies (only one is reported here). These cases
where provided by the Forest Engineering Research Institute of Canada
(FERIC). Some results for the first case study are reported in Table 1 where
the value of a solution is presented in terms of unproductive costs. We report
(in dollars) the deadhead costs, the waiting cost of trucks queuing to get loaded
or unloaded, the waiting cost of log-loaders while waiting for a truck to arrive,
and finally the total cost of all these unproductive activities.

Table 1. Impact of the hybrid approach

|V | |R| deadhead($) truck($) log-loaders($) total($)

CP only
15 32 4439 55 2942 7436
15 45 6498 110 4509 11117
15 55 7927 230 7050 15207
15 70 10150 370 7725 18245

Hybrid
15 32 2222 15 2475 4712
15 45 3202 100 5367 8669
15 55 3914 40 6700 10654
15 70 4982 20 8733 13735

Looking at the table we note that although the smaller instances are relatively
easy, the difficulty to synchronize efficiently the trucks and the log loaders in-
creases rapidly with the size of the instances. In several cases, the decomposition
method provides a better overall solution than the straightforward approach.
However, for some larger instances, the log loader waiting time considerably
increases. This behaviour occurs as a result of the particular structure that is
imposed in the scheduling problem through the cardinality constraints. We also
have developed a perturbation technique that attempts to resolve this situation
by exploring other circulations that have less impact on the log loader scheduling,
but that still have a very low deadhead cost.

5 Conclusion

We have presented a Log-Truck Scheduling Problem with an objective function
to minimize the cost of unproductive time. We proposed a decomposition ap-
proach involving a Constraint Programming model and an Integer Programming
model that allows us to compute the optimal global circulation of the vehicles.
This circulation is then communicated to the CP model by introducing global
cardinality constraints.

Solving a Log-Truck Scheduling Problem with Constraint Programming 297

References

1. Baptiste, P., LePape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer Aca-
demic Publishers, Dordrecht (2001)

2. Gronalt, M., Hirsch, P.: Log-Truck Scheduling with Tabu Search Strategy. Meta-
heuristics 39 (2007)

3. Linnainmaa, S., Savalo, J., Jokinen, O.: EPO: A knowledge based system for wood
procurement management. In: The 7th Annual Conference on Artifical Intelligence,
Montreal (1995)

4. Palmgren, M., Rönnqvist, M., Värbrand, P.: A near-exact method for solving the log-
truck scheduling problem. International Transactions in Operational Research 11,
447–464 (2004)

5. Rönnqvist, M.: Optimization in forestry. Mathematical Programming 97, 267–284
(2003)

6. Ropke, S., Cordeau, J.-F., Laporte, G.: Models and Branch-and-Cut Algorithm
for Pick-up and Delivery Problems with Time Windows. Networks 49(4), 258–272
(2007)

7. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge (1999)

8. Simonis, H., Charlier, P., Kay, P.: Constraint Handling in an Integrated Trans-
portation Problem. IEEE Intelligent Systems and their Applications 15(1) (January
2000)

9. Weintraub, A., Epstein, R., Morales, R., Seron, J., Traverso, P.: A truck scheduling
system improves efficiency in the forest industries. Interfaces 26(4), 1–12 (1996)

Using Local Search to Speed Up Filtering

Algorithms for Some NP-Hard Constraints

Philippe Galinier, Alain Hertz, Sandrine Paroz, and Gilles Pesant

École Polytechnique de Montréal
C.P. 6079, succ. Centre-ville
Montreal, Canada H3C 3A7

{philippe.galinier,alain.hertz,sandrine.paroz,gilles.pesant}@polymtl.ca

1 Introduction

Constraint programming relies heavily on identifying key substructures of a prob-
lem, writing down a model for it using the corresponding constraints, and solving
it through powerful inference achieved by the efficient filtering algorithms be-
hind each constraint. But sometimes these individual substructures are still too
difficult to handle because we do not have any efficient filtering algorithm for
them. In other words, deciding satisfiability for some substructures is NP-hard.

Besides breaking them up into smaller tractable pieces and thereby sacrificing
the possibility of more global inference, a few researchers have proposed ways
to preserve such substructures (e.g., [8,3]). In this paper, we propose a new
approach which relies on using a local search heuristic. Local search has been
very successful at solving difficult, large-scale combinatorial problems. Applied
to a particular substructure, it may quickly find some solutions, each solution
acting as a witness for the variable-value pairs appearing in it. In this way, a
collection of diverse solutions can offer a support for many variable-value pairs.
Local search offers however no help in general to confirm those variable-value
pairs that should be filtered. If only a few unsupported candidates remain, a
complete method can very well be affordable to decide about them.

To illustrate this approach, we consider the SomeDifferent constraint which
states that some pairs of variables are restricted to take different values. Richter
et al. [7] have studied this substructure, and proposed a filtering algorithm for
it. The SomeDifferent constraint can be described with the following graph
coloring model. Consider a set X = {x1, · · · , xn} of variables with domains
D = {D1, · · · , Dn}, and a graph G = (V, E) with vertex set V = {1, · · · , n}
and edge set E. We denote D(U) =

⋃
v∈U Dv for any U ⊆ V , and Dv is called

the color set of v. A D-coloring of G is a function c : V → D(V) that assigns a
color c(v) ∈ Dv to each vertex so that c(u) �= c(v) for all edges (u, v) ∈ E. The
graph G is D-colorable if such an assignment exists. The list coloring problem
is to determine if a given graph G with color sets D is D-colorable. It is NP-
complete, even when restricted to interval graphs [1] or bipartite graphs [4].

Following Richter et al. [7], a point coloring is defined as a pair (v, i) with
v ∈ V and i ∈ Dv. A point coloring (v, i) is supported in G if there exists a
D-coloring c of G with c(v) = i. If a point coloring (v, i) is unsupported in G,

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 298–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Local Search to Speed Up Filtering Algorithms 299

then color i can be suppressed from Dv, and we say that the point coloring
(v, i) can be filtered out from G. The role of our filtering algorithm is to achieve
domain consistency which corresponds to finding new domains D′1, · · · , D′n so
that i ∈ D′v if and only if (v, i) is a supported point coloring in G.

2 Description of the Filtering Algorithm

The proposed filtering procedure follows the following three steps. First, during
Step 1 (colorability testing), we determine if the graph G is D-colorable. If it is
not the case, the algorithm stops. Otherwise, we go to Step 2. During Step 1,
we apply some preliminary reduction techniques, then decompose the graph into
connected components and test the colorability of each connected component.
The colorability test procedure used in Step 1 is detailed in Section 2.1. Next,
during Step 2 (marking), we generate the largest possible set L of supported
point colorings in the graph. This task is achieved by applying our local search
procedure to each connected component. The local search procedure is described
in Section 2.2. Last, during Step 3 (filtering), we test each point coloring (v, i)
that does not belong to L and determine whether it is supported. Each connected
component Gj is considered in turn. For each vertex v in Gj and each color i in
Dv − L, we build a copy H of the connected component, assign in H value i to
v, and apply to H a colorability test similar to the one used in Step 1. If H is
not colorable, point coloring (v, i) is filtered out in G.

2.1 A Colorability Test Procedure

The input of the colorability testing procedure is a graph G and a set D of
domains. We first apply some simple reduction techniques in order to achieve
a preliminary filtering and to remove some ”superfluous” edges in the graph.
For example, when the color set of a vertex v contains a single color i, color i
is filtered out from the color sets of the vertices u adjacent to v, and all edges
incident to v are removed. In addition, we remove edges with both endpoints
having disjoint color sets. Then, we decompose the graph into connected com-
ponents G1, · · · , Gr. Finally, we test the colorability of each component Gj . If
Gj is not colorable, the algorithm stops immediately because the initial graph is
not colorable. In order to determine if a particular connected component Gj is
colorable, we first apply our tabu search procedure (called TabuSat, see Section
2.2). If the tabu procedure does not find a solution, we use the exact graph
coloring algorithm DSATUR [6]. The list coloring problem is transformed into a
graph coloring problem using the technique proposed in [7].

2.2 A Tabu Search Heuristic Used for Marking

The role of the TabuSD algorithm is, when applied to a graph G, to return the
largest possible set of supported point colorings. It can be seen as a natural
extension of the Tabucol algorithm [2] that solves the classical vertex coloring
problem. The solution space S is the set of all functions c : V → D(V) with

300 P. Galinier et al.

c(v) ∈ Dv for all v ∈ V . Hence, a solution is not necessarily a D-coloring since
adjacent vertices u and v in G can have the same color. In such a situation,
we say that the edge linking u to v is a conflicting edge. When TabuSD visits
a D-coloring c (i.e., a solution without conflicting edges), all pairs (v, c(v)) are
introduced in a list L which contains all point colorings for which we have a
proof that they are supported.

Let f1(c) denote the number of conflicting edges in c, and let f2(c) denote the
number of point colorings (v, c(v)) in L. The objective function to be minimized
by TabuSD is defined as f(c) = αf1(c) + f2(c). Parameter α is initially set equal
to 1 and is then adjusted every ten iterations : if the ten previous solutions were
all D-colorings of G then α is divided by 2; if instead they all had conflicting
edges, then α is multiplied by 2; otherwise, α remains unchanged.

A neighbor solution c′ ∈ N(c) is obtained by assigning a new color c′(v) �= c(v)
to a vertex v so that either v is adjacent to a vertex u with c(u) = c(v), or (v, c(v))
belongs to L. When performing such a move from c to c′, we forbid to reassign
color c(v) to v for K + λ

√
| N(c) | iterations : if (v, c(v)) ∈ L, (v, c′(v)) /∈ L,

and v is not adjacent to any vertex with color c(v), then K is uniformly chosen
in the interval [30, 40] and we set λ = 50; otherwise, K is uniformly chosen in
[20, 30] and we set λ = 1.

We use a first improvement strategy. More precisely, when evaluating the
solutions in N(c), it may happen that a non tabu neighbor c′ is reached with
f(c′) < f(c). In such a case, we stop evaluating the neighbors of c and move
from c to c′. Otherwise, TabuSD moves from c to the best non tabu neighbor. The
algorithm stops as soon as L contains all point colorings of G or is not modified
for maxiter iterations. The TabuSat procedure used during the colorability test
procedure is very similar to the TabuSD procedure, except that it stops as soon as
it finds a D-coloring (i.e. a solution c with f1(c) = 0) or after maxiter iterations.
For our experiments, we set maxiter to 2000.

3 Computational Experiments

We evaluated our algorithm on three types of instances: real data, random graphs
and graphs with a unique D-coloring. All tests were performed on a 2.80GHz
Pentium D with 1024K cache running Linux CentOS 2.6.9. We have done five
runs on each instance, and we report average results.

3.1 Workforce Management Data

The real life problem studied in [7] is a workforce management problem in a
certain department at IBM. We are given a set of jobs with dates during which
each job was to be performed, and a list of people qualified to perform these jobs.
Jobs that overlap in time cannot be performed by the same person. This is a
typical SomeDifferent situation which can be modeled by a D-coloring problem
where jobs are vertices of the graph, colors correspond to people, and there is an
edge between two vertices if the corresponding jobs overlap in time. The color

Using Local Search to Speed Up Filtering Algorithms 301

set Dv of a vertex v is the set of people qualified to perform v. In all there are
290 instances with a number n of jobs varying from 20 to 300. Our results are
similar to those reported [7], both in the overall behavior for satisfiable versus
unsatisfiable instances and in the computing times, which never exceed 0.35s.
For comparison, without using our tabu search marking procedure, computing
times were on average 34 times higher, reaching 10.61s on one instance. This
data set actually has very few unsupported point colorings (less than 1%) so
only a few values are filtered out, if any.

3.2 Random Graphs

For our second test set, we considered the same random graphs as in [7]. These
graphs are defined with a quadruplet (n, p, d, maxk) of parameters: n is the
number of vertices, p is the probability of having an edge between two vertices,
d = |D(V)| is the number of different colors, and maxk is the maximum size of
an individual color set. For each vertex v, an integer kv is uniformly chosen in the
interval [1, · · · , maxk], and Dv is generated by randomly choosing kv colors in the
interval [1, · · · , d]. The instances in [7] have n = 20, 30, · · · , 100, p = 0.1, 0.3, 0.6,
d = 300, and maxk = 10, 20. We have generated additional instances considering
also n = 200, 500, p = 0.9, and maxk = 5, 40, 80. For the original instances, our
method is much faster since the maximum cpu time reported in [7] is 608.73s
while our filtering algorithm never requires more than 0.058s. For the additional
instances with up to 100 vertices, the maximum cpu time is 0.2s, which can be
considered as reasonable for an algorithm used to achieve domain consistency.
For random graphs with 200 vertices, the maximum cpu time grows up to 1.5s,
and it reaches 41.5s for n = 500. The increase of the cpu time is mainly due to
the use of TabuSD which requires many iterations to find a support for almost
all point colorings. Again the percentage of unsupported point colorings is very
small, with a maximum of 0.6%.

3.3 Graphs with a Unique D-Coloring

Mahdian and Mahmoodian [5] have described a family of graphs with a unique
D-coloring. More precisely, given an integer k, they define a graph with 3k − 2
vertices and in which every color set Dv contains exactly k colors. For each
vertex v there is exactly one supported point coloring (v, i) with i ∈ Dv, which
means that (k − 1)(3k − 2) point colorings can be filtered out.

These instances are difficult, mainly because Dsatur is required to confirm
that unsupported point colorings can indeed be filtered out. Computing times
exceed 100 seconds for graphs with 25 vertices (for k = 9), which shows the
limit of applicability of our filtering algorithm. While most point colorings are
shown supported with TabuSD for small values of k, Dsatur does the job for
larger values since TabuSD is not able to find the unique D-coloring.

With the hope of generating graphs with a significant yet more realistic num-
ber of point colorings to filter out, we created some variations of these graphs by
deleting a certain percentage p of edges. We performed tests for k = 5, 6, 7, 8, 9

302 P. Galinier et al.

and p = 0.02, 0.05, 0.1, 0.15 and for each pair of parameters we generated ten dif-
ferent graphs. The results were not homogeneous. For example, while 113s are
needed to solve the original graph with k = 9, the time needed for the graphs
with k = 9 and p = 0.05 ranged from 0.32s to 182.7s. Moreover, with p = 0.15,
no point coloring could be filtered out, which defeated our purpose.

4 Conclusion and Future Work

We presented a filtering algorithm for the SomeDifferent constraint (i.e. the
list coloring problem) which combines a tabu search to quickly find a supporting
solution for as many point colorings as possible, and an exact algorithm to
validate or filter out the remaining point colorings. Our filtering algorithm turned
out to be about as fast as the one of Richter et al. [7] when tested on data
from a workforce management problem, and significantly faster for random data.
In future work, we intend to test our implementation of the SomeDifferent
constraint within a constraint programming model, in conjunction with other
types of constraints, in order to measure the potential increased efficiency.

The general principles of the proposed approach are not specific to the graph
coloring substructure. Indeed, the technique can be adapted to other NP-hard
constraints in order to obtain a filtering procedure that enforces domain consis-
tency. This can be done by developing mainly two specific (problem-dependent)
low-level procedures: an exact algorithm and a local search procedure. We plan
to investigate this approach for other NP-hard constraints.

References

1. Biro, M., Hujter, M., Zsolt, T.: Precoloring extension 1. interval graphs. Discrete
Mathematics 100, 267–279 (1992)

2. Hertz, A., de Werra, D.: Using tabu search for graph coloring. Computing 39, 345–
351 (1987)

3. Katriel, I.: Expected-case analysis for delayed filtering. In: Beck, J.C., Smith, B.M.
(eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 119–125. Springer, Heidelberg (2006)

4. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Applied
Mathematics 75, 135–155 (1997)

5. Mahdian, M., Mahmoodian, E.S.: A characterization of uniquely 2-list colorable
graphs. Ars Combinatoria 51, 295–305 (1999)

6. Peemoeller, J.: A correction to Brélaz’s modification of Brown’s coloring algorithm.
Communications of the ACM 26(8), 593–597 (1983)

7. Richter, Y., Freund, A., Naveh, Y.: Generalizing alldifferent: The somedifferent con-
straint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 468–483. Springer,
Heidelberg (2006)

8. Sellmann, M.: Approximated consistency for knapsack constraints. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833, pp. 679–693. Springer, Heidelberg (2003)

Connections in Networks: A Hybrid Approach

Carla P. Gomes1, Willem-Jan van Hoeve2, and Ashish Sabharwal1

1 Department of Computer Science, Cornell University, Ithaca NY 14853, U.S.A.
{gomes,sabhar}@cs.cornell.edu

2 Tepper School of Business, Carnegie Mellon Univ., Pittsburgh PA 15213, U.S.A.
vanhoeve@andrew.cmu.edu

Abstract. This paper extends our previous work by exploring the use of
a hybrid solution method for solving the connection subgraph problem.
We employ a two phase solution method, which drastically reduces the
cost of testing for infeasibility and also helps prune the search space
for MIP-based optimization. Overall, this provides a much more scalable
solution than simply optimizing a MIP model of the problem with Cplex.
We report results for semi-structured lattice instances as well as on real
data used for the construction of a wildlife corridor for grizzly bears in
the Northern Rockies region.

In recent work [2], we investigated the connection subgraph problem, which seeks
to identify a cost bounded connected subgraph of a given undirected graph
connecting certain pre-specified terminal nodes, while maximizing the overall
utility. Here costs and utilities are non-negative numbers assigned to each node
of the graph, and the cost (or utility) of a subgraph is the sum of the costs
(utilities, resp.) of the nodes in it. This problem is a variant and generalization of
the familiar Steiner tree problem, and occurs in natural settings such as wildlife
conservation and social networks.1 Our experimental results [2] identified an
interesting easy-hard-easy pattern in a pure optimization version of the problem.
They also brought out some surprising issues with respect to the hardness of
proving infeasibility versus the hardness of proving optimality. Specifically, using
a mixed integer programming (MIP) model for the problem and solving it to
optimality using Cplex 10.1 [3] revealed that in median terms, Cplex took orders
of magnitude longer to prove infeasibility of infeasible instances than it took to
find optimal solutions to the feasible instances. This naturally raises the question,
can one do better on infeasible instances?

This paper reports our results obtained using a hybrid technique for solv-
ing the connection subgraph problem, beginning with results on certain semi-
structured grid graphs also considered previously. We use a two phase solution
method. The first phase employs a minimum Steiner tree based algorithm to
test for infeasibility and to produce a greedy (and often sub-optimal) solution
for feasible instances. This phase runs in polynomial time for a constant number
of terminal nodes. The second phase refines this greedy solution to produce an
optimal solution with Cplex, also using shortest path information generated by
1 Due to lack of space, we refer the reader to our previous paper [2] for a formal

definition and detailed discussion of the problem.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 303–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 C.P. Gomes, W.-J. van Hoeve, and A. Sabharwal

the first phase to prune the search space significantly (often by 40-60%). With
this hybrid approach, the time to test for infeasibility is drastically reduced, and
in fact becomes negligible compared to the cost of running Cplex on feasible
instances (the runtime for which is also significantly reduced due to the starting
solution and pruning). The hardness profiles still show a clear easy-hard-easy
pattern in the feasible region.

We also apply this technique to the original resource economics problem that
motivated this work—designing a “wildlife conservation corridor” in the North-
ern Rockies for preserving grizzly bears. The scale of this real-world problem
precludes computing optimal solutions in well over a month of CPU time, even
with our hybrid approach. We therefore introduce a streamlined model, where
we seek to compute the optimal (i.e., highest utility) solution which is restricted
to include all nodes that form part of a minimum cost solution, which is also
computed in the first phase. We are able to solve this “extended-mincost so-
lution” problem significantly faster, and to near optimality within a month of
CPU time on the real wildlife corridor data.

The extended-mincost solution is interesting to compute only if it does not
dramatically limit the utility one might achieve in the end. To obtain further in-
sights into this, we study how the extended-mincost solution compares in quality
(i.e., attained utility) against the true optimal solution for a given budget, for
both grid graphs and coarse granularity (and thus easier) versions of the actual
corridor construction problem. We show that the utility gap between the optimal
and extended-mincost solutions itself follows a fairly narrow low-high-low pat-
tern as the budget increases, indicating that for a large range of budgets, solving
the streamlined extended-mincost problem yields a fairly good approximation
to the true optimal solution.

TheTwoPhaseApproach. InPhase I,we compute aminimumcost Steiner tree
for the terminal nodes of the graph, ignoring all utilities. While there are fixedpara-
meter tractable (FPT) algorithms for computing a minimum cost Steiner tree, we
used a simpler “enumeration” method (see, e.g., [4]) based on computing all-pairs-
shortest-paths with respect to vertex costs. The idea behind this algorithm, which
runs in polynomial time for a constant number of terminal nodes, is to compute a
minimumSteiner tree for the “complete shortestdistance graph”using the fact that
in such a graph, there exists a minimum Steiner tree all whose non-terminal nodes
have degree at least three, thereby limiting the total number of nodes in the tree.
A minimum Steiner tree of the complete shortest distance graph yields a minimum
Steiner tree for the original graph as well, by replacing edges by shortest paths.

The computation of the Steiner tree either classifies the problem instance as
infeasible for the given budget or provides a feasible (but often sub-optimal)
“mincost” solution. In the latter case, we use a very efficient greedy method to
improve the quality of the solution by using any residual budget as follows. We
consider those nodes that are adjacent to the current solution and have cost
lower than the residual budget, and identify one whose gain, defined as the
utility-to-cost ratio, is the highest. If there is such a vertex, we add it to the
current solution, appropriately reduce the residual budget, and repeat until no

Connections in Networks: A Hybrid Approach 305

more nodes can be added. This process often significantly increases the solution
quality. We call the resulting solution an extended-mincost solution. We will also
be interested in computing the optimal extended-mincost solution, by “freezing”
the vertices in the mincost solution to be part of all solutions of Phase II.

After Phase I, which always took almost negligible time compared to Phase
II on our problem instances, we either know that the instance is infeasible or
already have a greedily extended feasible solution. In the latter case, Phase II of
the computation translates the problem into a MIP instance (see [2] for details
of the encoding), and solves it using Cplex. Solving using Cplex is the most
computationally-intensive part of the whole process. The greedy solution ob-
tained from Phase I is passed on to Cplex as a starting solution, providing a
major boost to its efficiency. Further, the all-pairs-shortest-paths matrix com-
puted in Phase I is also passed on to Phase II. It is used to statically (i.e., at
the beginning) prune away all nodes that are easily deduced to be too far to
be part of a solution (e.g., if the minimum Steiner tree containing that node
and all of the terminal vertices already exceeds the budget). This significantly
reduces the search space size, often in the range of 40-60%. Overall, Phase II
computes an optimal solution (or the optimal extended-mincost solution) to the
utility-maximization version of the connection subgraph problem.

Experimental Results. For a varying budget, we investigate the computa-
tional hardness of the problem with respect to computing the optimal solution
or the optimal extended-mincost solution. Our experiments were conducted on a
3.8 GHz Intel Xeon machine with 2 GB memory running Linux 2.6.9-22.ELsmp.
We used Cplex 10.1 [3] to solve the MIP problems in Phase II.

For the first set of experiments, we make use of semi-structured lattice graphs
of order m, with 3 terminal vertices, and with uniform random costs and utilities
(see [2] for details). In Figure 1, each data point is based on 500 random instances
for m = 10; similar results, peaking at identical x-axis values, were obtained for
m = 6 and 8 as well, and are available from the authors. The hardness curves are
represented by median running times over all instances per data point. In order
to normalize for the small but non-negligible variation in the characteristics of
various randomly generated instances with the same parameters, we use for the
x-axis of most of our plots the ‘budget slack percentage’, rather than simply
the budget, computed as follows. For every instance, we consider its mincost,
the cost of the cheapest solution. The budget slack % with respect to mincost
is defined as: 100 × (budget − mincost)/mincost. In other words, we consider
computational hardness and other measured quantities as a function of the extra
budget available for the problem beyond the minimum required.

In the left half of Figure 1, we show the hardness profiles for the lattices, which
exhibit an easy-hard-easy pattern, the peak of which is to the right of the mincost
point (shown as 0 on the relative x-scale). As one might expect, computing
the optimal extended-mincost solution (lower curve) is significantly easier than
computing the true optimal solution (upper curve). How much “better” are the
true optimal solutions compared to the easy-to-find extended solutions? The
right half of the figure shows the relative utility gap % between the solution

306 C.P. Gomes, W.-J. van Hoeve, and A. Sabharwal

0 200 400 600 800 1000

0.
01

0.
10

1.
00

10
.0

0
10

0.
00

10x10 lattices with 3 reserves, median over 500 runs

budget slack % (w.r.t. mincost)

R
un

tim
e

(lo
gs

ca
le

) optimal solution
optimal extended soln

0 200 400 600 800 1000

0
1

2
3

4
5

6
7

10x10 lattices with 3 reserves, median over 500 runs

budget slack % (w.r.t. mincost)

U
til

ity
 G

ap
 %

Fig. 1. Left: Hardness profile (runtime, log-scale) for lattices of order 10 with 3 terminal
nodes; upper curve: optimal solution; lower curve: optimal extended-mincost solution.
Right: Percentage gap in the utility of optimal and extended-mincost solutions.

qualities (i.e., attained utilities) in the two cases, defined as 100 × (optimal −
extended)/optimal. We see that when budget equals mincost, both optimal and
extended solutions have similar quality. The gap between the qualities reaches
its maximum shortly thereafter, and then starts to decrease rapidly, so that the
extended solution at 100% budget slack is roughly 3.2% worse than the optimal
solution for order 10 grids, and at 500% budget slack, only around 0.4% worse.

For the second set of experiments, we used real data for the design of a wildlife
conservation corridor for grizzly bears in the Northern Rockies, connecting the
Yellowstone, Salmon-Selway, and Northern Continental Divide Ecosystems in
Idaho, Wyoming, and Montana. To measure the utility of each parcel, we use
grizzly bear habitat suitability data [1]. The cost is taken to be the land value
estimate provided by the U.S. Department of Agriculture. We experimented with
various granularities for the problem, going from County level regions down to 5
km × 5 km square grid regions. Going to finer granularities reduces the cost of the
cheapest corridor from $1.9 B for the County level, to $1 B for a 40 km square
grid, to as low as $11.8 M for the 5 km grid. Using a 25 square km hexagonal
grid allows for better connectivity than the 5 km × 5 km square grid, since each
hexagonal parcel is connected to 6 other parcels rather than 4, and results in
a further decrease in cost to only $7.3 M. A hexagonal grid also yields a wider
corridor on average. As the granularity of the parcels is increased, the problem
size grows rapidly. For example, while the County level abstraction has only 67
parcels, the 40 km square grid already has 242 parcels, and the 25 square km
hexagonal grid has 12,889 parcels. As a result, solving the connection subgraph
model in a näıve manner (as in [2]) using the Cplex solver quickly becomes
infeasible: in fact, Cplex even had difficulty finding any feasible solution at all
for a 40 km square grid or finer.

The left half of Figure 2 shows the relative gap between the optimal and
extended solution utilities for the 40 km square abstraction (both were solved

Connections in Networks: A Hybrid Approach 307

0 100 200 300 400 500

0
1

2
3

4
40km corridor grid, median over 600 runs

budget slack % (w.r.t. mincost)

ut
ili

ty
 g

ap
 %

, b
et

w
ee

n
op

tim
al

 a
nd

 e
xt

en
de

d
so

lu
tio

ns

8 9 10 11 12

2
4

6
8

10
12

25hex optimal + extended; best found (30 days), upper bound

budget (unit = 1M)

ut
ili

ty
 (

un
it

=
 1

M
)

optimal, best found
optimal, upper bound
extended, best found
extended, upper bound

Fig. 2. Left: Utility gap % of optimal and extended-mincost solutions for 40 km grid.
Right: Best found optimal and extended-mincost solutions for the 25 sq. km hexagonal
grid, 30 day cutoff. Upper bound computed from the optimality gap reported by Cplex.

optimally). The relative gap is under under 5% when it is at its peak, and is
usually within 2% of the optimal. This suggests that for this problem, one does
not lose too much by solving only for the extended-mincost solution.

The right plot in Figure 2 depicts results on our best grid: the 25 square
km hexagonal grid. This grid is significantly harder to solve. While the County
level and the 50 km square grid were solved to optimality within seconds, even
the extended-mincost solution for the hexagonal grid could not be solved op-
timally in over 10 days. Fortunately, the eventual optimality gap for the best
extended-mincost solutions found after 30 days was only 0-0.07% (the “best
found” curve for extended solutions is visually right on top of the correspond-
ing “upper bound” curve). The best true optimal solutions, on the other hand,
had an optimality gap of up to 27% (in one case 59%), as seen from the top
curve. Interestingly, the best extended solutions found in this case were in fact
of better quality than the best optimal solutions found (the green line is slightly
lower than the blue line). This is in line with the concept of streamlining, where
restricting the problem to only extended-mincost corridors allowed Cplex to
compute better quality solutions within a limited amount of computation time.

References

[1] CERI. Grizzly bear habitat sustainability data, Craighead Environmental
Research Institute, Bozeman, MT (2007)

[2] Conrad, J., Gomes, C.P., van Hoeve, W.-J., Sabharwal, A., Suter, J.: Con-
nections in networks: Hardness of feasibility versus optimality. In: Van Hen-
tenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 16–28.
Springer, Heidelberg (2007)

[3] ILOG, SA. CPLEX 10.1 reference manual (2006)
[4] Prömel, H.J., Steger, A.: The Steiner Tree Problem: A Tour Through Graphs,

Algorithms, and Complexity. Vieweg (2002)

Efficient Haplotype Inference with
Combined CP and OR Techniques

Ana Graça1, João Marques-Silva2, Inês Lynce1, and Arlindo L. Oliveira1

1 IST/INESC-ID, Technical University of Lisbon, Portugal
{assg,ines}@sat.inesc-id.pt,aml@inesc-id.pt

2 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

Abstract. Haplotype inference has relevant biological applications, and repre-
sents a challenging computational problem. Among others, pure parsimony
provides a viable modeling approach for haplotype inference and provides a sim-
ple optimization criterion. Alternative approaches have been proposed for hap-
lotype inference by pure parsimony (HIPP), including branch and bound, integer
programming and, more recently, propositional satisfiability and pseudo-Boolean
optimization (PBO). Among these, the currently best performing HIPP approach
is based on PBO. This paper proposes a number of effective improvements to
PBO-based HIPP, including the use of lower bounding and pruning techniques
effective with other approaches. The new PBO-based HIPP approach reduces by
50% the number of instances that remain unsolvable by HIPP based approaches.

1 Introduction

Haplotype inference is a challenging computational problem, with a significant number
of applications in genetics. Current DNA sequencing technology is not able to sequence
independently the two copies of each chromosome which define the genetic inheritance
of each diploid organism, such as humans. However, diagnosis and prevention of ge-
netically related diseases requires, in many cases, the identification of the exact DNA
sequences of each chromosome. This leads to the development of computational meth-
ods that can infer the haplotypes from the now easily obtained genotype information.

Over the last few years, Boolean satisfiability (SAT) and pseudo-Boolean optimiza-
tion (PBO) techniques have been used to speed up one particular haplotype inference
approach, based on pure parsimony [4]. Despite the success, the haplotype inference
by pure parsimony (HIPP) problem is computationally hard, and there are several test
cases that no HIPP solver is able to tackle. As a result, either alternative criteria or ap-
proximate algorithms are commonly used. With the objective of generalizing the use of
HIPP solvers in haplotyping, it is important to increase the robustness of HIPP solvers,
by increasing the number of instances HIPP solvers can solve efficiently. This paper
pursues this objective, and combines CP and OR techniques that further reduce the
search space, thus being able to solve some of the most difficult problem instances.

The paper is organized as follows. Section 2 introduces the HIPP problem. Section 3
describes the PBO-based HIPP approach, RPoly, and section 4 introduces the new tech-
niques for improving the RPoly model. Afterwards, experimental results show that the
new PBO model is able to solve a larger number of problem instances.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 308–312, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Haplotype Inference with Combined CP and OR Techniques 309

2 Haplotype Inference by Pure Parsimony (HIPP)

A haplotype is as a sequence of single nucleotide polymorphisms (SNPs) within a single
chromosome. SNPs correspond to DNA nucleotides where mutations have occurred.
Hence, for sites in the chromosome corresponding to SNPs we may either have the wild
type (represented by 0) or the mutant type (represented by 1). Genotypes represent the
conflated data contained in haplotypes. Each genotype is explained by two haplotypes.
Unlike haplotypes, genotypes may be obtained using sequencing techniques.

Haplotype inference is the problem of identifying a set of haplotypes that may ex-
plain a given set of genotypes. A formal definition follows.

Definition 1. Given a set of n genotypes G, each genotype g ∈ G is represented by
a string of size m over the alphabet {0, 1, 2}. The jth element of the ith genotype is
referred to as gij with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Genotype gi is heterozygous at site
j if gij = 2 and is homozygous if gij = 0 or gij = 1. The haplotype inference problem
consists in identifying a set of n pairs of haplotypes H, not necessarily disjoint, with
each haplotype h being represented by a string of size m over the alphabet {0, 1}, such
that each pair of haplotypes explains a given genotype. A pair of haplotypes (ha

i , hb
i) is

said to explain a genotype gi (gi = ha
i ⊗ hb

i) if the following holds (with 1 ≤ j ≤ m):

ha
ij = hb

ij = 0, if gij = 0;
ha

ij = hb
ij = 1, if gij = 1;

ha
ij = 1 − hb

ij , if gij = 2.

It is clear that there is some freedom when selecting pairs of haplotypes for explain-
ing genotypes with more than one site with value 2. For example, genotype 022 may
be explained either by the pair of haplotypes (001,010) or by the pair of haplotypes
(000,011). However, there is a biological motivation for selecting among the possible
solutions to a set of genotypes the one with the smallest number of distinct haplotypes.
Given that individuals from the same population have common ancestors and that muta-
tions do not occur often, it is expected that individuals from the same population share
a significant percentage of haplotypes.

Definition 2. The approach that restricts the solutions to the haplotype inference prob-
lem such that the required number of haplotypes is minimum is called pure parsi-
mony [4]. Finding a solution with a minimum number of haplotypes is a NP-hard
problem [5].

3 RPoly: A Pseudo-boolean HIPP Model

The most well-known tools for solving the HIPP problem can be divided into four
categories: (i) RTIP [4], PolyIP [1] and HybridIP [1] are integer linear programming
(ILP) formulations, (ii) Hapar [8] is a branch and bound algorithm, (iii) SHIPs [6] is a
SAT-based model for the HIPP problem and (iv) RPoly [3] is a pseudo-Boolean model.

The pseudo-Boolean optimization model, referred to as Reduced Poly model (RPoly)
[3], is currently the best performing algorithm for the HIPP problem. RPoly is based on
the PBO model for PolyIP and further enhanced with key optimizations.

310 A. Graça et al.

The RPoly model associates two haplotypes, ha
i and hb

i , with each genotype gi, and
these haplotypes are required to explain gi. Moreover, RPoly associates a variable tij
with each heterozygous site gij , such that tij = 1 indicates that ha

ij = 1 and hb
ij = 0,

whereas tij = 0 indicates that ha
ij = 0 and hb

ij = 1. The values of ha
i and hb

i at
homozygous sites are implicitly assumed.

Furthermore, let xp q
i k , with p, q ∈ {a, b} and 1 ≤ k < i ≤ n, be 1 if haplotype p

of genotype gi and haplotype q of genotype gk are different. The conditions on the xp q
i k

variables are based on the values of variables tij and tkj for heterozygous sites.
Moreover, two genotypes are said to be incompatible if there exists a site for which

the value of one genotype is 0 and the other is 1; otherwise they are compatible. Clearly,
candidate haplotypes for each genotype are related with candidate haplotypes for other
genotypes only if the two genotypes are compatible. Then, incompatible genotypes gi

and gk are guaranteed not to be explained by the same haplotype and so the value of
xp q

i k is 1 for the four possible combinations of p and q.
In addition, the model uses variables u to denote whether one of the haplotypes, asso-

ciated with a given genotype, is different from all previous haplotypes. Hence, up
i , with

p ∈ {a, b} and 1 ≤ i ≤ n, is 1 if haplotype p of genotype gi is different from all pre-
vious haplotypes. Then, the conditions on the up

i variables are based on the conditions
for the xp q

i k variables, with 1 ≤ k < i and q ∈ {a, b}.
Finally, the cost function minimizes the number of distinct haplotypes used, which

is given by the sum of variables up
i . The next section describes new improvements to

the RPoly model, which allow significant additional performance improvements.

4 Optimizations to the RPoly Model

This section describes optimizations to the RPoly model, the state of the art HIPP solver.
The resulting model is called New RPoly (NRPoly for short).

The first optimization consists in integrating the lower bounds of SHIPs [6,7] in the
NRPoly model. SHIPs is a SAT-based HIPP approach that, starting from a lower bound
on the number of haplotypes, generates a SAT instance for each candidate number of
haplotypes. SHIPs most recent lower bound procedure [7] provides a list of genotypes
with an indication of the contribution of each genotype to the lower bound. Each geno-
type either contributes with +2, indicating that 2 new haplotypes will be required for
explaining this genotype, or with +1, indicating that 1 new haplotype will be required
for explaining this genotype.

In practice, for each genotype with an associated haplotype, the corresponding u
variable, denoting whether a haplotype used for explaining a genotype is different from
the haplotypes considered so far, is assigned value 1, and the clauses used for constrain-
ing the value of u need not be generated. The NRPoly model needs to be generated in
such a way that the first genotypes correspond to genotypes used in the lower bound.

Similarly to the advantages of using lower bounds in SHIPs, the integration of lower
bounds in NRPoly offers a few relevant advantages. First, several variables u become
fixed with value 1, allowing the solver to focus on the remaining variables. Second, the
size of the generated PBO problem instances is significantly reduced. The integration
of lower bound information can reduce the generated PBO instances up to a factor of 3.

Efficient Haplotype Inference with Combined CP and OR Techniques 311

The second optimization is based on a key simplification introduced in the RTIP
model [4], which consists in not considering all pairs of haplotypes that can explain a
genotype. If a genotype can be explained by a pair of haplotypes such that none of these
two haplotypes can explain any other genotype, then this pair of haplotypes needs not
be considered.

Inspired by the pruning in RTIP, new constraints can be added to the NRPoly model.
First, observe that each genotype that is not incompatible with all other genotypes must
be explained by at least one haplotype that also explains some other genotype. There-
fore, if a genotype gi is explained by a pair of haplotypes (ha

i , hb
i) such that neither ha

i

nor hb
i have been used to explain a genotype with lower index, then at least one of the

haplotypes, ha
i or hb

i , must be used to explain one of the genotypes with higher index.
Consider genotypes compatible with at least one other genotype in G. Define the

predicate κ(i, k) to be true if gi and gk are compatible. Formally, for all 1 ≤ i ≤ n such
that gi is compatible with at least another genotype in G:

If ua
i ∧ ub

i , then ∃k>i,κ(i,k)∃p,q∈{a,b}¬xp q
k i . (1)

Finally, an additional improvement consists in enriching the model with cardinal-
ity constraints on the x variables. For many combinatorial problems, adding new con-
straints to a model prunes the search and it is therefore likely to contribute to the solver
being more efficient at finding solutions.

Clearly, unless genotypes gi and gk are equal, they cannot be explained by the same
pair of haplotypes. Therefore, two different genotypes must be explained by at most one
common haplotype. In practice, this constraint is integrated in the model by adding car-
dinality constraints on the variables x which capture the number of distinct haplotypes
used to explain a pair of genotypes. Moreover, for incompatible pairs of genotypes, the
constraint on the x variables is automatically guaranteed. Hence, for each pair of distinct
non-homozygous compatible genotypes, at least three of their four pairwise haplotypes
must be different:

If κ(i, k) ∧ gi �= gk ∧ ∃j,j′ (gij = 2 ∧ gij′ = 2), then
∑

p,q∈{a,b}
xp q

i k ≥ 3. (2)

5 Experimental Results

A comprehensive evaluation was performed, using a set of 1183 problem instances (de-
scribed in [3]), that include real and artificially generated problem instances. NRPoly
has been compared against the other HIPP solvers. NRPoly uses the PBO solver Min-
iSat+ [2]. For the models using ILP, CPLEX version 11 was used. All HIPP solvers were
run on a Intel Xeon 5160 server (3.0GHz, 1333Mhz, 4GB) running Red Hat Linux.

Figure 1 (left) provides a table with the number of aborted instances by NRPoly and
the other HIPP algorithms, including the approaches in which NRPoly has been directly
inspired: RTIP, SHIPs and RPoly. The total number of instances not solved within the
time limit of 1000 seconds is given for each solver. We should note, however, that for
RTIP many of the aborted instances exhausted the memory resources before the time
limit. For SHIPs, the most recent version [7], which includes the lower bound used

312 A. Graça et al.

Algorithms # Aborted
NRPoly 18
RPoly 36
SHIPs 67
RTIP 378
Hapar 603

HybridIP 708
PolyIP 709

10−3

100

103

10−3 100 103

R
Po

ly
ti

m
e(

s)

NRPoly time(s)

Fig. 1. Instances aborted by HIPP solvers within 1000s and performance of RPoly vs NRPoly

by NRPoly, was considered. As can be concluded, the HIPP algorithms based on SAT
or PBO are the most effective. NRPoly is the most robust algorithm aborting only 18
problem instances, thus reducing in half the number of instances aborted by RPoly.

Figure 1 (right) compares NRPoly with the best performing tool RPoly. For very easy
instances RPoly is clearly faster (mainly due to the additional constraints of NRPoly)
but for difficult instances NRPoly is consistently faster. There is only one exception
for one problem instance that RPoly is able to solve a few seconds before the timeout
and NRPoly is not. However, we have observed that NRPoly would be able to solve
the same instance if it was allowed a few more seconds. Overall, we may conclude that
NRPoly is more robust and more effective on solving the hardest instances.

Acknowledgments This work is partially funded by FCT research projects POSC/EIA/
61852/2004 and PTDC/EIA/64164/2006 and PhD grant SFRH/BD/28599/2006.

References

1. Brown, D., Harrower, I.: Integer programming approaches to haplotype inference by pure par-
simony. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(2), 141–
154 (2006)

2. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfi-
ability, Boolean Modeling and Computation 2, 1–26 (2006)

3. Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.: Efficient haplotype inference with
pseudo-Boolean optimization. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS,
vol. 4545, pp. 125–139. Springer, Heidelberg (2007)

4. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E.,
Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

5. Lancia, G., Pinotti, C., Rizzi, R.: Haplotyping populations by pure parsimony: complexity of
exact and approximation algorithms. INFORMS Journal on Computing 16, 348–359 (2004)

6. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with Boolean satisfiability. In: Na-
tional Conference on Artificial Intelligence (AAAI) (2006)

7. Lynce, I., Marques-Silva, J., Prestwich, S.: Boosting haplotype inference with local search.
Constraints 13(1) (2008)

8. Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–
1780 (2003)

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 313–317, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integration of CP and Compilation Techniques for
Instruction Sequence Test Generation

Boris Gutkovich

Intel Corporation, Haifa, Israel
boris.gutkovich@intel.com

Abstract. This paper gives a short description of a novel approach to automatic
generation of high probing random instruction sequences that are used in vali-
dation of processors. The approach is based on integration of constraint pro-
gramming (CP) with techniques from operations research (OR) and compilation
of programming languages.

1 Introduction

Simulation-based validation is one of the main methodologies currently used to verify
processors. Validation engineers put much effort in developing and maintaining test
programs to cover different scenarios of the processor behavior. Much more effort is
required to specify and cover the extremely improbable events in the modern proces-
sors where potential bugs usually reside [1]. Automatic Test Generation (ATG) tools
are being developed and used in order to make this possible. Constraint-driven ran-
dom generation is a technology by means of which these tools are able to create high-
probing tests. A comprehensive overview article can be found in [2].

The complexity of the test generation process prevents it from being represented
and solved as a single constraint solving problem (CSP). Usually the process is per-
formed iteratively. At each stage the architectural state is maintained by the reference
simulator along with different kinds of tracking servers and different CSP models are
formulated for each instruction generation [3]. Such CSP model is solved by Instruc-
tion Generator (IG). In general case it comprises three main sub-models:

1. The architectural specification model, which is stable during the process of the
whole test generation.

2. The architectural state model, which is incrementally changed after generation of
each instruction.

3. The test scenario model, which can be stable for a snippet of the instruction se-
quence or may change from one instruction to another.

The described instruction-by-instruction generation flow is a compromise that
makes it possible to handle a very complex problem. The main deficiency in this flow
comes from the difficulties with handling cross-instruction constraints. Only a very
small subset of such constraints can be relatively easily modeled by means of the
architectural state. To deal with the cross-instruction constraints (or constraints on a
sequence of instructions) the multi-level solving scheme can be used:

314 B. Gutkovich

1. Create CSP model that represents only constraints on a sequence. This model does
not contain IG constraints listed above.

2. Find a random solution (or a set of random solutions) for this model.
3. Transform the solution to constraints that are added to each single instruction CSP.
4. Use IG to find random solutions for these CSP models. In case of failure return to

step 2 with fixed values for the accepted solutions and try to find another solution
for the sequence CSP.

The main problem with the described algorithm is the loop from step 4 to step 2
which causes substantial performance degradation. To avoid this loop we fulfilled
analysis of typical sequence constraints in the domain of ATG for processors and
developed one-pass algorithms for a few special cases of constraints. This paper stud-
ies the case of a sequence which can be described by constraints on arithmetic (or
Boolean) expressions.

2 Instruction Sequence from Constraints on Expression: Example

Sometimes there is a need to produce a sequence of instructions that leads to specific
result, e.g. a particular data value in a register or in the memory. Often this value may
be required to trigger an architectural exception event. For example, one may wish to
generate an interesting sequence that leads to arithmetic overflow. Constraint on
expression is also used in generation of self-check tests. For example, we may want to
generate an interesting sequence that checks the most famous (or infamous) FDIV
bug in Intel Pentium floating-point (FP) unit (FPU).

Let us look at the latter use-case in more detail. It is known now that one of the
simplest ways to check the FDIV bug is to execute FDIV instruction on the particular
operands, e.g. 4195835.0/3145727.0. It might also be 5505001.0/294911.0 or
8391667.0/1572863.0, etc. The incorrect behavior can be detected even with the sin-
gle precision of FP calculations. For example, the correct answer in the first case
should be no less than 1.3338. We are also aware from the validation experience that
uncovered bugs often reside in the vicinity of the known bugs. So it might be useful
to generate an interesting sequence of instructions that creates the required values on
the FPU stack and then to execute FDIV on these values. A method to create such
sequence is described in the next section.

3 Instruction Sequence from Constraints on Expression: Method

The idea of the method is based on the multi-stage solving scheme. It can be outlined
as follows:

1. Produce an arithmetic (or Boolean) expression, defined on a set of variables.
2. Solve the constraint, implying that the expression must be evaluated to the required

value. Assign the solution values to the variables of the expression.
3. Compile the expression to a set of constraints for each individual instruction of the

sequence
4. Generate Assembler instructions by means of Instruction Generator

 Integration of CP and Compilation Techniques 315

Let us demonstrate the method on the use-case of testing the FDIV bug (see the
previous section). On the first step we have a choice of many different arithmetic
expressions. The particular one can be picked randomly from the Test Knowledge
Base (TKB) or it can be written by a validation engineer in the test-scenario spec.
Suppose quadratic and linear polynomials were chosen to create the required operands
of FDIV instruction. Therefore, we may have the following constraints to be sent to
the dedicated solver, which can work in the domain of FP numbers:

a*x**2 + b*x + c == 4195835.0 a*x + b*x + c == 3145727.0

It is up to the sequence generator to decide upon the following questions:

• Which elements of the polynomials are constants and which are constrained vari-
ables (CV)?

• Do we have two independent constraint solving problems or a combined one - a
system of the equations?

• Do these polynomials share some of the variables?

Usually the best choice is to leave as much freedom as possible to the solver, but
sometimes the restrictions of the available solvers, the performance considerations or
constraints external to the instruction sequence may require making some fixed deci-
sions. For example we may need to set the values of the coefficients to the values that
already reside in the registers. Such dependency, which links one part of the test with
the other parts, usually helps making interesting tests.

Let us suppose the sequence generator decided to handle the two constraints, given
above, independently. It also decided to handle a, b and x as the floating-point CV
with appropriate domains, but to fix the coefficient c to the 0.0 constant. One of the
possible solutions we can get from a solver (in our case it was ILOG Solver [4]) is:

a = 2.48266683628885e-006 a = 2.41978999989436

b = 2.72288327722903e-010 b = 1.05637770432692e-010

x = 1300019.83683147 x = 1300000.00001892

The first part of the possible sequences of constraints, generated at step 3 of the pro-
posed flow, is given in the Appendix. The constraints are represented in IG constraint
language. All constraints require generating instructions for FPU. It is important to
note that this sequence of constraints can be easily mixed with a set of constraints to
generate an instruction sequence which does not use FPU, e.g. SIMD or integer in-
struction sequences. Such mixture will have a good opportunity in finding bugs of
micro-architecture implementation.

4 Feasibility of the Proposed Method

What are the conditions that should be met to make the proposed method successful?
First of all the repertoire of expressions should be consistent with the repertoire of

solvers. In case of FP, solver must be able to handle the required precision of the real
numbers while finding a solution for the chosen equations. It should avoid falling into
pitfalls of the floating-point calculations. More details on such pitfalls can be found in
[5]. In our experiments, we used ILOG Solver [4] and ILOG CPLEX [6]. Both

316 B. Gutkovich

libraries treat FP values in the double-precision mode. On top of these libraries we
developed a set of specialized solvers. These solvers were tuned to handle a specific
domain (FP of different precision modes, including the extended-precision mode, and
integers of different lengths). These solvers were also tuned to a specific class of
expressions. A set of expressions for TKB consists of two subsets. The first subset
was created manually; the second one was generated automatically by means of the
Prolog-based expression generator. A multi-valued decision tree was built to link
expressions and solvers.

The sequence generator must have knowledge about capabilities of the instruction
generator. It should solve constraints on a sequence in such a way that guarantees or
maximizes the probability to achieve the final solution. This is the common require-
ment for the multi-stage solving schema. In our particular case of the instruction se-
quence for expressions, there exists a rather simple way to obey this requirement.
The constraint generator actually works as a code generator of a compiler for expres-
sions. The regular compiler guarantees by construction that generated Assembler code
running under specific OS will produce expected result on the target machine. The
constraint generator can guarantee the generated sequence of constraints will produce
such Assembler code with the support from the available Instruction Generator.

Let us demonstrate the last statement on the “FDIV bug” example given above. The
constraint generator was asked to generate commands for Intel x87 FPU. It may decide
to evaluate the expression as a sequence of operations on FPU stack. From the expres-
sion solver it receives the correct data values which guarantee the evaluation will not
cause any numeric exceptions. The constraint generator knows that the request to load
these data values from memory to FPU stack can be handled by Instruction Generator
without problems. To prevent the stack overflow the constraint generator must be capa-
ble to calculate the maximal number of the stack registers for the expression evaluation.
Given the number of the valid stack entries before the evaluation, it can choose the
generation strategy. For example, if there is enough free entries in the stack, the genera-
tor can convert the expression into RPN form and directly use this form as a template
for constraint generation. In other case the generator will use another compilation strat-
egy, e.g. it can use the general purpose registers to store the temporary results.

References

1. Bentley, B.: High Level Validation of Next-Generation Microprocessors. In: Proc. of the
7th IEEE International Workshop on High Level Design Validation and Test (October
2002)

2. Naveh, Y., et al.: Constraint-Based Random Stimuli Generation for Hardware Verification.
AI Magazine 28(3), 13 (2007)

3. Gutkovich, B., Moss, A.: CP with Architectural State Lookup for Functional Test Genera-
tion. In: 11th Annual IEEE International Workshop on High Level Design Validation and
Test, pp. 111–118 (2006)

4. ILOG Solver 6.5 Reference Manual (October 2007)
5. Aharoni, M., et al.: FPgen - A Test Generation Framework for Datapath Floating-Point

Verification. In: Proc. of the 8th IEEE International Workshop on High Level Design Vali-
dation and Test, pp. 17–22 (2003)

6. ILOG CPLEX C++ API 11.0 Reference Manual (2007)

 Integration of CP and Compilation Techniques 317

Appendix: A Sequence of Constraints for Expression Evaluation

// a*x**2 + b*x + c

fp(load, memory, 2.48266683628885e-006)

fp(load, memory, 1300019.83683147)

fp(mult, pop)

fp(load, memory, 1300019.83683147)

fp(mult, pop)

fp(load, memory, 2.72288327722903e-010)

fp(load, memory, 1300019.83683147)

fp(mult, pop)

fp(add, pop)

fp(load, 0.0)

fp(add, pop)

Propagating Separable Equalities in an MDD

Store

T. Hadzic1, J.N. Hooker2, and P. Tiedemann3

1 University College Cork
t.hadzic@4c.ucc.ie

2 Carnegie Mellon University
john@hooker.tepper.cmu.edu
3 IT University of Copenhagen

petert@itu.dk

Abstract. We present a propagator that achieves MDD consistency for
a separable equality over an MDD (multivalued decision diagram) store
in pseudo-polynomial time. We integrate the propagator into a constraint
solver based on an MDD store introduced in [1]. Our experiments show
that the new propagator provides substantial computational advantage
over propagation of two inequality constraints, and that the advantage
increases when the maximum width of the MDD store increases.

In [1] we proposed a width-limited multivalued decision diagram (MDD) as a
general constraint store for constraint programming. We demonstrated the po-
tential of MDD-based constraint solving by developing MDD-propagators for
alldiff and inequality constraints. In this paper, we describe an MDD-propagator
for the separable equality constraint that uses a pseudo-polynomial algorithm to
achieve MDD consistency. We show the computational advantage of the new
propagator over the existing approach of modeling equalities with two inequal-
ity propagators.

Preliminaries. A constraint satisfaction problem is specified with a set of con-
straints C = {C1, . . . , Cm} on the variables X = {x1, . . . , xn} with respective
finite domains D1, . . . , Dn. An MDD M is a tuple (V, r, E, var, D), where V is
a set of vertices containing the special terminal vertex 1 and a root r ∈ V ,
E ⊆ V ×V is a set of edges such that (V, E) forms a directed acyclic graph with
r as the source and 1 as the sink for all maximal paths in the graph. Further,
var : V → {1, . . . , n + 1} is a labeling of all nodes with a variable index, with
var(1) = n + 1. D is a set containing an edge domain Duv for each edge (u, v).
We require that ∅ �= Duv ⊆ Dvar(u) for all edges in E, and for convenience we
take Duv = ∅ if (u, v) �∈ E. We work only with ordered MDDs. A total ordering
< of the variables is assumed, and all edges (u, v) respect the ordering; that is,
var(u) < var(v). For convenience, we assume that the variables in X are ordered
according to their indices. Ordered MDDs can be viewed as arranged in n lay-
ers of vertices, with the vertices on each layer labeled with the same variable
index. The width k of the MDD is the size of the largest layer. While MDDs

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 318–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Propagating Separable Equalities in an MDD Store 319

in general allow edges to skip layers, for the simplicity of representation in this
paper we consider only MDDs without long edges; that is, for each (u, v) ∈ E,
var(v) = var(u) + 1. Thus, if an r → 1 path is defined to be a path u1, . . . , un+1
in which u1 = r and un+1 = 1, then each r → 1 path represents the subset of
solutions

∏n
i=1(Duiui+1). Let C be a constraint on the variables {x1, . . . , xn}.

For a given MDD M we have a notion of consistency that generalizes the well
known generalized arc consistency (GAC) [2].

Definition 1 (MDD consistency). A constraint C is MDD consistent with
respect to M if, for every edge (u, v) ∈ E with i = var(u) and every value
αi ∈ Duv, there exists a tuple (α1, . . . , αn) satisfying C that is represented by an
r → 1 path passing through (u, v).

1 A Propagator for the Separable Equality constraint

Unlike a standard domain-store propagator, which is specified only by the way
it prunes infeasible values from a domain-store, an MDD-store propagator also
refines the MDD representing the store by adding new vertices and edges. We
develop such a propagator for the separable equality constraint, which for a set
of unary functions f1, . . . , fn and a constant c is defined as

f1(x1) + f2(x2) + . . . + fn(xn) = c. (1)

1.1 Pruning

One simple way to perform pruning on the constraint (1) is to do so for the
two inequality constraints

∑n
i=1 fi(xi) ≤ c and

∑n
i=1 fi(xi) ≥ c. We can achieve

MDD consistency in linear time in the size of the MDD for each of these sep-
arately, using the inequality propagator described in [1]. Yet this ensures only
that each remaining edge is on a shortest path with cost at most c and on a
longest path with cost at least c. It therefore does not achieve MDD consistency
for the equality constraint.

To achieve MDD consistency we use the following procedure. In the first phase,
for each node u the algorithm computes the cost Ldown(u) of the cheapest path
and the cost Hdown(u) of the most expensive path leading from u to the terminal.
In the second phase it marks the edges in the MDD store that are on at least
one r → 1 path representing a solution of the constraint. In the final phase all
unmarked edges are removed from the MDD.

The pseudo-code for the algorithm Mark-Support implements the second
phase with a dynamic programming recursion and is shown in Figure 1. It is
initially invoked on the root r and the right-hand side c. When invoked on a
node u it searches for a path through the MDD from u with the given cost. For
each edge (u, u′) and α ∈ Du,u′ , the algorithm recursively checks if there exists a
path of cost c−fvar(u)(α) from u′ to the terminal, and the result of this query is
cached as cache(u′, c− fvar(u)(α)). If the result is positive the edge is marked to
indicate that it must not be pruned. For each node u the previously computed

320 T. Hadzic, J.N. Hooker, and P. Tiedemann

Ldown(u) and Hdown(u) values provide an early cutoff, because there can be no
path of cost c from u if the cheapest path from u is too expensive or the most
expensive path is too cheap. Note that if the width of the MDD store is 1 then
the algorithm is essentially the domain store filter of [3].

Mark-Support(u, cost)

1 if cache(u, cost) �= UNKNOWN
2 then return cache(u, cost)
3 else if Ldown(u) > cost ∨ Hdown(u) < cost
4 then return false
5 else cache(u, cost) ← false
6 for (u, u′) ∈ E and α ∈ Du,u′

7 do if Mark-Support(u′, cost − fvar(u)(α))
8 then marked ← marked ∪ (u, u′, α)
9 cache(u, cost) ← true

10 return cache(u, cost)

Fig. 1. The algorithm shown above, initially invoked as Mark-Support(r, c) for a
constraint

∑
1≤i≤n fi(xi) = c, ensures that an edge along with a value from its edge

domain is in marked iff there is a path through that edge, using the corresponding
value with cost exactly c

Complexity. The complexity of a propagation step is dominated by the execu-
tion of Mark-Support as the other phases can be done in linear time. Since
each call to Mark-Support only does constant work in addition to the recur-
sive calls, we can evaluate the time based on the number of recursive calls alone.
A call to Mark-Support on a node u only results in recursive calls if the given
cost has not been processed before for u. Let Lup(u) and Hup(u) be the cost
of the cheapest and most expensive path from the root to u. Then an upper
bounds on the number q(u) of distinct costs that any node u will be queried for
is q(u) = c − Lup(u) − (c − Hup(u)) + 1 = Hup(u) − Lup(u) + 1. Hence the total
number of recursive calls over all nodes can be bounded by

∑

u∈V

q(u)|Dvar(u)| = O

(
q(1) max

xi∈X
{|Di|}|V |

)
= O

(
q(1) max

xi∈X
{|Di|}nk

)
.

Note that this bound increases linearly with the width k. This is very pes-
simistic, however, as a larger width makes the store a more precise approximation
that allows fewer candidate solutions. This results in fewer paths to a given node,
and therefore in most cases fewer distinct costs of these paths, which translates
into fewer recursive calls per node. Thus, a larger width can decrease the time
required to execute Mark-Support. Additionally, a more refined store will al-
low more edges to be pruned. Hence a larger width could be expected to reduce
the overall solution time. We verify this behavior in our empirical results.

Propagating Separable Equalities in an MDD Store 321

1.2 Refining

An MDD propagator refines the MDD through node splitting [1]. We first select
a node u ∈ V and create an isomorphic copy u′ ∈ V by copying every outgoing
edge (u, t) into (u′, t) along with all edge labels Du′,t = Du,t. We then copy
ingoing edges (s, u) into (s, u′) along with a subset Ds,u′ ⊆ Ds,u of edge labels
that are then removed from the original edges: Ds,u ← Ds,u \Ds,u′ . Fig. 2 shows
an example of a node split and subsequent propagation for an alldiff constraint.

(a)

{2}

u4

{1} {2}

{1}

{1,2}

u1 u2 u3

u5 u6

(b)

u5

∅

u4

{1}

∅
{1}

u6

u2u1 u3

{1}

{2}

{2}{2}
{1}

{2}

u
′

4

(c)

u4

{1}

u1 u2 u3

u5 u6

{2}

{1}

{2}
{2}{1}

u
′

4

Fig. 2. (a) Part of an MDD store representing a relaxation of a global alldiff, just before
splitting on the node u4. Note that while there are obvious inconsistencies between the
edge domains (such as label 1 in domains of (u1, u4) and (u4, u6)), we cannot remove
any value. (b) A new node u′

4 has been created and some of the edge domain values
to u4 have been transferred to u′

4. There are no labels on (u2, u
′
4) and (u3, u4), so the

edges need not be created. (c) After the split we can prune inconsistent values and as
a result remove edges (u4, u6) and (u′

4, u5).

Our splitting strategy selects a splitting node and a subset of incoming edges
to be redirected by heuristically estimating the quality of the resulting split. For
an equality constraint we try to increase the potential for subsequent pruning
by maximizing the shortest path L(u′) and minimizing the longest path H(u′)
passing through u′. In particular, we try to minimize the expected difference
H(u′) − L(u′). This splitting strategy is used with both the pseudo-polynomial
pruning and pruning based on two inequalities.

2 Empirical Results

We randomly generated a number of problem instances involving 3 separable
equalities over 15 variables with a domain of size 3. We measured the time nec-
essary to find a solution using two inequality propagators and our equality prop-
agator. For each xi and v ∈ Di, we randomly selected fi(v) ∈ [−10000, 10000].
The results are shown in Figure 3. We can observe that enforcing the stronger
MDD consistency through an equality constraint consistently outperforms the
weaker consistency enforced by two inequalities. The computation time for two
inequalities increases with larger width, while reducing for the new equality
propagator.

322 T. Hadzic, J.N. Hooker, and P. Tiedemann

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60

C
om

pu
ta

tio
n

tim
e

(m
s)

width

Effects of mdd consistency and width

2xInequality
MDD consistency

Fig. 3. The effect of MDD width (horizontal axis) on computation time (in ms, vertical
axis) when using (a) two inequality propagators to propagate the equality constraint
and (b) the MDD consistent equality propagator introduced in this paper

3 Conclusions and Future Work

We presented a propagator for the MDD store that achieves MDD consistency
for a separable equality constraint in pseudo-polynomial time. From our empir-
ical results we observed that the extra overhead is worthwhile in practice. In
particular, the benefit increases as the width of the MDD store increases. In
future work we intend to develop an approximate propagation scheme based on
caching for small ranges of cost instead of a single precise cost.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 118–132. Springer, Heidelberg (2007)

2. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming. Foundations of Artificial Intelligence,
pp. 169–208. Elsevier Science Publishers, Amsterdam (2006)

3. Trick, M.: A dynamic programming approach for consistency and propagation for
knapsack constraints. In: Proceedings of the Third International Workshop on In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR-01), pp. 113–124 (2001)

The Weighted CFG Constraint

George Katsirelos, Nina Narodytska, and Toby Walsh

University of New South Wales and NICTA, Sydney, Australia

Abstract. We introduce the weighted CFG constraint and propose a propaga-
tion algorithm that enforces domain consistency in O(n3|G|) time. We show that
this algorithm can be decomposed into a set of primitive arithmetic constraints
without hindering propagation.

1 Introduction

One very promising method for rostering and other domains is to specify constraints
via grammars or automata that accept some language. We can specify constraints in
this way on, for instance, the number of consecutive night shifts or the number of days
off in each 7 day period. With the REGULAR constraint [4], we specify the acceptable
assignments to a sequence of variables by a deterministic finite automaton. One limita-
tion of this approach is that the automaton may need to be large. For example, there are
regular languages which can only be defined by an automaton with an exponential num-
ber of states. Researchers have therefore looked higher up the Chomsky hierarchy. In
particular, the CFG constraint [8,6] permits us to specify constraints using any context-
free grammar. In this paper, we consider a further generalization to the weighted CFG

constraint. This can model over-constrained problems and problems with preferences.

2 The Weighted CFG Constraint

In a context-free grammar, rules have a left-hand side with just one non-terminal, and
a right-hand side consisting of terminals and non-terminals. Any context-free grammar
can be written in Chomsky form in which the right-hand size of a rule is just one termi-
nal or two non-terminals. The weighted WCFG(G, W, z, [X1, . . . , Xn]) constraint holds
iff an assignment X forms a string belonging to the grammar G and the minimal weight
of a derivation of X less than or equal to z. The matrix W defines weights of produc-
tions in the grammar G. The weight of a derivation is the sum of production weights
used in the derivation. The WCFG constraint is domain consistent iff for each variable,
every value in its domain can be extended to an assignment satisfying the constraint.

We give a propagator for the WCFG constraint based on an extension of the CY K
parser to probabilistic grammars [3]. We assume that G is in Chomsky normal form
and with a single start non-terminal S. The algorithm has two stages. In the first, we
construct a dynamic programing table V [i, j] where an element A of V [i, j] is a poten-
tial non-terminal that generates a substring [Xi, . . . , Xi+j]. We compute a lower bound
l[i, j, A] on the minimal weight of a derivation from A. In the second stage, we move
from V [1, n] to the bottom of table V . For an element A of V [i, j], we compute an

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 323–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 G. Katsirelos, N. Narodytska, and T. Walsh

upper bound u[i, j, A] on the maximal weight of a derivation from A of a substring
[Xi, . . . , Xi+j]. We mark the element A iff l[i, j, A] ≤ u[i, j, A]. The pseudo-code is
presented in Algorithm 1. Lines 2–5 initialize l and u. Lines 6–16 compute the first
stage, whilst lines 20–29 compute the second stage. Finally, we prune inconsistent val-
ues in lines 30–31. Algorithm 1 enforces domain consistency in O(|G|n3) time.

Algorithm 1. The weighted CYK propagator
1: procedure WCYK-ALG(G, W, z, [X1, . . . , Xn])
2: for j = 1 to n do
3: for i = 1 to n− j + 1 do
4: for each A ∈ G do
5: l[i, j, A] = z + 1; u[i, j, A] = −1;
6: for i = 1 to n do
7: V [i, 1] = {A|A→ a ∈ G, a ∈ D(Xi)}
8: for A ∈ V [i, 1] s.t A→ a ∈ G, a ∈ D(Xi) do
9: l[i, 1, A] = min{l[i, 1, A], W [A→ a]};
10: for j = 2 to n do
11: for i = 1 to n− j + 1 do
12: V [i, j] = ∅;
13: for k = 1 to j − 1 do
14: V [i, j] = V [i, j] ∪ {A|A→ BC ∈ G, B ∈ V [i, k], C ∈ V [i + k, j − k]}
15: for each A→ BC ∈ G s.t. B ∈ V [i, k], C ∈ V [i + k, j − k] do
16: l[i, j, A] = min{l[i, j, A], W [A→ BC] + l[i, k, B] + l[i + k, j − k, C]};
17: if S /∈ V [1, n] then
18: return 0;
19: mark (1, n, S); u[1, n, S] = z;
20: for j = n downto 2 do
21: for i = 1 to n− j + 1 do
22: for A such that (i, j, A) is marked do
23: for k = 1 to j − 1 do
24: for each A→ BC ∈ G s.t. B ∈ V [i, k], C ∈ V [i + k, j − k] do
25: if W [A→ BC] + l[i, k, B] + l[i + k, j − k, C] > u[i, j, A] then
26: continue;
27: mark (i, k, B); mark (i + k, j − k, C);
28: u[i, k, B] = max{u[i, k, B], u[i, j, A]− l[i + k, j − k, C]−W [A→ BC]};
29: u[i+k, j−k, C] = max{u[i+k, j−k, C], u[i, j, A]− l[i, k, B]−W [A→ BC]};
30: for i = 1 to n do
31: D(Xi) = {a ∈ D(Xi)|A→ a ∈ G, (i, 1, A) is marked and W [A→ a] ≤ u[i, 1, A]};
32: return 1;

3 Decomposition of the Weighted CFG Constraint

As an alternative to this monolithic propagator, we propose a simple decomposition
with which we can also enforce domain consistency. A decomposition has several ad-
vantages. For example, it is easy to add to any constraint solver. As a second exam-
ple, decomposition gives an efficient incremental propagator, and opens the door to
advanced techniques like nogood learning and watched literals. The idea of the decom-
position is to introduce arithmetic constraints to compute l and u. Given the table V
obtained by Algorithm 1, we construct the corresponding AND/OR directed acyclic
graph (DAG) as in [7]. We label an OR node by n(i, j, A), and an AND node by
n(i, j, k, A → BC). We denote the parents of a node nd as PRT (nd) and the children
as CHD(nd). For each node two integer variables are introduced to compute l and u.
For an OR-node nd, these are lO(nd) and uO(nd), whilst for an AND-node nd, these
are lA(nd), uA(nd).

The Weighted CFG Constraint 325

For each AND node nd = n(i, j, k, A → BC) we post a constraint to connect nd
to its children CHD(nd):

lA(nd) =
∑

nc∈CHD(nd)

lO(nc) + W [A → BC] (1)

For each OR node nd = n(i, j, A) we post constraints to connect nd to its children
CHD(nd):

lO(nd) = min
nc∈CHD(nd)

{lA(nc)} (2)

uO(nd) = uA(nc), nc ∈ CHD(nd) (3)

For each OR node nd = n(i, j, A) we post a set of constraints to connect nd to its
parents PRT (nd) and siblings:

uO(nd) = maxnp∈PRT (nd){uA(np) − lO(nsb) − W [P]}, (4)

where P = B → AC or B → CA, np = n(r, q, t, P) is the parent of nd = n(i, j, A)
and nsb = n(i1, j1, C).

Finally, we introduce constraints to prune Xi. For each leaf of the DAG that is an
OR node nd = n(i, 1, a), we introduce:

a ∈ D(Xi) ⇒ 0 ≤ lO(nd) ≤ z (5)

a /∈ D(Xi) ⇔ lO(nd) > z (6)

lO(nd) > uO(nd) ⇒ a /∈ D(Xi) (7)

As the maximal weight of a derivation is less than or equal to z we post:

uO(n(1, n, S)) ≤ z (8)

Bounds propagation will set the lower bound of lO(n(i, j, A)) to the minimal weight
of a derivation from A, and the upper bound on uO(n(i, j, A)) to the maximum weight
of a derivation from A. We forbid branching on variables lA|O and uA|O as branching on
lA|O would change the weights matrix W and branching on uA|O would add additional
restrictions to the weight of a derivation. Bounds propagation on this decomposition
enforces domain consistency on the WCFG constraint. If we invoke constraints in the
decomposition in the same order as we compute the table V , this takes O(n3|G|) time.
For simpler grammars, propagation is faster. For instance, as in the unweighted case, it
takes just O(n|G|) time on a regular grammar.

We can speed up propagation by recognizing when constraints are entailed. If lO(nd)
> uO(nd) holds for an OR node nd then constraints (4) and (2) are entailed. If lA(nd)>
uA(nd) holds for an AND node nd then constraints (1) and (3) are entailed. To model
entailment we augmented each of these constraints in such a way that if lO(nd) >
uO(nd) or lA(nd) > uA(nd) hold then corresponding constraints are not invoked by
the solver.

326 G. Katsirelos, N. Narodytska, and T. Walsh

4 The Soft CFG Constraint

We can use the WCFG constraint to encode a soft version of CFG constraint which
is useful for modelling over-constrained problems. The soft CFG(G, z, [X1, . . . , Xn])
constraint holds iff the string [X1, . . . , Xn] is at most distance z from a string in G.
We consider both Hamming and edit distances. We encode the soft CFG(G, z, [X1, . . . ,
Xn]) constraint as a weighted CFG(G′, W, z, [X1, . . . , Xn]) constraint. For Hamming
distance, for each production A → a ∈ G, we introduce additional unit weight produc-
tions to simulate substitution:

{A → b, W [A → b] = 1|A → a ∈ G, A → b /∈ G, b ∈ Σ}

Existing productions have zero weight. For edit distance, we introduce additional pro-
ductions to simulate substitution, insertion and deletion:

{A → b, W [A → b] = 1|A → a ∈ G, A → b /∈ G, b ∈ Σ}∪
{A → ε, W [A → ε] = 1|A → a ∈ G, a ∈ Σ}∪

{A → Aa, W [A → Aa] = 1|a ∈ Σ}∪
{A → aA, W [A → aA] = 1|a ∈ Σ}

To handle ε productions we modify Alg. 1 so loops in lines (13),(23) run from 0 to j.

5 Experimental Results

We evaluated these propagation methods on shift-scheduling benchmarks [2,1]. A per-
sonal schedule is subject to various regulation rules, e.g. a full-time employee has to
have a one-hour lunch. This rules are encoded into a context-free grammar augmented
with restrictions on productions [7,5]. A schedule for an employee has n = 96 slots
represented by n variables. In each slot, an employee can work on an activity (ai), take
a break (b), lunch (l) or rest (r). These rules are represented by the following grammar:

S → RPR, fP (i, j) ≡ 13 ≤ j ≤ 24, P → WbW, L → lL|l, fL(i, j) ≡ j = 4
S → RFR, fF (i, j) ≡ 30 ≤ j ≤ 38, R → rR|r, W → Ai, fW (i, j) ≡ j ≥ 4
Ai → aiAi|ai, fA(i, j) ≡ open(i), F → PLP

where functions f(i, j) are restrictions on productions and open(i) is a function that
returns 1 if the business is opened at ith slot and 0 otherwise. To model labour de-
mand for a slot we introduce Boolean variables b(i, j, ak), equal to 1 if jth employee
performs activity ak at ith time slot. For each time slot i and activity ak we post a con-
straint

∑m
j=1 x(i, j, ak) > d(i, ak), where m is the number of employees. The goal is

to minimize the number of slots in which employees worked.
We used Gecode 2.0.1 for our experiments and ran them on an Intel Xeon 2.0Ghz

with 4Gb of RAM1. In the first set of experiments, we used the weighted CFG(G, zj , X),
j = 1, . . . , m with zero weights. Our monolithic propagator gave similar results to the
unweighted CFG propagator from [7]. Decompositions were slower than decomposi-
tions of the unweighted CFG constraint as the former uses integers instead of Booleans.

1 We would like to thank Claude-Guy Quimper for his help with the experiments.

The Weighted CFG Constraint 327

Table 1. All benchmarks have one-hour time limit. |A| is the number of activities,m is the num-
ber of employees, cost shows the total number of slots in which employees worked in the best
solution, time is the time to find the best solution, bt is the number of backtracks to find the best
solution, BT is the number of backtracks in one hour, Opt shows if optimality is proved, Imp
shows if a lower cost solution is found by the second model.

Monolithic Decomposition Decomption+entailment
|A| # m cost time bt BT cost time bt BT cost time bt BT Opt Imp
1 2 4 107 5 0 8652 107 7 0 5926 107 7 0 11521
1 3 6 148 7 1 5917 148 34 1 1311 148 9 1 8075
1 4 6 152 1836 5831 11345 152 1379 5831 14815 152 1590 5831 13287
1 5 5 96 6 0 8753 96 6 0 2660 96 3 0 45097
1 6 6 − − − 10868 132 3029 11181 13085 132 2367 11181 16972
1 7 8 196 16 16 10811 196 18 16 6270 196 15 16 10909
1 8 3 82 11 9 66 82 13 9 66 82 5 9 66

√ √
1 10 9 − − − 10871 − − − 9627 − − − 18326
2 1 5 100 523 1109 7678 100 634 1109 6646 100 90 1109 46137
2 2 10 − − − 11768 − − − 10725 − − − 6885
2 3 6 165 3517 9042 9254 168 2702 4521 6124 165 2856 9042 11450

√
2 4 11 − − − 8027 − − − 6201 − − − 5579
2 5 4 92 37 118 12499 92 59 118 6332 92 49 118 10329
2 6 5 107 9 2 6288 107 22 2 1377 107 14 2 7434
2 8 5 126 422 1282 12669 126 1183 1282 3916 126 314 1282 16556

√
2 9 3 76 1458 3588 8885 76 2455 3588 5313 76 263 3588 53345

√
2 10 8 − − − 3223 − − − 3760 − − − 8827

In the second set of experiments, we assigned weight 1 to activity productions, like
Ai → ai, and post an additional cost function

∑m
j=1 zj that is minimized.

∑m
j=1 zj is

the number of slots in which employees worked. Results are presented in Table1. We
improved on the best solution found in the first model in 4 benchmarks and proved op-
timality in one. The decomposition of the weighted CFG constraint was slightly slower
than the monolithic propagator, while entailment improved performance in most cases.

References

1. Cote, M.-C., Bernard, G., Claude-Guy, Q., Louis-Martin, R.: Formal languages for integer
programming modeling of shift scheduling problems. Technical Report, Center for Research
on Transportation, Montreal (2007)

2. Demassey, S., Pesant, G., Rousseau, L.-M.: Constraint programming based column generation
for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524,
Springer, Heidelberg (2005)

3. Ney, H.: Dynamic programming parsing for context-free grammars in continuous speech
recognition. IEEE Trans. on Signal Processing 39(2), 336–340 (1991)

4. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, Springer, Heidelberg (2004)

5. Quimper, C.-G., Louis-Martin, R.: A large neighbourhood search approach to the multi-
activity shift scheduling problem. Technical Report, Center for Research on Transportation,
Montreal (2007)

6. Quimper, C.-G., Walsh, T.: Global Grammar constraints. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204, Springer, Heidelberg (2006)

7. Quimper, C.-G., Walsh, T.: Decomposing Global Grammar constraints. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, Springer, Heidelberg (2007)

8. Sellmann, M.: The theory of Grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS,
vol. 4204, Springer, Heidelberg (2006)

CP with ACO

Madjid Khichane1,2, Patrick Albert1, and Christine Solnon2

1 ILOG SA, 9 rue de Verdun, 94253 Gentilly cedex, France
{mkhichane,palbert}@ilog.fr

2 LIRIS CNRS UMR 5205, University of Lyon I, France
christine.solnon@liris.cnrs.fr

The Ant Colony Optimization (ACO) meta-heuristic [1] has proven its efficiency
to solve hard combinatorial optimization problems. However most works have
focused on designing efficient ACO algorithms for solving specific problems, but
not on integrating ACO within declarative languages so that solving a new prob-
lem with ACO usually implies a lot of procedural programming. Our approach
is thus to explore the tight integration of Constraint Programming (CP) with
ACO. Our research is based upon ILOG Solver, and we use its modeling language
and its propagation engine, but the search is guided by ACO. This approach has
the benefit of reusing all the work done at the modeling level as well as the code
dedicated to constraint propagation and verification.

1 Description of Ant-CP

Some ACO algorithms have been previously proposed for solving Constraint Sat-
isfaction Problems (CSPs), e.g., [2,3]. In these algorithms, ants iteratively build
complete assignments (that assign a value to every variable) that may violate
constraints, and their goal is to minimize the number of constraint violations; a
solution is found when the number of constraint violations is null. In this paper,
we investigate a new ACO framework for solving CSPs: ants iteratively build
partial assignments (such that some variables may not be assigned to a value)
that do not violate constraints, and their goal is to maximize the number of
assigned variables; a solution is found when all variables are assigned. This new
ACO framework may be combined with the propagation engine of ILOG Solver
in a very straightforward way. It can be viewed as a generalization of [4] to CSPs.

More precisely, our approach is sketched in Algorithm 1. First, pheromone trails
are initialized to some given value τmax. Then, at each cycle (lines 2-12), each ant k
constructs a consistent assignment Ak (lines 4-10): starting from an empty assign-
ment, the ant iteratively chooses a variable which is not yet assigned and a value to
assign to this variable; this variable assignment is added to Ak, and constraints are
propagated; this process is iterated until either all variables have been assigned or
the propagation step detects a failure. Once every ant has constructed an assign-
ment, pheromone trails are updated. The algorithm stops iterating either when an
ant has found a solution, or when amaximum number of cycles has been performed.

Pheromone structure. The pheromone structure, denoted by Φ, is a param-
eter which defines the set of pheromone trails that are used to guide ants

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 328–332, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

CP with ACO 329

Algorithm 1. Ant-CP procedure
Input: A CSP (X, D, C), a pheromone structure Φ, and a heuristic factor η
Output: A (partial) consistent assignment for (X, D, C)
Initialize all pheromone trails of Φ to τmax1

repeat2

foreach k in 1..nbAnts do3

Ak ← ∅4

repeat5

Select a variable Xj ∈ X so that Xj �∈ var(Ak)6

Choose a value v∈D(Xj)7

Add 〈Xj , v〉 to Ak8

Propagate constraints9

until var(Ak) = X or Failure ;10

Update pheromone trails of Φ using {A1, . . . , AnbAnts}11

until var(Ai) = X for some i ∈ {1..nbAnts} or max cycles reached ;12

return the largest constructed assignment13

during assignment constructions. The default pheromone structure associates a
pheromone trail with every variable-value couple, i.e., Φdefault = {τ〈Xi,vi〉/Xi ∈
X, vi ∈ D(Xi)}. Each pheromone trail τ〈Xi,vi〉 represents the learnt desirability
of assigning value vi to variable Xi. For specific problems, one may design other
pheromone structures and we shall propose and compare two other pheromone
structures for the car sequencing problem in the next section.

Selection of a variable. When constructing an assignment, the order in which
the variables are assigned is rather important and variable ordering heuristics
have been studied widely in the context of backtrach search. These heuristics
can be used as well in our context of greedy construction of assignments.

Choice of a value. Once a variable Xj has been selected, the value v to be assigned
to this variable is randomly chosen within D(Xj) with respect to a probability
p(Xj , v) which depends on a pheromone factor τA(Xj , v) —which reflects the past
experience of the colony regarding the addition of 〈Xj , v〉 to the partial assignment
A— and a heuristic factor ηA(Xj , v) —which is problem-dependent, i.e.,

p(Xj , v) =
[τA(Xj , v)]α[ηA(Xj , v)]β∑

w∈D(Xj)[τA(Xj , w)]α[ηA(Xj , w)]β
(1)

where α and β are two parameters that determine the relative weights of phero-
mone and heuristic information. The definition of the pheromone factor depends
on the pheromone structure. For the default structure Φdefault, this pheromone
factor is defined by τA(Xj , v) = τ〈Xj ,v〉.

Constraint propagation. Each time a variable is assigned to a value, a propa-
gation algorithm is called. This algorithm narrows the domains of the variables
that are not yet assigned. If the domain of a variable becomes a singleton, then

330 M. Khichane, P. Albert, and C. Solnon

the partial assignment Ak is completed by the assignment of this variable and
the propagation process is continued. At the end of the propagation process, if
the domain of a variable becomes empty or if some inconsistency is detected,
then Failure is detected.

Pheromone updating step. Once every ant has constructed an assignment, each
pheromone trail of the pheromone structure Φ is decreased and then the best
ants of the cycle deposit pheromone, i.e., ∀τi ∈ Φ,

τi ← (1 − ρ) · τi +
∑
Ak∈BestOfCycle Δτ(Ak , τi)

if τi < τmin (resp.τi > τmax) then τi ← τmin (resp. τi ← τmax)

where

– ρ is the evaporation parameter, such that 0 ≤ ρ ≤ 1,
– τmin and τmax are two parameters for bounding pheromone trails,
– BestOfCycle is the set of the best assignments constructed during the cycle,
– Δτ(Ak, τi) is the quantity of pheromone deposited on the pheromone trail

τi by the ant that has built assignment Ak. This quantity depends on the
chosen pheromone structure. For the default structure Φdefault, this quantity
is equal to zero if Xi is not assigned to v in Ak; otherwise, it is proportionally
inverse to the gap of sizes between Ak and the largest assignment Abest built
since the beginning of the search (including the current cycle).

2 Using Ant-CP to Solve the Car Sequencing Problem

The car sequencing problem involves scheduling cars along an assembly line in
order to install options on them. Each car requires a set of options; all cars
requiring a same subset of options are grouped in a same car class. For each
option i, a capacity constraint pi/qi imposes that there are at most pi cars
requiring option i every qi consecutive cars. We refer the reader to [5] for more
details on this problem.

CP model and variable ordering heuristic. The CP model for the car sequencing
problem has been defined with the CP modeling language of ILOG Solver and
corresponds to the first model proposed in the user’s manual of ILOG Solver. In
our experiments, we have used a classical sequential variable ordering heuristic,
which consists in assigning variables associated with positions in the sequence
of cars in the order defined by the sequence.

Pheromone structures for the car sequencing problem. As pheromone is at the core
of the efficiency of any ACO implementation, we explore the impact of its struc-
ture: besides the default pheromone structure Φdefault, we propose and compare
two structures called Φclasses and Φcars. To run Ant-CP with a new pheromone
structure, one basically has to define the set Φ of pheromone components, define
the pheromone factor τA(Xj , v) with respect to these pheromone components, and
define which pheromone components must be rewarded during the pheromone up-
dating step. Due to lack of space, we do not describe into details the two pheromone
structures Φclasses and Φcars, but just give the intuition:

CP with ACO 331

– Φclasses is used in [6] and associates a pheromone trail τ(v,w) with every cou-
ple of car classes (v, w); this pheromone trail represents the learnt desirability
of sequencing a car of class w just after a car of class v;

– Φcars is used in [3] and associates a pheromone trail τ(v,i,w,j) with every
couple of classes (v, w) and every i ∈ [1; #v] and every j ∈ [1; #w] where
#v and #w respectively are the number of cars in classes v and w. This
pheromone trail represents the learnt desirability of sequencing the jth car
of class w just after the ith car of class v.

Heuristic factors for the car sequencing problem. In the transition probabil-
ity defined by eq. (1), the pheromone factor is combined with a heuristic factor
ηA(Xj , v) which is problem-dependent. We have considered here the DSU heuris-
tic of [7], which is based on the sum of the dynamic utilization rates of options:
ηA(Xj , v) =

∑
i∈ options(v)

ni·qi

N ·pi
, where ni is the number of cars that are not

yet sequenced and that require option i and N is the number of cars that are
not yet sequenced.

Experimental results. We now experimentally compare Ant-CP(Φdefault), Ant-
CP(Φcars), and Ant-CP(Φclasses), which respectively use the pheromone struc-
tures Φdefault, Φcars and Φclasses, with Ant-CP(∅) which ignores pheromone (i.e.,
Φ = ∅ and the pheromone factor τA(Xj , v) is set to 1). All experiments have been

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l r
un

s
(a

ve
ra

ge
 o

n
15

 r
un

s
x

82
 in

st
an

ce
s)

Number of cycles

Ant-CP(0)
Ant-CP(default)

Ant-CP(classes)
Ant-CP(cars)

Fig. 1. Comparison of pheromone strategies

332 M. Khichane, P. Albert, and C. Solnon

performed with the following parameter setting: τmin = 0.01, τmax = 4, α = 1,
β = 6, ρ = 2%, nbAnts = 30, and nbMaxCycles = 3000.

Let us first note that the 70 instances of the test suite provided by Lee and
available in CSPLib [8] are all very quickly solved by all instanciations of Ant-CP
in a very few assignment constructions. It is worth mentionning here that some
of these instances are still considered as difficult ones for complete branch-and-
propagate based solvers [9,10].

Fig. 1 displays the evolution of the percentage of successful runs with respect
to the number of cycles on a more difficult benchmark provided by Perron and
Shaw. This benchmark contains 82 instances that have between 100 and 500
cars to sequence. Fig. 1 shows that guiding the search with pheromone increases
the success rate, after 3000 cycles, from 64.82% for Ant-CP(∅) to 79.62% for
Ant-CP(Φcars), 71.86% for Ant-CP(Φdefault), and 67.77% for Ant-CP(Φclasses).

These first results show that pheromone significantly improves the solution
process, even when considering the default structure. Further works will mainly
concern the validation of our approach on other CSPs and the integration of a reac-
tive scheme in order to automatically adapt parameters during the search process.

References

1. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on

Evolutionary Computation 6(4), 347–357 (2002)
3. Solnon, C.: Combining two pheromone structures for solving the car sequencing

problem with Ant Colony Optimization. EJOR (to appear, 2008)
4. Meyer, B., Ernst, A.: Integrating aco and constraint propagation. In: Dorigo, M.,

Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)

5. Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing problem:
overview of state-of-the-art methods and industrial case-study of the ROADEF
2005 challenge problem. EJOR (to appear, 2008)

6. Gravel, M., Gagné, C., Price, W.: Review and comparison of three methods for the
solution of the car-sequencing problem. JORS (2004)

7. Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and aco ap-
proaches for car sequencing problems. In: Raidl, G.R., Cagnoni, S., Cardalda,
J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Mar-
chiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003,
EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and Evo-
MUSART 2003. LNCS, vol. 2611, Springer, Heidelberg (2003)

8. Gent, I., Walsh, T.: Csplib: a benchmark library for constraints. Technical report
(1999), http://csplib.cs.strath.ac.uk/

9. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the se-
quence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634.
Springer, Heidelberg (2006)

10. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P.J., Walsh, T.: Encodings
of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
210–224. Springer, Heidelberg (2007)

http://csplib.cs.strath.ac.uk/

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 333–337, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Combinatorial Auction Framework for Solving
Decentralized Scheduling Problems

(Extended Abstract)

Hoong Chuin Lau1, Kong Wei Lye2, and Viet Bang Nguyen1

1 Singapore Management University, 80 Stamford Road, Singapore 178902
2 Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075

{hclau,vbnguyen}@smu.edu.sg, kwlye@simtech.a-star.edu.sg

1 Introduction

Computing an optimal solution to an integer program for a realistic scheduling prob-
lem can often be very time consuming. As a result, ad-hoc and hand-crafted heuristics
have become popular alternatives. These methods, however, suffer from the inability
to guarantee good or optimal solutions. Our objective in this work is to leverage on
prior theoretical results from the OR literature and agent technology from the AI lit-
erature to derive a computational framework that can be easily implemented for solv-
ing decentralized scheduling problems. In decentralization, there is an issue that
information and control are inherently private to individual agents, even though a
solution has to be jointly derived. In this paper, we are concerned about the following
class of decentralized scheduling problems:

1. There is a central pool of limited resources that comprises multiple units of re-
sources for each machine type;

2. There are multiple self-interested agents and each has to obtain resources from the
central pool to solve its own scheduling problem (job shop, flow shop, etc).

Leveraging on the work by Kutanoglu and Wu [1], we propose a generic auction-
based agent framework that enables a given decentralized scheduling algorithm to be
readily designed and implemented. We then demonstrate the application of our pro-
posed framework on a real-world supply chain problem. Kutanoglu and Wu [1] (and
[2]) have shown that solving the Job Shop Scheduling problem using Lagrangian re-
laxation can be viewed as an auction. In this auction, job agents iteratively bid for
resources and an auctioneer responds with new prices for these resources in a price
adjustment process (also known as “tâtonnement”). Economic principles dictate that
given a restricted setting such as gross substitutability, the tâtonnement process con-
verges to an equilibrium [3]. Our contributions in this paper are: 1) decentralization,
and 2) genericity. In particular, we show how an arbitrary decentralized scheduling
problem can be generically tackled with an auction approach and demonstrate how a
generic framework can be constructed that allows designers to quickly design and
implement a decentralized algorithm. For benchmarking purposes, we will compare the
solutions obtained against a conventional exact approach. We also surface the attrac-
tiveness of our approach by measuring the level of agent “fairness” which we define as
the extent to which resources are allocated according to individual agent demands.

334 H.C. Lau, K.W. Lye, and V.B. Nguyen

2 Lagrangian Relaxation and Combinatorial Auction

Kutanoglu and Wu [1] formulated the Job Shop Scheduling problem as an integer
program and dualized the machine capacity constraints with a vector of non-negative
Lagrangian multipliers λ. The resulting relaxed problem LRλ can be decomposed into
independent sub-problems LRλ,i corresponding to the individual jobs’ local scheduling
problems. A lower bound on the optimal cost of the original problem can be com-
puted using λ. The best lower bound corresponds to the solution of the dual of LRλ,
LRD. To find λ for the dual problem’s optimal solution, a sub-gradient search proce-
dure can be used. Taking this idea to the auction context, they showed that the itera-
tive process for finding λ actually corresponds to a combinatorial auction:

1. The auctioneer initializes the prices for the machine-time resources λ0.
2. At auction round r, each job agent solves its local scheduling problem LRλ,i

using λr in its cost minimization objective function and submits its bid for re-
sources (local schedule) to the auctioneer.

3. The auctioneer collates all the bids from the job agents and generates a
global schedule. It resolves resource conflicts in this schedule and computes
new prices for the resources using a tâtonnement scheme. This corresponds
to an iteration in solving LRD. Sub-gradient search can be used to update λr.

4. The auctioneer starts the next round of auction (by announcing the new
prices λr+1 to the bidders) if a best feasible schedule has not been found.

3 Decentralized Lot-Sizing-Cum-Transportation Problem

In this section, we show how a real-world supply chain problem can be modeled as a
decentralized scheduling problem and solved using our proposed auction approach
and framework. We are given multiple global manufacturing plants (MPs) and a
global distribution centre (DC) that sends item parts to the various MPs. Each MP has
its own production plan that requires item parts for fulfilling the production across
multiple periods within a prescribed time horizon. Items can be shipped via multiple
routes from the DC to each MP. Each route has a finite capacity, operates on a regular
schedule, and is associated with a concave cost function. This problem can be mod-
eled as an auction problem: Each MP is represented as a bidder agent, while the DC
acts as the auctioneer. The auctioneer (DC) has to decide how to price the resources
so that all the MPs can meet their production plans. For each time period, the DC
consolidates the demands for items and routes, and computes the unit price for each
item in each period on each route. This price is then broadcast to all MPs. Each MP
has a production plan which specifies the quantity of each part required for each time
period. The MP needs to order sufficient parts to meet its production. Excess units
ordered incur holding costs. There are upper and lower bounds for each part inventory
at each time period and a requirement on inventory level for the last time period.
Hence, each MP has to decide on the quantity of each part to order for each time pe-
riod on each route, in order to minimize the total cost (inventory holding cost plus
shipping cost). Each MP has to solve a local scheduling problem that minimizes the
holding and shipping costs, plus the current prevailing cost imposed by the auctioneer

 A Combinatorial Auction Framework for Solving Decentralized Scheduling Problems 335

on the items and routes it decides to bid on. The optimal solution for this problem is a
bid that specifies resource requirement bundle. This decentralized lot-sizing cum
transportation problem can be formulated as an integer program:

, ,

1 1 1 1

min () ()
s

S T S T
s s

r t r t s t
s r R t s t

f x g I
= ∈ = = =

+∑∑∑ ∑∑ (PX)

s.t.
1 ,

s

s s s s
t t r t tr R

I I x q+ ∈
= + −∑ , t=1, .., T-1, s=1, …, S

 1
s s
t tI q +≥ , t=1, .., T-1, s=1, …, S

 s s s
t t tl I u≤ ≤ , t=1, .., T, s=1, …, S

,1

S s r
r t ts

x C
=

≤∑ , for each r∈R, t=1, …, T (*)

 , 0s
r tx ≥ , for each r∈R, s=1, …, S, t=1, …, T

where T is the time horizon, S is the number of MPs, Rs is the set of routes that can
serve MP s.

1 2... sR R R R= ∪ ∪ is the set of all routes originating from DC,

1{ ,..., }s s
s TQ q q= is a vector representing the production plan of MP s, s

tI is the inven-

tory level of MP s at the end of time period t , sU = 1{ ,..., }s s
Tu u and

sL = 1{ ,..., }s s
Tl l

are upper and lower bounds on inventories respectively.
,{ }s

s r tX x= ∀r∈Rs, t=1,…,T,

,
s
r tx ∈ +Z are decision variables for MP s on the quantities of parts to order for each

time unit on each route. , ()r tf ⋅ is the concave shipping cost function for route r at

time period t and ()sg ⋅ is the constant holding cost function for excess inventory.
r
tC is the capacity of shipping route r at time period t . By dualizing the capacity

constraints (*), we arrive at the relaxed problem LR(λ):

, , , ,

1 1 1 1 1 1

min () () ()
s s

S T S T T S
s s s r

r t r t s t r t r t t
s r R t s t r R t s

f x g I x Cλ
= ∈ = = = ∈ = =

+ + −∑∑∑ ∑∑ ∑∑ ∑ (LR(λ))

subject to the above constraints in PX, less the capacity constraints (*).
Following the decomposition procedure in Section 2, an MP thus solves the sub-

problem MPX given λ, and DC solves DCλ for each route r given X:

 , , , ,
1 1 1

min () () ()
s s

T T T
s s s r

r t r t s t r t r t t
r R t t r R t

f x g I x Cλ
∈ = = ∈ =

+ + −∑∑ ∑ ∑∑ (MPX)

subject to its own subsets of constraints in PX.

, , , ,

1 1 1 1

max [() ()] ()
S T T S

s s s r
r t r t s t r t r t t

s t t s

f x g I x Cλ
= = = =

+ + −∑∑ ∑ ∑ , s.t. λ≥0 (DCλ)

Each agent (MP) decides on the quantity of each item to order for each time period

,{ }s
s r tX x= , and solves an optimization problem MPX. This problem is a classical

336 H.C. Lau, K.W. Lye, and V.B. Nguyen

multi-period lot-sizing cum transportation problem which can be solved efficiently
via dynamic programming. The auctioneer consolidates all the bid bundles from all
the agents and computes the total demand for each route r for each time period t. Its
role is to adjust the prices so as to influence future total demand so it does not exceed
the capacity r

tC . It needs to solve the problem DCλ to (try to) find a better λ. In the

auction context, this means it first computes the resource capacity violation costs, and
then, for route-time resources that have demand exceeding capacity, it raises their
prices, and for those that have demand less than capacity, it lowers their prices.

4 Experimental Results

In this section, we compare the results of our auction approach in terms of system
performance versus an exact (branch-and-bound) approach. We also validate the ro-
bustness of our approach by testing on diverse scenarios, addressing different demand
patterns from the MPs (bidders). The problem size (the total number of decision
variables) is given by (total number of time periods) x (total number of routes) x (to-
tal number of bidders). We designed test cases having problem sizes of 32=4x2x4,
36=3x3x4, 48=6x2x4, 56=7x2x4 respectively. We generated test cases with varying
route capacities and total demand / total supply ratio (α). The route capacity is set
randomly within the interval [5, 12]. The total supply S is calculated as route capacity
x number of routes x number of time periods. The total demand of all MPs D = S x α
is then spread evenly to all MPs (for the purpose of measuring fairness, to be dis-
cussed later). The demand distribution across different periods varies in different
cases – ranging from uniform distribution to skewed distribution. The shipping cost
function for each time period on each route is a concave cost function, which gener-
ally takes the form

, ()r t tf k = 0 if kt = 0, and ξ + δ(x), where ξ is the fixed cost and δ(x)

= a0x
0 + a1x

1 + … + anx
n. The holding cost takes the form of a linear function ()sg i =

ui, where u is the unit holding cost set as 10 in all test cases. We compare our auction
approach (AUC) against an exact algorithm with branch and bound and forward con-
straint checking (OPT). AUC is set to run for 50 iterations for each test case. We
used a 3GHz Pentium IV machine with 1GB RAM. The results are shown in Table 1.
Table 1 shows that on an average, AUC produced results within an average of 5%
from optimality with significant run time performance gain compared to OPT for
large problems (minor exceptions for cases 5 and 6 where OPT happens to be more
efficient because constraint checking enables pruning to take place early in the search
tree). For sparse demands uniformly distributed across time periods (cases 3 and 10,
highlighted in gray), AUC produced optimal solutions. In cases where the demand
patterns are similar and under tight demand/supply constraint (case 4), there are fre-
quent conflicts among the agents resulting in fewer solutions and thus less efficient
resource allocation. We further investigate the positive effect of decentralization in
terms of agent fairness in the sense of [5] - which is a desirable scheduling notion that
measures the extent that each agent is allocated resources in proportion to its demand.
We conjecture that a decentralized (auction) approach may lead to higher agent-
centric fairness compared to a central approach where the concern is simply to opti-
mize global (social) cost. For this purpose, given that demands are evenly spread out

 A Combinatorial Auction Framework for Solving Decentralized Scheduling Problems 337

among agents, we devise the fairness measure based on the standard deviation metric
σ = Σ (costi – average cost)2 , where costi is the objective cost for MP i, and average
cost is the average cost of all agents. The results are reported in the last column in the
table, where we observe that in the majority of cases, the fairness measure for our
approach outperforms the centralized optimum approach.

Table 1. Comparison between auction approach and branch and bound

Problem
size

Test
case

Demand
/Supply
Ratio α

Objective
Function

Run Time
(seconds)

Std Deviation σ

 AUC OPT Ratio AUC OPT AUC OPT

1 0.875 621 611 1.016 0.031 0.86 8.04 8.27

2 0.854 618 617 1.002 0.031 0.953 7.40 8.12 32

3 0.688 613 613 1.000 0.031 0.313 5.79 5.79

4 0.889 555 462 1.201 0.016 0.094 2.53 5.64

5 0.870 551 548 1.005 0.110 0.032 3.33 2.21

6 0.870 590 582 1.014 0.094 0.093 5.17 5.40
36

7 0.833 649 628 1.033 0.016 0.047 5.00 6.74

8 0.717 776 675 1.150 0.032 14.922 16.01 20.00

9 0.900 1049 1044 1.005 0.031 65.066 59.80 60.44 48

10 0.442 828 828 1.000 0.203 5.563 16.02 16.02

11 0.900 1519 1498 1.014 0.187 5004.97 109.73 108.64 56
12 0.884 1626 - - 0.180 > 3 hrs - -

References

1. Kutanoglu, E., Wu, S.D.: On combinatorial auction and Lagrangean relaxation for distrib-
uted resource scheduling. IIE Transactions 31, 813–826 (1999)

2. Dewan, P., Joshi, S.: Auction-based distributed scheduling in a dynamic job shop environ-
ment. Int. Journal of Production Research 40(5), 1173–1191 (2002)

3. Arrow, K.J., Hurwicz, L.: Competitive Stability under Gross Substitutability: The Euclidean
Distance Approach. Int. Economic Review 1, 38–49 (1960)

4. Fisher, M.L.: The Lagrangian Relaxation Method for Solving Integer Programming Prob-
lems. Management Science 27(1), 1–18 (1981)

5. Baruah, S.K., et al.: Proportionate Progress: A Notion of Fairness in Resource Allocation.
Algorithmica 15, 600–625 (1996)

Constraint Optimization and Abstraction

for Embedded Intelligent Systems

Paul Maier and Martin Sachenbacher

Technische Universität München, Institut für Informatik
Boltzmannstraße 3, 85748 Garching, Germany

{maierpa,sachenba}@in.tum.de
http://www9.in.tum.de

Abstract. Many tasks in artificial intelligence, such as diagnosis, plan-
ning, and reconfiguration, can be framed as constraint optimization prob-
lems. However, running constraint optimization within embedded sys-
tems requires methods to curb the resource requirements in terms of
memory and run-time. In this paper, we present a novel method to con-
trol the memory requirements of message-passing algorithms that decom-
pose the problem into clusters and use dynamic programming to compute
approximate solutions. It can be viewed as an extension of the previously
proposed mini-bucket scheme, which limits message size simply by omit-
ting constraints from the messages. Our algorithm instead adaptively
abstracts constraints, and we argue that this allows for a more fine-
grained control of resources particularly for constraints of higher arity
and variables with large domains that often occur in models of techni-
cal systems. Preliminary experiments with a diagnosis model of NASA’s
EO-1 satellite appear promising.

Keywords: Constraint optimization, decomposition, heuristic search,
automated abstraction, embedded systems.

1 Introduction

New generations of technical devices are being developed that use models of
themselves to implement self-awareness capabilities, for example in assistant au-
tomotive systems and cognitive manufacturing systems [1]. Many of the under-
lying computational tasks – such as automatically determining the most likely
current state of the system (monitoring and diagnosis), or finding least-cost se-
quences of actions that drive the system towards desired states to compensate for
contingencies (planning and reconfiguration) – can be framed as combinatorial
optimization problems over sets of constraints [7]. Such a common representa-
tional basis enables tight integration of the different tasks.

However, constraint optimization is exponential in the number of system vari-
ables, which is especially a problem given the limited resources (memory and
CPU time) available in embedded controllers. As models of technical systems
often present some inherent modularity (for instance, a car’s controller area

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 338–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www9.in.tum.de

Constraint Optimization and Abstraction 339

network), approaches that decompose the constraint model off-line into clus-
ters and infer solutions on-line by passing messages between the clusters [6,11]
can provide a significant improvement. Actually, one of the first approaches to
constraint-based diagnosis used such a message-passing scheme [8].

Unfortunately, this can still lead to an infeasible message size (exponential in
the separator width of the decomposition). In the literature, mini-clustering [9]
has been suggested as a scheme to limit the memory requirements of structure-
based constraint optimization algorithms, by approximating messages instead of
computing them exactly. The idea of mini-cluster tree elimination (MCTE) is to
restrict the size of messages in the tree by partitioning the constraints in the clus-
ters into subsets (called mini-clusters) involving at most i different variables. By
combining only the constraints in a mini-cluster, one gets a set of messages that
approximate the cost function of the original message with an upper (optimistic)
bound, and this can be used as a heuristic for subsequent search. The complexity
of mini-cluster tree elimination is therefore O(r·ki), where k is the largest domain
size, and r is the total number of occurring cost functions [6].

However, when we tried to use mini-clustering as a reasoning scheme in embed-
ded constraint optimization, we encountered two problems. First, it is difficult
to control the number of messages that need to be transmitted. If i is small, the
messages themselves are computed faster but their total number (and thus r) will
increase. Limiting the number of messages by suppressing some of them is hardly
a solution, because constraints are unique to their respective mini-cluster and
thus information about these constraints will be completely lost in the heuristic
approximation. Second, the parameter i allows only limited control over the size
of the resulting messages, because MCTE can only either omit a constraint or use
it in a message, without any intermediate steps. While this works for models with
small (binary) constraints and small variable domains, typical constraint models
for diagnosis and planning tend to have large domains and big constraints. For
instance, in a model of NASA’s Earth Oberserving Satellite (EO-1) [4], variables
have up to ten domain values and many constraints involve more than four vari-
ables. For such larger problems, mini-clustering offers only limited possibilities
to form the mini-clusters and therefore it cannot control the size of the messages
effectively. In fact, restricting the number of constraints occurring in messages
(or even limiting the number of variables in a constraint by projecting them on
a subset of their variables) will affect only the exponent of the space complexity;
depending on k, this can lead to big jumps in the possible message size.

2 Adaptive Abstraction for Constraint-Based Models

Extending upon the mini-bucket scheme, we propose a more general approach to
limit the size of messages exchanged between clusters. It allows for finer control
over the message size, and therefore enables better adaption of message-passing
constraint optimization algorithms to the tight resources in embedded systems.

Instead of omitting constraints from messages (as in mini-buckets), our ap-
proach adaptively reduces the size of constraints by abstracting them, similar

340 P. Maier and M. Sachenbacher

to the automated generation of search heuristics (pattern databases) in game
analysis and path search [12,5]. The key idea is to choose appropriate aggre-
gations of the domains of the variables that limit the worst-case complexity of
messages by allowing only a limited number of total distinctions. This aggre-
gation affects both the base and the exponent of the message complexity, and
therefore allows for a more fine-grained control compared to the mini-bucket
parameter i. It is worth noting that using such abstractions, one can reconstruct
the behavior of the original mini-bucket algorithm as a special case where the
identical abstraction (preserving all distinctions) is applied to the constraints
inside a minibucket, and the trivial abstraction (eliminating all distinctions) is
applied to the constraints outside the minibucket.

We have implemented this approach as a variant of the existing message-
passing algorithm MCTE . The new algorithm, called Bucket Elimination with
Domain Abstraction (BEDA), was integrated into the open-source constraint
solver Toolbar [2] to allow comparison with MCTE and other constraint opti-
mization algorithms. BEDA combines tree decomposition with automated ag-
gregation of variable domains, which reduces domain sizes and yields smaller,
abstract constraints that approximate the original constraints. The granularity
of the domain abstraction is automatically adapted to a given message size limit
Tmax by determining appropriate sizes for the abstracted domains through solv-
ing a small optimization problem. In our preliminary implementation, this is
achieved by greedily decreasing the domain sizes of the largest domains of the
variables in an outgoing message, until Tmax is met. Our current prototype deter-
mines only one such domain abstraction per cluster, and only a single outgoing
message will be sent per cluster.

Figure 1 shows the results of a preliminary test with the EO-1 diagnosis model.
The horizontal axis (logarithmic scale) is the size limit (as given by the embedded
controller) imposed on the messages during the message-passing phase, whereas

Fig. 1. Search nodes vs. size limit for the EO-1 diagnosis example

Constraint Optimization and Abstraction 341

Fig. 2. Message sizes for Tmax = 512 for the EO-1 diagnosis example

the vertical axis shows the number of search nodes that are expanded in the
subsequent search phase to find the optimal solution (corresponding to run-time).
Clearly, the larger the size limit, the better the heuristic approximation achieved
during the message-passing phase, and thus the shorter the search phase. This
tendency can be observed both for MCTE and BEDA. However, for MCTE
(solid line), the message size proceeds only in relatively coarse steps, as it can
only indirectly be controlled through the parameter i (maximum number of
variables in a minibucket). In comparison, BEDA (dotted line) enables finer
control of the message size, potentially better adapting to the resources of the
embedded system. Figure 2 further illustrates this point by comparing the sizes
of the messages sent by each of the 73 clusters in the model for a given size limit
of Tmax = 512 tuples.

Note also that for this example, at a certain minimum size of the messages
BEDA yields a better heuristic than the mini-bucket approximation, given the
same message size limit. This is intriguing considering that BEDA sends fewer
messages per cluster than MCTE. We attribute this to the fact that at least in
this real-world example, the approximation of a cluster message through local
combinations of its constituents as in MCTE is less informative than a global
(though coarse) approximation as used in BEDA. In all cases, the time for com-
puting and passing along the BEDA messages was comparable to or even smaller
than for MCTE, that is, computing the domain abstractions did not incur sig-
nificant overhead over forming the mini-clusters.

3 Future Work Directions

Further tests and a more rigorous complexity analysis will be conducted to reveal
the potential of the approach. Also, we are working on more refined strategies for
the automatic adaption of the abstraction [13]. A particular promising direction
is iterative refinement of the abstractions, based on ideas presented in [3,12,5].
Our main goal here is to achieve better utilization of embedded resources, by

342 P. Maier and M. Sachenbacher

enabling more fine-grained control over the message size in message-passing al-
gorithms. Another goal in embedded diagnosis and planning is to focus the com-
putation on the best solutions only, as in this application context the controller
typically needs to know only a few best solutions [10]. Our abstraction-based ap-
proach can be helpful in this respect also, as we can easily bias the computation
of the abstraction: the idea is to use a more fine-grained resolution for values
with high utility, and a more coarse-grained resolution for values with lower util-
ity. We are currently experimenting with such biased abstraction strategies for
embedded diagnosis and planning applications.

References

1. Beetz, M., Buss, M., Wollherr, D.: Cognitive technical systems – what is the role
of artificial intelligence? In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007.
LNCS (LNAI), vol. 4667, pp. 19–42. Springer, Heidelberg (2007)

2. Bouveret, S., Heras, F., de Givry, S., Larrosa, J., Sanchez,
M., Schiex, T.: Toolbar: A state-of-the-art platform for wcsp,
http://www.inra.fr/mia/T/degivry/ToolBar.pdf

3. Koster, A.: Frequency Assignment – Models and Algorithms. PhD thesis, Univer-
siteit Maastricht, Maastricht, The Netherlands (1999)

4. Hayden, S.C., Sweet, A.J., Christa, S.E.: : Livingstone Model-Based Diagnosis of
Earth Observing One. In: Proceedings AIAA 1st Intelligent Systems Technical
Conference (September 2004)

5. Sturtevant, N.R., Jansen, R.: An analysis of map-based abstraction and refinement.
In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 344–358.
Springer, Heidelberg (2007)

6. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco
(2003)

7. Sachenbacher, M., Williams, B.C.: Diagnosis as Semiring-based Constraint Op-
timization. In: Proceedings 16th European Conference on Artificial Intelligence
(ECAI 2004), Valencia, Spain, pp. 873–877 (2004)

8. El Fattah, Y., Dechter, R.: Diagnosing tree-decomposable circuits. In: Proceed-
ings 14th International Joint Conference on Artificial Intelligence (IJCAI 1995),
Montreal, Canada, pp. 1742–1749 (1995)

9. Kask, K., Dechter, R.: Mini-Bucket Heuristics for Improved Search. In: Proceedings
15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), Stockholm,
Sweden, pp. 314–323 (1999)

10. O’Sullivan, B., Provan, G.M.: Approximate Compilation for Embedded Model-
based Reasoning. In: Proceedings 21st National Conference on Artificial Intelli-
gence (AAAI 2006), Boston, USA (2006)

11. Petcu, A., Faltings, B.: Superstabilizing, fault-containing distributed combinatorial
optimization. In: Proceedings 20th National Conference on Artificial Intelligence
(AAAI 2005), Pittsburgh, USA, pp. 449–454 (2005)

12. Holte, R., Hernadvolgyi, I.: Steps towards the automatic creation of search heuris-
tics. Technical report, Computing Science Department, University of Alberta
(2004)

13. Sachenbacher, M., Struss, P.: Task-dependent Qualitative Domain Abstraction.
Artificial Intelligence 162(1-2), 121–143 (2005)

http://www.inra.fr/mia/T/degivry/ToolBar.pdf

A Parallel Macro Partitioning Framework for

Solving Mixed Integer Programs

Mahdi Namazifar and Andrew J. Miller�

Industrial and Systems Engineering Department, University of Wisconsin - Madison,
1513 University Avenue, Madison, Wisconsin, USA

{namazifar,ajmiller5}@wisc.edu

Abstract. Mixed Integer Programs are a class of optimization problems
which have a vast range of applications in engineering, business, science,
health care, and other areas. For many applications, however, problems
of realistic size can take a an impractical amount of time to solve on a
single workstation. However, using parallel computing resources to solve
MIP is difficult, as parallelizing the standard branch-and-bound frame-
work presents an array of challenges. In this paper we present a novel
framework called a Parallel Macro Partitioning (PMaP) framework for
solving mixed integer programs in parallel. The framework exploit ideas
from modern MIP heuristics to partition the problem at a high-level into
MIP subproblems, each of which can be solved on a separate processor by
an MIP algorithm. Initial computational resources suggest that PMaP
has significant promise as a framework capable of bringing many proces-
sors to bear effectively on difficult problems.

Keywords: High-Performance Computing, Mixed Integer Programm-
ing, Primal Heuristics, Branch-and-Bound.

1 Introduction

In recent year great strides have been made in our ability to solve mixed integer
programming (MIP) problems. Much of this progress has come through theoret-
ical and algorithmic improvements that enable LP-based branch-and-bound and
branch-and-cut algorithms to solve much large problems than previously possi-
ble. In spite of this progress, however, there are many MIP problems that remain
practically intractable. For example, the MIPLIB library http://miplib.zib.
de/miplib2003.php has numerous problems that take several days to solve;
and, also, problem swhich have not yet been solved to optimality. Such facts
encourage the use of high-performance computing resources for solving MIP’s.

Parallelizing branch-and-bound has been studied in several papers (e.g., [4,8]).
In general, two classic strategies for parallelizing branch-and-bound are node-
based strategies, in which computations at the nodes of branch-and-bound tree
are parallelized, and tree-based strategies, in which building and exploring the
branch-and-bound tree is done in parallel [4]. In the latter approach, each proces-
sor is assigned a node of the tree and builds up the tree rooted at its assigned
� This research was supported by NSF grant CMMI 0521953.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 343–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://miplib.zib.de/miplib2003.php
http://miplib.zib.de/miplib2003.php

344 M. Namazifar and A.J. Miller

node. The domain of the problem is thus split into several disjoint pieces, and
each piece is processed by a single processor. Several solvers such as CPLEX [2],
Xpress [7], and SYMPHONY [5], use such techniques to parallelize the branch-
and-bound algorithm.

In this paper we propose a new framework that partitions the domain of MIP
by using concepts derived from recently developed primal heuristics. Primal
heuristics are methods which are used in the course of branch-and-bound to find
good feasible solutions; examples include LP-and-fix, RINS, and local branching.
By using primal heuristic methods both to define subproblems and to generate
complementary cuts, we partition the feasible region at a high level into a set of
subproblem MIPs that can be solved simultaneously in parallel.

The rest of the this paper is organized as follows: in section 2 we describe
primal heuristics. In section 3 we sketch the whole view of the parallel MIP solver
framework that we propose. Section 4 gives some notes about the implementation
of the framework and some numerical results, and section 5 concludes the paper.

2 Primal Heuristics

Finding feasible solutions for mixed integer programs is important for at least
two reasons: 1) for many applications identifying a good feasible solution is the
primary goal of the MIP model; and 2) a feasible solution provides the branch-
and-bound algorithm with an upper bound (considering a minimization problem)
which accelerates the pruning process of a branch-and-bound algorithm.

Generally primal heuristics fall into two categories: construction heuristics
and improvement heuristics. Construction heuristics try to produce a feasible
solution from scratch. Improvement heuristics try to improve a given solution
(or set of solutions) to find a better feasible solution. Here we briefly review some
commonly used, powerful heuristics.

2.1 LP-and-FIX

This heuristic is very simple and is conceptually related to diving. Given a
branch-and-bound tree node, the idea is to explore a sub-space defined by the
current linear programming relaxation (LP) solution of the node. To do this
we look at the LP solution and fix those integer variables that happen to take
integral values in the relaxation solution. I.e., if the MIP problem is

(P) min(x,y)∈Rn×Rp cx + fy
s.t. Ax + Gy ≥ b

x ≥ 0, y ∈ {0, 1}p ,

let the the LP relaxation solution be (x̂, ŷ). The LP-and-FIX problem is

(LP − FIX) min(x,y)∈Rn×Rp cx + fy
s.t. Ax + Gy ≥ b

x ≥ 0, y ∈ {0, 1}p

yj = ŷj for all j with ŷj ∈ {1, 0} ,

A Parallel Macro Partitioning Framework 345

2.2 Relaxation Induced Neighborhood Search (RINS)

Another highly useful primal heuristic is RINS [3], which can be seen as the
improvement analog of LP-and-fix. Here we explore a sub-space defined by fix-
ing those integer variables that take the same value in both the LP relaxation
solution and a MIP feasible solution. Again letting (x̂, ŷ) be and LP relaxation
solution, and letting (x̄, ȳ) is a MIP feasible solution for the problem. the RINS
problem is

(RINS) min(x,y)∈Rn×Rp cx + fy
s.t. Ax + Gy ≥ b

x ≥ 0, y ∈ {0, 1}p

yj = ȳj for all j with ȳj = ŷj .

2.3 Local Branching

Another type of improvement primal heuristic is Local Branching. In this heuris-
tic we try to search a neighborhood around a MIP feasible solution. To do this
search first an integer k is chosen. Then the neighborhood around a MIP feasible
solution is defined as those y vectors that do not differ from the MIP feasible
solution in more than k coordinates. As a result the local branching problem is
defined as follows:

(LocalBranching) min(x,y)∈Rn×Rp cx + fy
s.t. Ax + Gy ≥ b

x ≥ 0, y ∈ {0, 1}p
∑

j:ȳj=0

yj +
∑

j:ȳj=1

(1 − yj) ≤ k .

3 The Parallel Macro Partitioning (PMaP) Framework

Here we explain the Parallel Macro Partitioning (PMaP) framework and its
elements. We assume we have n processors, and we will discuss the work each
processor does. We also have some data pools in the framework which can be
considered as simple databases. We will briefly explain these pools in this section.

3.1 Processors

Brancher Processor. This processor generates subproblems and partitions the
feasible region of the MIP. The brancher starts solving the MIP using branch-
and-bound algorithm. At each node of the branch-and-bound tree, if there exists
any MIP feasible solution in the pool of feasible solutions, the brancher gener-
ates a RINS problem and puts it in the subproblem pool. Then it adds the
complement of the RINS cut (1) to the problem that it is solving:

∑

j∈S0

yj +
∑

j∈S1

(1 − yj) ≥ 1 (1)

346 M. Namazifar and A.J. Miller

S0: Set of variable indices with value of 0 for the variable in the feasible solution.
S1: Set of variable indices with value of 1 for the variable in the feasible solution.

This cut guarantees that the part of the feasible space which is being processed
in this RINS problem won’t overlap with the problem which the brancher is
solving. If there is no feasible solution in the feasible solution pool, the brancher
generates a LP-and-FIX problem, puts it in the subproblem pool, and adds the
complement of the LP-and-FIX cut

∑

j∈S0

yj +
∑

j∈S1

(1 − yj) ≥ 1 (2)

S0: Set of variable indices with value of 0 in the LP relaxation solution.
S1: Set of variable indices with value of 1 in the LP relaxation solution.

The same process is done for Local Branching, and both new subproblems
and complement cuts are generated at each node of branch-and-bound tree.

The primary purpose of the brancher is not to find feasible solutions, but
rather to quickly create work for the worker processors. However, the brancher
may well find feasible solutions during the branch-and-bound process. Whenever
it finds a feasible solution, it writes it into the feasible solutions pool.

Worker Processors. They are n−2 processors that solve subproblems that are
assigned to them using a branch-and-cut algorithm. During the solution process,
they frequently check the feasible solution pool to see if any new solution has
been found by other processors. If so, they update their cutoff value. Whenever
they find a feasible solution they write it to the feasible solutions pool, and when
they finish solving a subproblem, they send a message to the assigner processor
to let it know that they are idle.

Assigner Processor. This processor looks for new subproblems in the feasible
solutions pool. It also keeps track of the status of worker processors (busy or
idle). As soon as a new subproblem appears in the subproblem pool, the assigner
gets that and looks at the status of the workers. If there is an idle worker, the
assigner gives the subproblem to the worker to solve. Otherwise, it waits until
one of the workers declares that it is free.

3.2 Data Pools

Sub-problem Pool. All the subproblems generated by the brancher processor
go to this pool. As was described earlier, the subproblems wait here until they
are assigned to a worker processor to be solved.

Feasible Solution Pool. All the feasible solutions found by the brancher and
worker processors are put here to be shared between all the processors. The
brancher uses them to update it’s cutoff value and generate subproblems. Work-
ers use them to update their cutoff value.

A Parallel Macro Partitioning Framework 347

4 Implementation and Numerical Results

4.1 Implementation

We have implemented PMaP using the free MIP solvers MINTO [6] and Coin-
Cbc [1]. The brancher is implemented using MINTO and the workers are im-
plemented using Coin-Cbc. The communication between the processors is done
using either MPI (Message Passing Interface) or text files. The feasible solutions
and subproblems pools are basically text files. We have currently implemented
RINS and LP-and-FIX subproblems and cuts; we intend to implement local
branching subproblems and cuts in the very near future. In general, PMaP is
still at a preliminary stage, and we expect that we will be able to significantly
improve its results in the very near future.

4.2 Results

Here we present the result of runs of PMaPon some of hard problems fromMIPLIB
2003 (http://miplib.zib.de/miplib2003.php). As a benchmark, we use paral-
lel CPLEX 10. The runs were performed on the Datastar machine in the San Diego
Supercomputer Center (http://www.sdsc.edu/us/resources/datastar/). Be-
cause of the multi-threaded nature of parallel CPLEX, we could run it on at most
32 processors (maximum number of processors with shared memory) on Datas-
tar. For fair comparison, we used the same number of processors for PMaP. Each
instance ran for 30 minutes and Table 1 shows the best feasible solution each
solver could find. As suggested by the table, the performance of PMaP is com-
petitive with that of parallel CPLEX. This is significant, since serial CPLEX
significantly outperforms serial Cbc on a single machine.

Table 1. The best feasible solution found by PMaP and parallel CPLEX 10 using 32
processors over 30 minutes

Problem CPLEX PMaP Optimal Solution

glass4 1.60001e+09 1.65000e+09 1.20001e+09

markshare1 7 4 1

markshare2 25 16 1

portfold -20 -21 -31

atlanta-ip - 95.0098 90.0099

sp97ar 6.62541e+08 6.8753e+08 ?

seymor 425 425 423

danoint 65.6667 65.6667 65.6667

dano3mip 698.6296 709.9629 ?

swath 730.1 577.367659 467.407

net12 255 - 214

http://miplib.zib.de/miplib2003.php
http://www.sdsc.edu/us/resources/datastar/

348 M. Namazifar and A.J. Miller

5 Conclusions

Our initial results suggest that PMaP is competitive with state-of-the-art com-
mercial parallel softwares on the same architecture, even though PMaP itself is
written entirely using open source code. Moreover, PMaP can, in principle, make
use of hundreds or even thousands of processors simultaneously, and we intend to
test its performance on truly massively parallel systems in the very near future.
In addition, we expect that further development of PMaP will only enhance its
performance. For example, the use of local branching subproblems and cuts may
considerably enhance its performance. Moreover, it will likely be possible to use
concepts of evolutionary methods (similarly to [9]) to quickly define even more
subproblems that can simultaneously improve a upon a set of feasible solutions.

References

1. Coin-or project, https://projects.coin-or.org/Cbc
2. CPLEX. CPLEX User’s Manual. CPLEX: a division of ILOG, Version 10 (2005)
3. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods

to improve MIP solutions. Mathematical Programming Series A 102, 71–90 (2005)
4. Gendron, B., Crainic, T.G.: Parallel brach-and-bound algorithms: Survey and syn-

thesis. Operations Research 42, 1042–1066 (1994)
5. Ladányi, L., Ralphs, T.K., Trotter Jr., L.E.: Branch, cut, and price: Sequential and

parallel. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimiza-
tion. LNCS, vol. 2241, pp. 223–260. Springer, Heidelberg (2001)

6. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.: Functional description of
MINTO, a mixed integer optimizer. Operations Research Letters 15, 47–58 (1994)

7. Dash Optimization. Xpress optimizer (2008), http://www.dashoptimization.com/
8. Ralphs, T.K., Ladanyi, L., Saltzman, M.J.: Parallel branch, cut, and price for large-

scale discrete optimization. Mathematical Programming 98, 253–280 (2003)
9. Rothberg, E.: Exploring relaxation induced neighborhoods to improve MIP solu-

tions. INFORMS Journal on Computing 19, 1060–0189 (2007)

https://projects.coin-or.org/Cbc
http://www.dashoptimization.com/

Guiding Stochastic Search by Dynamic Learning

of the Problem Topography

Yehuda Naveh

IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel
naveh@il.ibm.com

Abstract. We study experimentally the effect of dynamic learning of
the problem topographic characteristics on stochastic search.

1 Introduction

In this short paper we present experimental results showing that a general-
purpose stochastic solver can be beneficially guided by dynamic learning of the
topographic characteristics of the search space. We show that those character-
istics are a property of the problem (and not of a particular run), and that
different problems feature distinctively different characteristics.

2 Results

We study a few constraint-satisfaction and optimization problems taken from
different domains. For each problem, we list the set of variables and the set of
constraints used to model the problem. Each constraint is associated with a cost
function. The cost of the problem on a particular state of variables is the sum
of costs of constraints acting on those variables.

The experiments were conducted in the following manner: On each problem,
we ran SVRH (Simulated Variable Range Hopping [1]) which is a general-purpose
hill-climbing algorithm used by IBM’s stochastic constraint solver Stocs. The
main feature of SVRH relevant to this work is that it checks complete assign-
ments which are, a-priori, at an arbitrary distance from the current complete
assignment. We call such a check an ’attempt’, and the distance of the checked
assignment from the current one is the ’attempt size’. If the checked assignment
is of lower cost than the current assignment then the attempt is ’successful’,
otherwise it is ’unsuccessful’.

For each problem, we plot the number of successful attempts as a function
of the attempt size. This defines the characteristic step sizes for the problem,
or its ’signature’. The results are obtained with the ’domain knowledge’ and
’learn’ features of SVRH turned off, so they represent the actual, unbiased,
successes of attempts. At the end of the section, we compare runtime of Stocs
on several problems, with the ’learn’ feature turned off and on. All experiments
were performed on a single-core Intel (TM) 3GHz PC running Red-hat Linux.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 349–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

350 Y. Naveh

Social Golfer: This is problem 10 from CSPLib. Given number of weeks W ,
number of groups n, and group size k, we define nW variables, each a bit-string
of length kn. The on-bits of each variable represent all persons playing in a given
group at a given week. The constraints are: (1) nW unary constraint on each of
the variables, forcing the number of on-bits non to be exactly k. Cost function
is |non − k|; (2) W n-ary constraints, each operating on the set of variables
corresponding to a given week, forcing that all golfers be present in at least
one group. Cost function is number of off-bits in the bitwise-OR of the set of
variables; and (3) nW (nW − 1)/2 binary constraints on each pair of variables,
forcing that the scalar product between the variables is equal or less than 1. Cost
function is max(V1 · V2 − 1, 0). Results for this model are presented in Fig. 1.
In this and the subsequent figures, attempt size is measured as the number of
bit-flips realizing the attempt, i.e. the Hamming distance between the current
state and the checked state.

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 S

uc
ce

ss
es

Attempt Size

Social Golfer Problem

7 Groups
6 Golfers per Group
4 Weeks

93 million attempts
4.7 million attempts
4.6 million attempts

Fig. 1. Successful attempts for the social
golfer problem

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

N
um

be
r

of
 S

uc
ce

ss
es

Attempt Size

Car Scheduling Problem
Instance pb_200_10

Standard Model, 11M Attempts
Flexible Classes Model, 11M Attempts

Fig. 2. Successful attempts for the two
models of the car scheduling problem

A striking conclusion can be drawn from Fig. 1. Namely, the characteristic
step size is a solid property of the problem, and is not related to the particular
run of the algorithm. This is manifested in two ways. First, the curves of two
different runs with the same number of attempts almost coalesce. Second, even
when we raise the number of attempts by more than an order of magnitude, the
characteristic length scale for escape remains the same — at around 20. We show
below that this conclusion is indeed general: Even though the success curves of
different problems behave very differently, the curve for each particular problem
is highly reproducible.

From a practical point of view, this means that for this problem instance there
is absolutely no sense in attempting step sizes larger than 20. On the other hand,
when stuck in a persistent local minima, step sizes of the order of 15-20 must be
tried in order to escape.

Car Scheduling: This is problem 1 from CSPLib. We define a series of N
variables Vq (1 ≤ q ≤ N), each representing an individual car, ordered in a
sequence. Each variable is a bit-string of length k, where bit i is on iff the

Guiding Stochastic Search by Dynamic Learning of the Problem Topography 351

car requires option i. The constraints on these variables are: (1) One N -ary
constraint, forcing the number of cars in each class j to be equal to nj . Cost
function of the constraint is F

∑
j |aj − nj | where aj is the actual number of

cars having the options of class j under the current state. F is a flexibility
factor discussed below; and (2) k N -ary constraints, each forcing the sequence
of variables to adhere to the capacity of the corresponding option. Cost function
is

∑N
p=1 max

(∑min(p+li−1,N)
q=p Vq,i − mi, 0

)
, where i is the option tied to the

constraint, and Vq,i is the value of bit i of variable q.
In the first, “standard”, model we take F → ∞, meaning that the number of

cars in each class remains fixed throughout the search. In the second, “flexible
classes” model, F = 1. Then search proceeds through states which violate either
the capacity constraints, or the constraints on the number of cars per class, or
both. Both models describe equivalent CSP’s (because they are identical when no
constraint is violated), but distinct optimization problems (for infeasible prob-
lems, the optimal solution may be different for the different models).

Results for the two models are shown in Fig. 2. In the standard model, only
even step-sizes are possible, meaning that the topography is characterized by
a checker-board pattern, with single-bit local minima separated by single-bit
barriers in all principal directions. It may take a while to infer this topography
directly from the model, and so the automatic learning is crucial here when using
a general-purpose solver. The second model is characterized by a very different
topography, reminiscent of the ’social-golfer’ topography (Fig. 1), but with a
significantly smaller cutoff value (6 instead of 20).

Low Autocorrelation Binary Sequence (LABS): This is problem 5 from
CSPLib. We define a single variable V , represented by a bit-string of length N .
The constraints on these variables are: N −1 unary constraints, each forcing the
corresponding correlator to vanish. Cost function of the k’th constraint is C2

k ,
where Ck =

∑n−k−1
i=0 sisi+k, si = 2Vi − 1, and Vi is the value of the ith bit of V .

Results are shown in Fig. 3. Two features are immediately observed. First,
the characteristic curves are dramatically different than those of the social-golfer
and car-sequencing problems. In fact, there is no step-size cutoff in the LABS
problem, and cost-reducing steps are observed on all length scales. Second, the
curves of the two different runs virtually coalesce (though, by examining the
actual data, one sees that they are not identical). This implies that even the finest
structures of the characteristic curves, such as the small cusp around attempt
size of 12, should not be treated as noise, and are a result of some distinct feature
of the problem’s topography.

Floating Point Unit Verification: This is an industrial problem described in
detail in [1,2]. We define two variables V1 and V2, represented as bit-strings of
length N . Given a mask M defining a set of bits fixed to either 0 or 1, and a
number k, we add the following constraints: (1) Two unary constraints forcing
V1, V2 to have exactly k bits on, with cost |non − k|, where non is the number of
on-bits; and (2) One binary mask constraint on the product of the two variables,

352 Y. Naveh

1000

10000

100000

5 10 15 20 25 30 35 40

N
um

be
r

of
 S

uc
ce

ss
es

Attempt Size

LABS Problem

N = 45

First Run, 77M Attempts
Second Run, 77M Attempts

Fig. 3. Successful attempts for two runs
of the LABS problem with N = 45

1

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 S

uc
ce

ss
es

Attempt Size

Floating Point Verification Problem
N = 64

10M Attempts, First Run
10M Attempts, Second Run

100M Attempts

Fig. 4. Successful attempts for the float-
ing point verification problem

forcing A = V1 × V2 to be masked by M, with cost
∑

i|i is a maskedbit |Ai − Mi|,
where Ai is the value of the ith bit of A, and Mi the value fixed by M for bit
i. Results are shown in Fig. 4 for the parameters N = 64, k = 10, and M
= 11110000xxxxxxxx11110000xxxxxxxx11110000xxxxxxxx11110000xxxxxxxx,
where ’x’ in M signifies an unconstrained bit. The results appear quite simi-
lar to those of the flexible model of the car-sequencing problem. Once again, we
see that the results are robust to different runs on the same problem, and the
inferred cutoff length-scale is practically independent of the absolute number of
attempts.

Random Expression Problems: [3] introduced the concept of random-
expression CSP’s. It argued the this form of randomness can emulate real-world
problems more realistically than random-table CSP’s, while still maintaining all
the benefits of a random ensemble. One ensemble of random-expression prob-
lems, corresponding to a particular random grammar was provided at
http://www.haifa.il.ibm.com/projects/verification/octopus/random/.

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 n
um

be
r

of
 S

uc
ce

ss
es

Attempt Size

Random Expression Problem

compound probability 0.4, 50 variables, domain [0,5]
compound probability 0.4, 50 variables, domain [0,10]
compound probability 0.4, 25 variables, domain [0,10]

compound probability 0.1, 50 variables, domain [0,10] (two runs)

Fig. 5. Successful attempts for the random ex-
pression problem. The y-axis is normalized to
all successes (see text).

Fig. 5 shows results on prob-
lems from this ensemble. In con-
trast to the previous results, here
different curves correspond to runs
on different problems, not to dif-
ferent runs on the same problem.
The key in the figure specifies the
compound probability of each run
(i.e., the probability of following a
rule which creates a compound for-
mula, rather than an atomic for-
mula), the number of variables,
and the domain of all variables.
The number of constraints was 50
in all runs. Two runs on the same
problem (P = 0.1, |V | = 50, D = [0, 10]) are also shown.

Guiding Stochastic Search by Dynamic Learning of the Problem Topography 353

The y-axis in Fig. 5 shows the normalized number of successes, which is the
number of successes at each attempt size, divided by the total number of suc-
cesses. For the hardest problems, total number of attempts was around two
million, and the total number of successes around ten thousand. Those numbers
were an order of magnitude smaller for the easier problems.

What is remarkable about the results of this sub-section is that even though
the random expression problems are significantly different from each other, their
signatures appear to be more or less the same. In some way, this is a little
disappointing because in [3] it was postulated that different instances of the
random grammar may emulate different real-world problems. Here we see that
this in not the case, at least for the grammar presented in the above URL. On
the other hand, the results here again confirm the main point of this paper,
namely that similar problems have a similar signature. We still suggest that
different random grammars (as opposed to the same grammar with different
random parameters) can produce distinctively different problems, but this needs
to be verified in a more comprehensive work on random grammars.

Comparison: We present a comparison between results obtained by SVRH run-
ning with learn and without learn. The results obtained with learn are identical
to those of [1]. In the experiments without learn, everything was kept identical to
the experiments with learn, including the availability of domain knowledge [1],
even though domain knowledge was disabled in the experiments of the previous
subsections. When learning was disabled, each time the algorithm needed to cre-
ate a “learned” attempt, it instead chose a random attempt with size 1, 2, 3, or
4 with probability 0.5, 0.3, 0.15, 0.05, respectively. The results are summarized
in Tables 6 and 7.

learn enabled learn disabled

Instances solved 133 35

Average solution time 0.97 sec 12.1 sec

Fig. 6. Results on floating-point verification
benchmark with 133 instances. Time-out is 1
minute.

N learn enabled learn disabled

45 1.32 hours time-out

46 1.74 hours time-out

47 2.35 hours time-out

Fig. 7. Results on three in-
stances of LABS problem.
Time-out is 24 hours.

3 Conclusions

We have studied the effect on stochastic search of learning the high-level char-
acteristics, or signatures, of the cost-function-induced topography representing
CSPs and optimization problems. We have shown that different problems have
well-defined and distinct characteristics, and learning these characteristics may
have a drastic positive effect on the ease of solvability by general-purpose stochas-
tic solvers. This work complements and reinforces the modern body of work on

354 Y. Naveh

hyper-heuristics [4], in which general-purpose solvers are enhanced with a capa-
bility to dynamically learn and decide the suitable heuristics for a given specific
problem.

References

1. Naveh, Y.: Stochastic solver for constraint satisfaction problems with learning of
high-level characteristics of the problem topography. In: Proceedings of the 1st In-
ternational Workshop on Local Search Techniques in Constraint Satisfaction (LSCS
2004). (2004)

2. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Maga-
zine 28, 13–30 (2007)

3. Sabato, S., Naveh, Y.: Preprocessing expression-based constraint satisfaction prob-
lems for stochastic local search. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR
2007. LNCS, vol. 4510, pp. 244–259. Springer, Heidelberg (2007)

4. Burke, E.K., Kendall, G.N., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
Heuristics: An Emerging Direction in Modern Search Technology. In: Handbook of
Meta-Heuristics, pp. 457–474. Springer, Heidelberg (2003)

Hybrid Variants for Iterative Flattening Search

Angelo Oddi1, Amedeo Cesta1, Nicola Policella2, and Stephen F. Smith3

1 Institute for Cognitive Science and Technology, CNR, Rome, Italy
{angelo.oddi,amedeo.cesta}@istc.cnr.it

2 European Space Agency, Darmstadt, Germany
nicola.policella@esa.int

3 Carnegie Mellon University, Pittsburgh, PA, USA
sfs@cs.cmu.edu

1 Introduction

Iterative Flattening Search (IFS) [1] is an iterative improvement heuristic schema for
makespan minimization in scheduling problems. Given an initial solution, IFS itera-
tively interleaves a relaxation-step, which randomly retracts some search decisions, and
an incremental solving step (or flattening-step) to recompute a new solution. The pro-
cess continues until a stop condition is met and the best solution found is returned. In
two subsequent works the performance of the original IFS procedure has been improved
through refinements of the basic search schema. [2] proposes a simple and effective
extension of IFS, which iterates the relaxation step multiple times. The resulting algo-
rithm found many new upper bounds for the reference benchmark of Multi Capacity Job
Shop Scheduling (MCJSSP) problems and produced solutions within 1% of the best up-
per bounds on average. Additional optimal solutions and improvements were obtained
in [3]: this approach follows the IFS schema using different engines for the flattening
and relaxation steps. In this paper we combine basic ‘component’ strategies to obtain
hybrid variants (until now, no attempt has been made in this direction) and perform
a detailed experimental evaluation of their performance. Specifically, we examine the
utility of: (1) operating with different relaxation strategies; (2) using different search-
ing strategies to built a new solution. We present a two-step experimental evaluation:
(a) an extensive explorative evaluation with a spectrum of parameter combination; (b) a
time-intensive evaluation of the best IFS combinations emerged from the previous. The
experimental results shed light on weaknesses and strengths of the different variants
improving the current understanding of this family of meta-heuristics.

2 Iterative Flattening Search

Figure 1 shows the IFS algorithm which alternates Relaxation and Flattening steps un-
til a better solution is found or a maximal number of iterations is executed. The pro-
cedure takes two parameters as input: (1) an initial solution S; (2) a positive integer
MaxFail, which specifies the maximum number of non-makespan-improving steps
that the algorithm will tolerate before terminating. After initialization (Steps 1-2), a
solution is repeatedly modified within the while loop (Steps 3-9) by the application
of the RELAX and FLATTEN procedures. In the case that a better makespan solution
is found (Step 6), the new solution is stored in Sbest and the counter is reset to 0.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 355–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 A. Oddi et al.

IFSSEARCH(S,MaxFail)
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S)
5. S ←FLATTEN(S)
6. if Mk(S) < Mk(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else counter ← counter + 1
10. return (Sbest)

Fig. 1. The IFSSEARCH general schema

Otherwise, if no improvement is found
after MaxFail moves, the algorithm
terminates and returns the best solu-
tion found. In this work we consider an
uniform framework to combine and ex-
perimentally evaluate different IFS strate-
gies. A preliminary introduction of the
framework is given in [4]. Specifically,
in the following we examine the utility
of (1) operating with different relaxation
strategies, one targeted to remove deci-
sions on the solution critical path and an-
other one that considers all decisions as candidates for retraction; (2) using different
strategies for constructing a new solution, one posting precedence constraints among
the activities and another one based on setting activity start times.

Given a solution S, a Relaxation procedure transforms a feasible schedule into a
possibly resource infeasible, but temporally feasible, by removing some search deci-
sions. We have considered two of these strategies. The first one, used in [1,2], removes
at random precedence constraints between pair of activities on the critical path of the
solution, hence is called cp-based relaxation. This procedure takes as input the proba-
bility pr of removing a decision on the critical path and the number of time (MaxRlxs)
the process is iterated on the current critical path. The second procedure, introduced in
[3], starts from a solution S represented as a Partial Order Schedule (POS). Roughly
speaking, in a POS solution activities which require the same resource units are linked
via precedence constraints into precedence chains. Given this structure, each prece-
dence constraint represents a producer-consumer relation, allowing each activity ‘to
know’ the set of predecessors that supply the units of resource it requires for execution.
In this way, the resulting network of chains can be interpreted as a flow of resource
units through the schedule; each time an activity terminates its execution, it passes its
resource unit(s) on to its successors. The relaxation procedure randomly selects some
activities with probability pr and breaks some of its chains by removing the activities
from the created resource flows (hence the name chain-based relaxation).

We have implemented two general solution schema. First, the flattening step used in
[1], Precedence Constraint Posting Search or PCPS, is inspired by prior work on the
Earliest Start Time Algorithm (ESTA). The algorithm is characterized by a two-phase
solution generation process. The first step constructs an infinite capacity solution. The
second step levels resource demand by posting precedence constraints. Resource con-
straints are super-imposed by projecting “resource demand profiles” over time. Detected
resource conflicts are then resolved by iteratively posting simple precedence constraints
between pairs of competing activities. The second solving procedure, Set Start Time
Search or SSTS, is based on the idea of searching the set of possible assignments to the
activity start-times. In particular, our implementation of SSTS can be seen as a serial
scheduling schema adopting the latest finish time (LFT) priority rule, which branches
the search on the possible earliest start times. Both the procedures are implemented
as a depth-first backtracking search using an input parameter α, which is used to limit

Hybrid Variants for Iterative Flattening Search 357

the number of backtracking steps. In particular, the procedures return the solution found
with minimal makespan, within αn steps, where n is the number of problem’s activities.

Search Variants. At present we are working at uniformly evaluating strengths and
weaknesses of the single IFS component strategies proposed so far. According to this
idea we propose the following IFS procedures:

– Two procedures based on PCPS search, one uses the critical-path relaxation –
named PCPS+CPRELAX – and another one that uses the chain-based relaxation
– named PCPS+CHAINRELAX.

– Two IFS procedures based on SSTS search, each of them using different relaxation
schema hence called SSTS+CPRELAX and SSTS+CHAINRELAX.

– A new IFS procedure – called PCPS+COMBORELAX – which combines PCPS and
a relaxation phase that mixes the two relaxation options: this procedure uses the
chain-based relaxation, except when an improved solution is found within the IFS
loop (Step 6 in Fig. 1). In this case, the relaxation procedure is temporary switched
to CPRELAX.

– A new IFS procedure – called SSTS+COMBORELAX – which coincides with the
previous one, but uses the SSTS search procedure.

It is worth reminding that the first four IFS strategies, combines already known proce-
dures. Alternatively, the last two procedures propose new algorithms.

3 Experimental Analysis

We consider the Multi-Capacity Job-Shop Scheduling Problem, MCJSSP, as a basis for
evaluating the performance of our search procedures. In the analysis below we refer to
the benchmarks used also in previous works (benchmark of 80 problems subdivided in
Sets A, B, C and D with a number of activities ranging from 100 to 900). We conducted
a two-step experimental evaluation. First, we performed an explorative evaluation on
Set C (a quite representative subset of the MCJSSP instances with a number of activities
ranging from 300 to 600). This phase aims at selecting the best variants and parameters
for the second phase. The second more intensive set of experiments is performed on
the whole benchmark. All algorithms were implemented in Allegro Common Lisp and
were run on a Pentium 4 processor 2.6 GHz, under Linux.

Explorative Experiments. The settings for the IFS strategies used at this stage were
the following: (1) for both PCPS and SSTS, different amounts of backtracking were
considered by setting α to the percentage values α ∈ {0, 5, . . . , 30} – for example,
the value 10 means that the procedure executes a maximum number of backtracking
steps equal to 10% of the number of problem’s activities; (2) the probability values
pr for the critical-path relaxation and the chain-based relaxation strategies were set
to the same percentage values pr ∈ {10, 15, 20}; (3) the parameter MaxRlxs was
set to MaxRlxs = 6 for the critical-path based relaxation; (4) a 400 second timeout
values was imposed for each problem instance; (5) for each strategy we set MaxFail =
3200 (the maximum number non improving steps that the algorithm tolerates before

358 A. Oddi et al.

Table 1. Set C – preliminary experiments

α
PCPS SSTS

pr = 10 pr = 15 pr = 20 pr = 10 pr = 15 pr = 20
0 9.4 9.2 8.7 15.4 15.4 16.4
5 6.8 6.5 6.8 16.0 16.3 16.3
10 7.3 6.2 6.3 16.8 16.3 15.9

CPRELAX 15 6.9 6.6 6.4 15.5 15.7 16.3
20 7.3 6.0 6.4 16.1 16.2 16.9
25 7.2 6.6 6.9 15.8 15.5 15.3
30 6.8 6.7 6.7 16.7 15.9 15.8
0 5.8 6.9 8.3 15.5 16.1 15.1
5 3.0 3.8 5.4 15.7 15.1 15.1
10 2.8 3.9 5.4 14.8 15.8 15.0

CHAINRELAX 15 2.6 3.4 5.3 15.1 15.2 14.7
20 2.5 3.4 5.3 14.5 14.5 15.3
25 2.5 3.5 5.5 15.7 15.1 15.0
30 2.6 3.9 5.2 14.8 15.2 14.4
0 5.7 6.8 8.3 15.4 16.3 15.2
5 3.0 4.1 5.5 14.8 14.4 15.1
10 3.0 4.3 5.1 15.8 15.8 15.6

COMBORELAX 15 2.1 3.4 5.7 15.2 15.2 15.5
20 2.7 3.6 4.9 15.1 15.1 14.9
25 2.6 3.3 5.1 14.7 14.7 14.6
30 2.5 3.4 5.1 15.0 15.0 15.4

termination). Table 1 compares the performance of the proposed IFS strategies with
respect to the value ΔLWU%, which represents the average percentage deviation from
the Lawrence upper bound. In particular, given a numeric value in the table (for example
2.1), the corresponding IFS strategy is given by reading the column’s label (PCPS or
SSTS – the solving strategy), and the row’s label (one among CPRELAX, CHAINRELAX

or COMBORELAX – the adopted relaxation strategy). Hence, within the identified sub-
table, given the numeric value, we have the corresponding values for the parameters
α and pr (for example, performance value 2.1 is obtained by using the combination
PCPS+COMBORELAX with values α = 15 and pr = 10).

The results in Table 1 show evidence of the fact that, within the same computational
framework, PCPS search performs better than SSTS. CHAINRELAX variants perform
much better than CPRELAX. A possible explanation of the latter trend is that critical-
path relaxation is more targeted to directly reduce the makespan of a solution becoming
more prone to be trapped in local minima. On the contrary, the chain-based relaxation
removes activities independently from the critical path, hence its search has an inher-
ently higher degree of diversification that explains the better performance observed.
COMBORELAX performs slightly better than CHAINRELAX and the best performance
is obtained by combining PCPS and COMBORELAX (value 2.1 obtained with α = 15
and pr = 10). This is a first confirmation of the intuition behind the definition of COM-
BORELAX. That is, the use of a critical path relaxation has the function of converging
more quickly to a local minima when the default chain-based relaxation strategy has
driven the search close to a local minima. For this reason in PCPS+COMBORELAX,
the improvement of the objective function is used, within the IFS loop, to trigger the
critical-path based strategies.

Hybrid Variants for Iterative Flattening Search 359

Table 2. ΔLWU% values on the complete benchmark

Set A Set B Set C Set D All
PCPS + CHAINRELAX -0.13 -1.62 0.81 0.43 -0.12
PCPS + COMBORELAX -0.11 -1.66 0.48 0.23 -0.26

Intensive Experimentation. We use the settings which give the best results in the pre-
liminary analysis, that is we have chosen the parameters α = 15 and pr = 10 (as
above, we use the same parameter pr for both the relaxation strategies), we imposed
a timeout of 3200 seconds for each problem instance, and for each strategy we set
MaxFail = 3200. The results shown in Table 2 reasonably confirm the behavior found
in the first phase. In fact, in average (column All) the hybrid schema COMBORELAX

outperforms the chain-based relaxation strategy.
However, we can notice some differences when we consider the results for each sub-

set (A, B, C, and D) separately. In particular, CHAINRELAX outperforms COMBORE-
LAX on the Set A, the subset with the smallest problem sizes (they range from 100
to 225 activities). COMBORELAX maintains a positive advantage on each of the other
subsets, the maximum gap is for the set C and D (0.81 vs. 0.48 and 0.43 vs. 0.23).
Our explanation is that for the Set A (and also B), after 3200 seconds of run-time the
behavior of the algorithm PCPS+CHAINRELAX and PCPS+COMBORELAX enters into
a stable phase, where they show similar performance, whereas for the more challeng-
ing and greater in size problems, the algorithms are still in a transient phase, where
COMBORELAX maintains a performance advantage on CHAINRELAX.

4 Conclusions

This paper presents our current results on a framework to combine and experimentally
evaluate different IFS strategies. It specifically examines the utility of: (i) operating
with different relaxation strategies; (ii) using different strategies to built a new solution.
The presented experimental results clarify some weaknesses and strengths of the ideas
proposed over the past years and suggest new effective and efficient IFS procedures.
From the current experimentation we have empirical evidence of the fact that within the
same computational framework PCPS search performs better than SSTS and the best
performing procedures are PCPS+CHAINRELAX and PCPS+COMBORELAX. In a fu-
ture work, we will consider a more sophisticated version for the solving strategy SSTS
and plan to study the effect of constraint propagation within the considered backtrack-
ing search procedures.

Acknowledgments. Amedeo Cesta and Angelo Oddi’s work is partially supported CNR
under RSTL funds 2007. Nicola Policella is currently supported by a Research Fel-
lowship of the European Space Agency, Human Spaceflight and Explorations Depart-
ment. Stephen F. Smith’s work is supported in part by the Department of Defense
Advanced Research Projects Agency under contract #FA8750-05-C-0033 and by the
CMU Robotics Institute.

360 A. Oddi et al.

References

1. Cesta, A., Oddi, A., Smith, S.F.: Iterative Flattening: A Scalable Method for Solving Multi-
Capacity Scheduling Problems. In: AAAI/IAAI. 17th National Conference on Artificial Intel-
ligence, pp. 742–747 (2000)

2. Michel, L., Van Hentenryck, P.: Iterative Relaxations for Iterative Flattening in Cumulative
Scheduling. In: ICAPS 2004. Proceedings of the 14th International Conference on Automated
Planning & Scheduling, pp. 200–208 (2004)

3. Godard, D., Laborie, P., Nuitjen, W.: Randomized Large Neighborhood Search for Cumulative
Scheduling. In: ICAPS-2005. Proceedings of the 15th International Conference on Automated
Planning & Scheduling, pp. 81–89 (2005)

4. Oddi, A., Cesta, A., Policella, N., Smith, S.: Iterative Improvement Strategies for Multi-
Capacity Scheduling Problems. In: COPLAS 2007. Proceedings of CP/ICAPS Joint Workshop
on Constraint Satisfaction Techniques for Planning and Scheduling Problems (2007)

Global Propagation of Practicability Constraints

Thierry Petit and Emmanuel Poder

École des Mines de Nantes, LINA FRE CNRS 2729
Thierry.Petit@emn.fr, Emmanuel.Poder@emn.fr

Abstract. This article shows the advantages of a variable-based frame-
work for solving over-constrained problems with practicability constraints.
The case-study is a cumulative scheduling problem with over-loads.

1 Introduction

When a problem is over-constrained, the issue is to search for solutions that
remain feasible in practice despite some violations of constraints [13]. We con-
sider over-constrained cumulative scheduling problems. Experiments compare
the two usual frameworks for solving over-constrained problems as optimization
problems. The first one extends Constraint Programming (CP) to handle vi-
olations as valuations [4]. The second one express them by extra-variables in
the problem [11]. We provide three contributions: (1) A model for a cumulative
over-constrained problem with practicability constraints. (2) An extension of the
Cumulative constraint of Choco [6] to unsatisfiable problems. (3) Theoretical
and experimental comparisons of the two frameworks, in terms of solving.

Relaxed Cumulative Problem. An activity consumes an amount of resource,
has a release date (min. starting time) and a due date (max. ending time).

Definition 1. Given one resource R and a set A of n activities, each one con-
suming an amount of R, the Cumulative constraint [2] enforces: C1: ∀a ∈ A
origin(a)+duration(a)=end(a). C2: At each point in time i, cumulated height hi

of activities overlapping i is less than a limit max capa on R (the capacity).

We deal with human resource cumulative problems that may be relaxed w.r.t.
the capacity. The makespan m (max. due date) is fixed, making some instances
not satisfiable. Time unit is 1 hour. Each day has 7 hours. Durations of the n
activities are fixed, from 1 to 4 hours. Due dates are initially m, and release
dates are 0. An activity consumes a fixed amount of resource: the number of
persons used to perform it. The resource is upper-bounded by the total number
ideal capa of employees. Given that extra-employees can be hired or some ac-
tivities might be performed with smaller teams than the initial ones, to obtain
solutions the resource may exceed ideal capa at some points in time. However,
to remain feasible in practice, solutions must satisfy some rules w.r.t. over-loads.

1. At any point in time, an over-load should not exceed a given margin.
2. The total sum of over-loads should be reasonable (ideally minimum).

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 361–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

362 T. Petit and E. Poder

3. Practicability rule : At most 3 over-loaded hours by day, and among
them at most one over-load greater than 1 extra-employee.

4. Practicability rule : In two consecutive days, if the last hour of work is
over-loaded then the first hour of the next day should not be over-loaded.

Motivations. CP researchers have studied large over-loaded cumulative prob-
lems without practicability rules [3], a soft global constraint for unsatisfiable
one machine problems [1], and multi-objective relaxed time-tabling [13]. More
generally, when not all constraints can be satisfied, we search for a compromise
solution which satisfies as much as possible the constraints. This is an optimiza-
tion problem with a criterion on constraint violations. Some hard constraints
must be satisfied in any solution, whereas soft constraints which may be vio-
lated. Practicability rules specify solutions which have a practical interest.

� Extending CP. The first way to express an over-constrained problem is to
extend CP with an external structure, which handles relaxation of constraints [4].
The principle is to associate a valuation with each tuple of a constraint, which
is null when satisfied. Valuations are aggregated into optimization criteria. Soft
constraints are violation functions, hard constraints have an “infinite” valuation
for each violating tuple. Practicability rules are expressed by objective criteria.

� Handling Relaxation within the CP Framework. This approach consists of as-
sociating with each possible violation a new variable [11]. Usually integer vari-
ables are used. Values in the domain express different degree of violation for a
constraint. Such domains are maintained by classical constraints. Optimization
criteria are related to the whole set of violation variables. Practicability rules
can be expressed by (global) constraints, integrating several violation variables.

� Comparison. The use of extra-variables to express violations does not entail
any solving penalty when domains of possible values for violations are reduced
monotonically during search. All search heuristics used with valued paradigms [4]
can be used in variable-based paradigms [11]. All violation variables will have
then a value by propagation (branching is performed only on problem variables),
leading to the same search tree. For sake of modelling, two existing solving
techniques specific to valued frameworks would require some research effort to
be suited to our case-study. In the first one, solving is performed by variable
elimination [7]. This algorithm is currently not suited to global constraints like
Cumulative or its extensions. In the second one, valuations move from tuples
to values and vice versa [8]. Even in an objective function, we don’t know how
to define practicability rules if valuations can increase and decrease and do not
express over-loads.

� Motivations for an Experimental Comparison. Additionally to a global soft
constraint expressing the core of an over-constrained problem, our goal is to in-
vestigate whether propagating globally practicabillity constraints improves the
solving process or not.1 These external constraints depend on each specific prob-
1 The comparison of the variable-based and valued approaches in terms of modelling

was performed in [11].

Global Propagation of Practicability Constraints 363

rules

Global constraintsValuations

(cost functions)

Violation variables

Core of the problem

(e.g., global soft constraint) (e.g., global soft constraint)

Core of the problem

Optimization Criteria

expressing also praticabillity rules

Valued Model

Optimization Criteria

that express practicability

Variable−based Model

Fig. 1. Valuation-based and Variable-based models

lem, e.g, rules 3. and 4. in section 1. With a valuation-based encoding, practi-
cability can be expressed by the optimization function. With a variable-based
encoding, it is possible to use global constraints on violation variables.

2 Cumulative Constraint with Over-Loads

To add external practicability constraints on over-loads, it is mandatory to
discretize time, while keeping a reasonable time complexity for pruning. The
SoftCumulativeSum extends the Cumulative of Choco [6] by minimizing the
sum of over-loads variables, and by pruning activities according to upper bounds
of these variables instead of simply considering max capa.

Definition 2. The SoftCumulativeSum augments the Cumulative constraint
with a second limit of resource ideal capa ≤ max capa, with for each point in
time i < m an integer variable costV ar[i], and finally with an integer variable
cost. It enforces: C1 and C2 (see Definition 1), C3: For each time point i,
costV ar[i] ≥ max(0, hi−ideal capa)2 and C4: cost =

∑
i∈{0,...,m−1} costV ar[i].

Pruning techniques use a sweep algorithm, according to a cumulated profile build
from compulsory parts of activities [2], and task intervals [9,5]. Please see our
preliminary research report on this topic [10] for a detailed presentation of these
algorithms. The main steps are the following.

– Determine the current cumulated profile and prune starts of activities ac-
cording to this profile in order to avoid at any time i to be in excess of
ideal capa+max(D(CcostV ar[i])).3 The pruning is not complete but it is in-
dependent from the discretized points in time. Time complexity is O(n·log n).

– Update the minimum of costV ar variables while computing the cumulated
profile (no increase in complexity): at any time i, min(D(costV ar[i])) is
greater or equal to the height of the profile at time i minus ideal capa.

2 Moreover, it ensures that in ground solutions costV ar[i] = max(0, hi − ideal capa).
3 min(D(x) and max(D(x) are min. and max. values in the domain of variable x.

364 T. Petit and E. Poder

– (Back-)PropagateC4. Notably, update min(D(cost)) thanks to lower-bounds.
* LB1 is the sum of all min(D(costV ar[i])). Time complexity O(m).
* LB2 is a lower bound stemming from a energetic reasoning on intervals
deduced from the cumulated profile. LB2 improves LB1 by considering lower-
bounds of cost variable which are local to each interval. Time complexity is
O(n2 + n · m). Our experiments highlighted the main importance of LB2.

3 Variable-Based vs Valuation-Based Model

Here is the variable-based model in a pseudo-code syntax.

int[] ds, hs; // fixed random durations and heights

int ideal capa, max capa;

IntDomainVar[] start, costVar; IntDomainVar cost; // variables

// core of the problem

SoftCumulative(start, costVar, cost, ds, hs, ideal capa, max capa);

// practicability constraints

for each array "day", element of a partition of costVar[]:

Gcc4 ("day",...)); // rule 3 (max 3 over-loads)

AtMostKNotZeroOrOne("day",1)); // rule 3 (max 1 big over-load)

for(i:7..costVar.length-1): // rule 4 (consecutive days)

if(i%7==0): [costVar[i-1]==0 || costVar[i]==0];

// objective

minimize(cost)

Table 1. Number of nodes of optimum schedules with n = 10, m = 14, durations
between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa = 7

Instance cost value Valuation-based Model Variable-based Model
1 0 67 (0.08 s) 67 (0.01 s)
2 0 3151 (6.07 s) 74 (0.02 s)
3 5 372 (0.6 s) 117 (0.1 s)
4 0 2682 (4.4 s) 120 (0.03 s)
5 4 116 (0.1 s) 134 (0.1 s)
6 0 62 (0.01 s) 132 (0.04 s)
7 10 1796 (2.3 s) 694 (0.9 s)
8 4 391 (0.48 s) 352 (0.45 s)

The constraint AtMostKNotZeroOrOne imposes at most k values different from
0 or 1 into a set of variables. With valuations, rules 3. and 4. should be expressed
in the objective, since no violation variables are available, which may be com-
plex. We simulate this in a particular variable-based model. A valued model
expresses violations by functions that, given a tuple, return a valuation. Valu-
ations are aggregated in the objective. Given a set of valuations {v1, . . . , vl}, a
practibility rule answers ’yes’ or ’no’, to validate (or not) the current partial as-
signment. This can be simulated by implementing constraints that answer ’yes’
4 Global Cardinality Constraints [12] on subsets of costV ar.

Global Propagation of Practicability Constraints 365

Table 2. Number of nodes of optimum schedules with n = 15, m = 21, durations
between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa = 7

Instance cost value Valuation-based Model Variable-based Model
1 2 > 60 s 211 (0.34 s)
2 0 > 60 s 178 (0.08 s)
3 1 > 60 s 200 (0.12 s)
4 15 > 60 s 27 (0.04 s)
5 12 > 60 s 546 (2 s)
6 3 > 60 s 1875 (6 s)
7 6 2240 (11.4 s) 160 (0.12 s)
8 9 > 60 s 79 (0.06 s)

Table 3. Number of nodes of optimum one week schedules: n = 25, m = 35, durations
between 1 and 4, resource consumption between 1 and 3, ideal capa = 3, max capa = 7

Instance cost value Variable-based Model
1 3 858 (5.8 s)
2 0 627 (1.2 s)
3 - > 60 s
4 0 419 (0.6 s)
5 - > 60 s
6 23 263 (1.6 s)
7 10 416 (0.9 s)
8 19 197 (0.6 s)

or ’no’ given a set of values (no global propagation on costV ar domains). Here,
values are lower bounds of costV ar. Modified constraints are called NFGcc and
NFAtMostKNotZeroOrOne. Except them the model remains identical, notably the
SoftCumulativeSum, which is quite generic.5 We assume our algorithms could
be implemented with a valued solver dedicated to cumulative problems.

In our experiments, the search strategy was to assign minimum values of
domains, first to start variables and after to costV ar and cost variables, which
is consistent with a valued model (no branching on over-load variables). The
processor was a 2.2 Ghz Intel Core 2, with 4 Go of 667 Mhz RAM.

References

1. Baptiste, P., Le Pape, C., Peridy, L.: Global constraints for partial CSPs: A case-
study of resource and due date constraints. In: Proc. CP, pp. 87–102 (1998)

2. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Proc. CP, pp. 63–79 (2002)

3. Benoist, T., Jeanjean, A., Rochart, G., Cambazard, H., Grellier, E., Jussien, N.:
Subcontractors scheduling on residential buildings construction sites. ISS 2006 Int.
Sched. Symposium, Technical Report JSME-06-203, 32–37 (2006)

4. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints 4, 199–240 (1999)

5 Conversely, practicability rules 3. and 4. depend on each problem instance.

366 T. Petit and E. Poder

5. Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Proc.
JICSLP, pp. 363–377 (1996)

6. Choco: A Java library for CSPs, constraint programming and explanation-based
constraint solving (2007), http://choco.sourceforge.net/

7. Larrosa, J., Dechter, R.: Boosting search with variable elimination in constraint op-
timization and constraint satisfaction problems. Constraints 8(3), 303–326 (2003)

8. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc consistency. Arti-
ficial Intelligence 159(1-2), 1–26 (2004)

9. Lopez, P., Erschler, J., Esquirol, P.: Ordonnancement de tâches sous con-
traintes: une approche énergétique. Automatique, Productique, Informatique In-
dustrielle 26(5-6), 453–481 (1992)

10. Petit, T., Poder, E.: Global propagation of practicability constraints. Research
report 0702, Ecole des Mines de Nantes (2007),
http://www.emn.fr/x-info/tpetit/TR0702tpetit.pdf

11. Petit, T., Régin, J.-C., Bessière, C.: Meta constraints on violations for over con-
strained problems. In: Proc. IEEE-ICTAI, pp. 358–365 (2000)

12. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proc.
AAAI, pp. 209–215 (1996)

13. Rudová, H., Vlk, M.: Multi-criteria soft constraints in timetabling. In: Proc.
MISTA, pp. 11–15 (2005)

http://choco.sourceforge.net/
http://www.emn.fr/x-info/tpetit/TR0702tpetit.pdf

The Polytope of Tree-Structured
Binary Constraint Satisfaction Problems�

Meinolf Sellmann

Brown University
Department of Computer Science

115 Waterman Street, P.O. Box 1910
Providence, RI 02912

sello@cs.brown.edu

Abstract. We correct a result that we recently published in this conference series
on the polytope of Binary Constraint Problems (BCPs). We had claimed that the
so-called ”support formulation” would characterize the convex hull of all feasible
solutions to tree-structured BCPs. We show that this claim is not accurate by
providing a small counter example. We then show that the respective polytope
defines a facet of the stable-set polytope of a perfect graph which allows us to
perform LP inference in polynomial time.

1 Binary Constraint Satisfaction

Definition 1 (Binary Constraint Satisfaction Problem)

– A binary constraint problem (BCP) is a triplet 〈V, D, C〉, where V ={X1, . . . , Xn}
denotes the finite set of variables, D = {D1, . . . , Dn} denotes a set of n finite sets
of possible values for these variables (Di is called the domain of variables Xi),
and C = {C1, . . . , Cm} is the set of constraints, where Cj : Dj1 × Dj2 → Bool
specifies which simultaneous assignments of values to the variables Xj1 and Xj2

are allowed. The set {Xj1 , Xj2} is called the scope of constraint Cj .
– An assignment for a BCP P = 〈V, D, C〉 is a function σ : V →

⋃
i≤n Di. A

solution to a BCP P = 〈V, D, C〉 is an assignment σ such that σ(Xi) ∈ Di for all
1 ≤ i ≤ n and such that Cj(σ(Xj1), σ(Xj2)) = true for all 1 ≤ j ≤ m. The set
of all solutions to a BCP P is denoted by Sol(P).

Note how, in contrast to the custom in integer programming, in CP the term “binary” is
used to express that all constraints affect just two variables, while the size of the domain
of each variable is not limited! The fact that the arity of the constraints is limited to two
allows us to state constraints simply as sets of allowed pairs Rj1,j2 = {(k, l) | Xj1 =
k, Xj2 = l ok}, or, alternatively, as sets of forbidden pairs Rj1,j2 = {(k, l) | Xj1 =
k, Xj2 = l forbidden}.

It is easy to see that the general BCP is NP-hard. One simple way is to reduce from
graph coloring where each node is modeled as a variable that must be assigned a color

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 367–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

368 M. Sellmann

such that adjacent nodes are not colored identically (i.e., the corresponding constraint
on each edge {i, j} is a not-equal constraint Ri,j = {(k, k) | ∀ k}). Conversely, every
binary constraint problem can be visualized as a constraint network where each node
corresponds to a variable and an edge connects two nodes iff there exists a constraint
over the corresponding variables. Of course, the exact semantic of the constraints is lost
in that visualization. However, it is a well-known fact that any BCP whose correspond-
ing constraint network is a tree can be solved in polynomial time [4,5].

2 The Support Formulation

In [1], we devise an IP model for BCPs by using linear constraints to specify that,
when a variable Xj1 takes value k, variable Xj2 must take a value that is consistent
with Xj1 = k. In that way, we enforce that each variable assignment is supported by
a correct assignment to adjacent variables (by which we mean variables that share a
constraint). The IP then reads:1

SIP = max
∑

pikyik

s.t. yj1k −
∑

l:(k,l)∈Rj1,j2

yj2l ≤ 0 ∀ 1 ≤ j ≤ m, k ∈ Dj1 (1)

∑

k∈Di

yik = 1 ∀ i ∈ {1, . . . , n} (2)

yik ∈ {0, 1} ∀ i ∈ {1, . . . , n}, k ∈ Di (3)

The above formulation dominates the traditional way of expressing constraints (1)
by constraints yj1k + yj2l ≤ 1 for all conflicting assignments (k, l) ∈ Rj1,j2 : We
show that y ∈ SLP (where SLP denotes the linear continuous relaxation of the above
SIP) implies yj1k + yj2l ≤ 1 for all 1 ≤ j ≤ m, (k, l) ∈ Rj1,j2 . Given y ∈ SLP ,
it holds that y ≥ 0 and

∑
k∈Di

yik = 1. Moreover, for all 1 ≤ j ≤ m, k ∈ Dj1 ,
0 ≥ yj1k −

∑
l:(k,l)∈Rj1,j2

yj2l = yj1k − (1 −
∑

l:(k,l)∈Rj1 ,j2

yj2l). Consequently, yj1k +

∑

l:(k,l)∈Rj1,j2

yj2l ≤ 1, which implies yj1k +yj2l ≤ 1 for all 1 ≤ j ≤ m, (k, l) ∈ Rj1,j2 .

On the other hand, assume we are given a BCP (V, D, C) with V = {X1, . . . , X5},
D = {{1, 2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {0, 4}}, and C = {(X1 = 4 ∨ X1 =
X2), (X1 = 4 ∨ X1 = X3), (X1 = 4 ∨ X1 = X4), (X1
= X5)}, and we are to
maximize X5. SLP returns an optimal continuous solution with value 0, which happens
to be the optimal value that any integer solution can achieve. Now consider y11 = y12 =
y13 = 1/3, y14 = 0, y21 = y22 = 1/2, y31 = y33 = 1/2, y42 = y43 = 1/2, and
y50 = 0, y54 = 1. It is easy to verify that this solution, which achieves an objective
value of 4, is feasible when constraints (1) are replaced by the traditional constraints.
Consequently, the support formulation is never worse but in general stronger that the
traditional way of linearizing binary constraint networks.

Now, in [6] we claimed that, when the given BCP was tree-structured, the linear con-
tinuous relaxation SLP of SIP provided a perfect characterization of the convex hull

1 Whereby, for simplicity in constraints (1), we assume that each constraint over variables i, j
induces two truth tables Ri,j and Rj,i.

The Polytope of Tree-Structured BCPs 369

1 2 3 4 X

X1

2

DCA B

3 3

3 3

0 0

00

Fig. 1. A BCP with two variables X1 and X2. The figure shows the domains of the respective
variables and an edge between values that the variables are allowed to take simultaneously. The
numbers above each value show the profit that is achieved when a variable is set to this value.

of all integer feasible solutions. When trying to use the same proof-technique for the
linearization of a different type of constraints, we realized the following: In the proof
of Theorem 1 in [6] we consider a Lagrangian relaxation of SIP and show that its value
is the same as that of the linear relaxation SLP , while the corresponding solution is
integer and obeys all relaxed constraints. However, this does not imply that the corre-
sponding solution is optimal for the original problem. Ergo, the proof is not complete.
The following example shows that the proof can also not be corrected:

Example 1. Consider the BCP 〈V, D, C〉, where V = {X1, X2}, D = {D1, D2}
with D1 = {A, B, C, D} and D2 = {1, 2, 3, 4}, and C = {C1} with C1 : D1 ×
D2 → Bool is given by the set of allowed pairs R1,2 = {(A, 1), (A, 2), (B, 2),-
(C, 2), (C, 3), (D, 3), (D, 4)} (see Figure 1). Assume we achieve a profit of 3 when
setting X1 to A or B and 0 otherwise, and another profit of 3 when setting X2 to 3 or
4 and 0 otherwise. Clearly, the maximum profit we can achieve is 3. However, when
setting y1A = y1B = y1D = 1/3, y1C = y21 = 0, and y22 = y23 = y24 = 1/3, then y
is feasible for SLP and achieves a profit of 4 which is strictly greater than the optimal
value of 3.

3 The Polytope of Tree-Structured BCPs

Theorem 1. If the BCP that is given has a tree-structured constraint network, then the
convex hull of all solutions to SIP defines a facet of the stable-set polytope of a perfect
graph.

Proof. Consider the “conflict graph” that emerges from the given BCP: we have one
node that corresponds to each variable assignment (similar to the nodes in Figure 1),
and an edge between two nodes if and only if both corresponding assignments are in-
compatible (that is, one edge for each pair in Rj1,j2 and one for each pair of nodes
that belong to the same variable domain). We claim that this graph is perfect. We prove
this claim by showing that it is Berge [2], i.e., that it and its complement graph do not
contain an odd cycle of length 5 or more with no shortcuts (a so-called “odd-hole”).

Consider the conflict graph and assume that it contains a hole, i.e., a cycle with no
shortcuts of length 5 or more. Wlog we may assume that this cycle is minimal and

370 M. Sellmann

involves nodes that belong to at least three BCP variables (otherwise there exists a
shortcut between nodes that belong to the same variable). Because of the tree-structure
of the given BCP, this implies that there exist two non-adjacent nodes in the cycle that
belong to the same variable, which implies that there exists a shortcut in the cycle.
Therefore, the cycle was not minimal.

Now consider the complement of the conflict graph. It contains edges for all pairs in
Rj1,j2 and edges between all nodes that belong to BCP variables that have no constraint
linking them. The given BCP is acyclic, thus any hole cannot involve nodes that belong
to more than two BCP variables (otherwise there exists a shortcut). However, any sub-
graph on nodes from two variables is bipartite, which means that all cycles have even
length. Consequently, there also exists no odd-hole in the complement of the conflict
graph. ��

According to [3], our result implies that we can characterize the polytope of tree-
structured BCPs as a linear program where we the constraints enforce that the weight
of each maximal clique in the conflict graph is lower or equal one. The support for-
mulation comes close to enforcing these clique constraints, but with two shortcomings:
First, in case that the support in Dj2 of a value k ∈ Dj1 is a superset of the support
in Dj2 of another value h ∈ Dj1 , the support formulation considers a clique that is
not maximal (e.g., consider values A and B in Figure 1). Second, there may be other
maximal clique-constraints that are not enforced.

The first shortcoming is easily addressed: Denote with Hj(k) := {l ∈ Dj2 | (k, l) ∈
Rj1,j2} the support of value k ∈ Dj1 in Dj2 . Problematic are those h ∈ Dj1 for which
Hj(h) ⊆ Hj(k). Then, yj1h ≤

∑
l∈Hj(h)

yj2l ≤
∑

l∈Hj(k)
yj2l. And since Xj1 can only take

either value k or h, with yj1k ≤
∑

l∈Hj(k)
yj2l, we can enforce yj1k + yj1h ≤

∑
l∈Hj(k)

yj2l.

We achieve a strengthened formulation:

SSIP =max
∑

pikyik

s.t. yj1k +
∑

h:Hj(h)⊆Hj(k)

yj1h −
∑

l∈Hj(k)

yj2l ≤ 0 ∀1 ≤ j ≤ m,k ∈ Dj1 (4)

∑

k∈Di

yik = 1 ∀i ∈ {1, . . . , n} (5)

yik ∈ {0, 1} ∀i ∈ {1, . . . , n}, k ∈ Di

(6)

To address the second shortcoming, since there may be many other maximal cliques
in the perfect conflict graph, it is not feasible to add them all to our formulation. We
show another example in Figure 2. Note that there is a clique on nodes y1B, y1D, y22,
y24 in the conflict graph whose corresponding constraint is not enforced in SSIP : The
solution y1B = y1C = y1D = y22 = y23 = y24 = 1/3, y1A = y1E = y21 = y25 = 0
assigns a weight of 4/3 to the nodes in this clique but is feasible for SSIP . The solution
achieves a profit of 4 while the optimal integer solution has value 3.

In theory, for each problem it is possible to generate the relevant missing clique
constraints in a lazy fashion [3]. To obtain polynomial guarantees on the number of
additional constraints that need to be generated, we would have to use the Ellipsoid
algorithm to solve our LPs, though. In practice, we may prefer to use a practically

The Polytope of Tree-Structured BCPs 371

X

X1

21 2 3

CA B

3 0

0

0

4

D

3

0

3 0

3

0

E

5

Fig. 2. A BCP with two variables X1 and X2. The figure shows the domains of the respective
variables and an edge between values that the variables are allowed to take simultaneously. The
numbers above each value show the profit that is achieved when a variable is set to this value.

efficient LP solver instead and terminate the generation of cuts early, knowing that the
support formulation without any additional cuts is already strictly stronger than the
traditional formulation.

References

1. Aron, I.D., Leventhal, D.H., Sellmann, M.: A Totally Unimodular Description of the Consis-
tent Value Polytope for Binary Constraint Programming. In: Beck, J.C., Smith, B.M. (eds.)
CPAIOR 2006. LNCS, vol. 3990, pp. 16–28. Springer, Heidelberg (2006)

2. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: Progress on Perfect Graphs.
Mathematical Programming 97, 405–422 (2003)

3. Chvatal, V.: On certain polytopes associated with graphs. Combinatorial Theory B 18, 138–
154 (1975)

4. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38, 353–
366 (1989)

5. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: AAAI, pp.
4–9 (1990)

6. Sellmann, M., Mercier, L., Leventhal, D.H.: The Linear Programming Polytope of Binary
Constraint Problems with Bounded Tree-Width. In: CPAIOR, pp. 275–287 (2007)

A Tabu Search Method for Interval Constraints

Charlotte Truchet1, Marc Christie2, and Jean-Marie Normand1

1 LINA, UMR 6241,
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France

2 IRISA/INRIA Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042, Rennes,
France

{charlotte.truchet,jean-marie.normand}@univ-nantes.fr,
marc.christie@irisa.fr

Abstract. This article presents an extension of the Tabu Search (TS)
metaheuristic to continuous CSPs, where the domains are represented
by floating point-bounded intervals. This leads to redefine the usual TS
operators to take into account the special features of interval constraints:
real variables encoded in floating points domains, high cardinality of the
domains, nature of the CSP where constraints may be partially satisfied.
To illustrate the expressiveness of the framework, we instantiate this
method to compute an inner-approximation of a set of inequalities.

Metaheuristics, in particular Tabu Search (TS, [6,8]), have largely proven their
efficiency on discrete optimization or constraint problems. In this article, we pro-
pose a framework to extend TS to continous problems on real variables. There
exist a variety of optimization techniques to solve such problems, but they are
usually dedicated to particular types of constraints (linear, polynomial, differen-
tiable) and do not offer the guarantees of interval approaches [4,5]. Interval-based
solvers like Realpaver [7] are dedicated to compute rigourous inner and outer-
approximations of continuous problems, but often fail in efficiently computing
a first solution due to the complete nature of the search process. We provide
a unified way to express continuous CSPs in a TS framework that shares the
reliability of interval techniques, and tackle a problem not well adressed by clas-
sical tools: the computation of a single solution for interval CSPs or optimisation
problems, whatever the type of the constraints.

1 Interval Constraints

Interval arithmetics [9] offers a reliable solution to avoid rounding errors due
to finite representation of real values (see IEEE754 norm). Real values are en-
compassed within floating-point intervals : a real value r may be represented by
any interval I, with floating-point bounds, containing r. The set of all intervals
is I. The Cartesian product of intervals is called a box. The classical opera-
tors over R can be redefined over I by enforcing the fundamental property of
containment[9]: the interval extension of a binary operator � is given by the
smallest interval containing the results of the application of �. This construct

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 372–376, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Tabu Search Method for Interval Constraints 373

guarantees that no values are lost, but can lead to an over-estimation of the
result. Real functions are extended on I in the same way.

A CSP defined over continuous domains is translated into intervals by taking
interval variables over interval domains. The constraints are extended over I

in the same way as functions or operators. The goal is to find a box B ⊆
D1 × . . .×Dn such that the constraints are satisfied. An interval constraint C on
a box B can be certainly satisfied (every real vector in B satisfies C), certainly
not satisfied (no real vector in B satisfies C). If neither of those two properties
can be computed, C is said partially satisfied.

Several metaheuristics have been transposed to CSP on real variables. Some
of them are adapted from TS [4,5,2]. However, these algorithms are based on
real configurations, and employed to tackle optimization problems. Our method
is closer to that of [3] for interval CSPs with non-linear differentiable constraints,
or to [1] on multi-objective problems.

2 Tabu Search on Intervals

The basic components of a TS algorithm on discrete domains are well-known:
a penalty function f : D1 × . . . × Dn → N, counting the number of violated
constraints most of the times, a neighborhood function, and the exact definition
of a tabu mechanism (basic tabu behaviour with size t, dynamic tabu, aspira-
tion, ...). However, adapting the algorithm to new types of domains leads to a
number of obstacles. Firstly, TS algorithms use many operators which are trivial
over discrete configurations (equality, membership, random choice) but require
specific attention over interval domains. Secondly, an interval CSP has a search
space with specific properties: the domains are huge, and they are defined by
two floating point numbers but include an infinite set of reals. Hence we dissect
the algorithm into more precise atomic components.

2.1 Framework

Random on S. A random function random : S → S is needed both for the
random restart, and to choose a neighbor of a current configuration. An interval
is characterized by its center, length and bounds. A uniform random law cannot
be easily defined over these parameters; choosing the center (or one bound) first
leads to a bias toward small intervals, and conversely, choosing the length first
leads to bias toward centered intervals. To both ensure diversification and limit
the number of possibly satisfied intervals, we choose the center first, and then
the length L. L follows a repartition law P (L ≤ z) = 2b∗(1−ln(2z/b−a))/(b−a)
with an average of (b − a)/8.

Neighborhood exploration. A neighborhood is a subset of S, supposedly close to
the current configuration either in terms of Euclidean distance in the domain
space of in terms of solution similarity. We divide this into two steps. A first
operator neighborhood : S → 2S computes a neighbor area, based on the same

374 C. Truchet, M. Christie, and J.-M. Normand

principle than on discrete problems. Choosing configurations at a Hamming dis-
tance of 1, we can define for instance neighborhood1(< v1 . . . vj . . . vn >) =
{∀v′j ⊂ Dj , < v1 . . . v′j . . . vn >}, which tries to move a randomly chosen vari-
able, or neighborhood2 = {∀1 ≤ j ≤ n, ∀v′j ⊂ Dj , < v1 . . . v′j . . . vn >} which
moves every variable once.

Sampling the neighborhood. The second neighborhood operator is in charge of
the neighbourhood sampling, which has to be done partially because of the
cardinality of the results of neighborhood. This requests that S comes with an
operator sample : S → 2S , to choose a good sample of boxes within a given box.
This function is parameterized by the size of the sample, nbneigh. We propose
two possibilities for sample. The first one is merely random: let sample1(B) be
a set of nbneigh random configurations, with calls to random. The second one
ensures that the box B is widely explored: sample2 consists in cutting the box
B into nbneigh equal parts and choosing randomly a configuration in each part.

Penalty function. Technically, a penalty function needs to be computable in
a reasonable time (if possible, incrementally), to have comparable values, and
express the satisfaction of the problem. One can measure the satisfaction of a
problem by counting the number of satisfied constraints. However this raises a
problem on interval CSPs due to interval approximation: each configuration is
either satisfied, non satisfied or partially satisfied, which questions the way to
encompass the partially satisfied constaints in the count. The definition of f
influences the semantic of the problem. In the problem we consider, we have
focused on inner approximations of the solution set. The penalty function is
thus defined as f(s) = ps(s) + cns(s), where ps(s) (resp. cns(s)) represents
the cardinality of the partially satisfied constraints (resp. non-satisfied), for a
configuration s. In such a case, f(s) = 0 iff ps(s)+ cns(s) = 0, iff cs(s) = p, that
is, all the constraints are satisfied by s.

Tabu mechanism. In the discrete case, the tabu mechanism relies on an equality
test on the configurations. This cannot transpose to interval domains, where two
intervals have a near to zero chance to be equal. A tabu configuration must forbid
the search not only at a point, but in an area around it. A simple way to ensure
this is to compare the configurations not w.r.t. equality, but w.r.t. intersection
We add the possibility to resize the tabu configurations, in order to control their
tabu influence. This resize function multiplies all lengths by a constant factor
α. Intuitively, a configuration will be left out of the search if it crosses more
than α of a tabu configuration. In the end, the tabu mechanism is enclosed into
a single function cutTabu(T , V) = {v ∈ V, ∀vtabu ∈ T , v ∩ resize(vtabu)) = ∅}

2.2 Implementation

We have instantiated our framework to compute inner-approximations for two
non-linear CSPs: continuous NQueens and Nlights1. Both have non-smooth con-
1 Available online with implementation and results at
http://www.normalesup.org/∼truchet/LSCont/

http://www.normalesup.org/~truchet/LSCont/

A Tabu Search Method for Interval Constraints 375

nb tries ← 0, T ← ∅
repeat

iter ← 0, s ← random(S)
repeat

N0 ← neighborhood(s), N1 ← sample(N0) // neighbourhood generation
N2 ← cutTabu(N1, T) // suppression of tabu configurations
s ←usualRandom{s′ ∈ N2, f(s′) is minimal } // selection of a best neighbour
T ← (s, t) ∪ actualizeTabu(T), iter++

until iter¿ max iter or f(s) = 0
nb tries++

until nb tries ¿ max tries or f(s) = 0

Fig. 1. Continuous Tabu Search

straints, which impedes the use of classic derivative techniques. Neighborhood
and sampling have been defined and tested with different strategies. The imple-
mentation enables to prove the expressiveness of the framework.

Table 1. Results over the Interval implementation of the Tabu Search Framework
(average on 20 runs)

Benchmark NbSteps NbNeighbors Tabu Tenure %Success Nbrestarts Time
max iter nbneigh t max tries=30

NQueens 5 100 30 5 100% 1.0 0.08 s.
NQueens 8 500 50 5 100% 1.0 2.2 s.
NQueens 10 500 100 5 100% 1.5 5.07 s.

NLights 10 100 30 5 100% 2 0.95 s.
NLights 10 100 50 5 100% 1 0.61 s.
NLights 15 500 100 5 100% 1 7.56 s.

In terms of performances, a comparison is difficult to establish as most tech-
niques do not compute inner-approximations of systems, and those who do, rely
on a complete exploration of the search space (e.g. Realpaver). However, the sys-
tem was able to solve instances with many variables on which Realpaver fails in
a reasonnable time (10 min). Table 1 shows some results for different parameter
settings.

2.3 Discussion

As a first remark, the framework allows to retrieve other algorithms (or part if
them if hybridized), for instance ECTS [2] by implemeting its distance function
in neighborhood and resize.

As often, the algorithm has some critical parameters. In addition to the usual
TS ones, we introduce two parameters: nbneigh and α. This is of course a draw-
back. However, nbneigh can be tuned rather easily, by counting the time spent
in neighborhood exploration w.r.t. the time spent in a single iteration. And α
behaves in the same way as t.

376 C. Truchet, M. Christie, and J.-M. Normand

The main advantage of the proposed framework is its genericity. All the key
ingredients, which define the search strategy, are defined independantly of the
CSP. Constraints can also be generic, although, truth be told, the TS algorithm is
unlikely to challenge problems with well known constraint types (linear, polyno-
mial, differentiable functions). But it offers to solve in an unified way constraints
that could not be properly handled by classical approaches.

3 Conclusion

The proposed framework extends the TS metaheuristic to handle interval CSPs
and their particular semantic in a generic way. Further work has to be done to try
other possibilities for the new TS operators. The framework can also be extended
to other kind of set CSPs, provided they come with a finite representation and
computable constraints.

Some continuous problems are still a challenge for resolution methods, and the
interval TS is an good alternative in that case. Experimentally, we provide two
such CSPs. The interval TS works well on them because of their high number
of variables and constraints, with high correlation within the variables in the
constraints.

References

1. Barichard, V., Hao, J.-K.: A Population and Interval Constraint Propagation Algo-
rithm. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO
2003. LNCS, vol. 2632, pp. 88–101. Springer, Heidelberg (2003)

2. Chelouah, R., Siarry, P.: Tabu search applied to global optimization. European
Journal on Operational Research (2000)

3. Cruz, J.: Constraint Reasoning for Differential Models. IOS Press, Amsterdam
(2005)

4. Fanni, A., Manunza, A., Marchesi, M., Pilo, F.: Tabu search metaheuristics for
electromagnetic problemsoptimization in continuous domains. IEEE Transactions
on Magnetics 35(3) (1999)

5. Franze, F., Speciale, N.: A tabu-search-based algorithm for continuous multiminima
problems. International Journal for Numerical Methods in Engineering 50(3) (2001)

6. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht, The
Netherlands (1997)

7. Granvilliers, L., FrédéricBenhamou: Algorithm 852: RealPaver: An interval solver
using constraint satisfaction techniques. ACM Transactions on Mathematical Soft-
ware 32(1) (2006)

8. Hansen, E.R.: Global Optimization Using Interval Analysis. Pure and Applied Math-
ematics. Marcel Dekker Inc, New York (1992)

9. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

The Steel Mill Slab Design Problem Revisited

P. Van Hentenryck1 and L. Michel2

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Recently, Gargani and Refalo (G&R) presented an elegant
model for the Steel Mill Slab Design Problem (Problem 38 in the CSP
LIB). Contrary to earlier approaches, their model does not use 0/1 vari-
ables but exploits the traditional expressiveness of constraint program-
ming. G&R indicated that static symmetry-breaking constraints pro-
posed earlier are not effective on this model, as these interact with their
heuristic. Instead they use large neighborhood search to obtain solutions
quickly. This paper shows that a simple search procedure breaking sym-
metries dynamically leads to a constraint program solving the problem
in a few seconds, while maintaining the completeness of the approach
and removing the need for large neighborhood search.

1 Introduction

The steel mill slab design problem (problem 38 in the CSP Library) has attracted
significant interest in the community. The problem consists of packing a set of
orders into slabs, minimizing the total capacity of the slabs needed while satisfy-
ing the capacity and order compatibility constraints on the slabs. The CSPLIB
proposes an instance with 111 orders which could not be solved to optimality
by constraint-programming approaches until last year. Earlier work included the
presentation of different models in [1], the study of symmetry breaking in [2], the
hybridization of constraint and mathematical programming in [4] which solves
a sub-instance of the CSP Lib problem with 30 orders in about 1000s, and the
local search solver WSAT(OIP) for pseudo boolean variables [7] which solves the
decision problem with 111 orders in about 2000s.

Last year, Gargani and Refalo [3] reconsidered the problem using a constraint-
programming approach. They stated that “the models used for [earlier] con-
straint programming approaches to this problem were basically linear models over
binary variables. While such models are suited for integer programming solvers
that can tighten the formulation by cutting-plane generation, these models are
notoriously not well suited to a constraint programming approach because of the
limited domain reductions they produce.” They introduced a natural constraint-
programming model using logical and global constraints exploiting the structure
of the problem. By designing a specific strategy for variable and value selection
and combining the heuristic with a large-neighborhood search, they showed how
to solve the largest instance with 111 orders in just 3s using the Ilog constraint-
programming solver.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 377–381, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

378 P. Van Hentenryck and L. Michel

Gargani and Refalo also studied how to add (static) constraints in order to
prevent the search strategy from producing symmetrical solutions. Their experi-
mental results show that these constraints are useful for small instances but nega-
tively impact performance on larger instances. They argued that “the symmetry-
breaking constraints prevent our strategy from finding good solutions causing the
loss in performance” and explained the interference between the search heuris-
tics and the symmetric-breaking constraints. As a result, they stated: “For these
reasons, we have not used symmetry breaking constraints in our constraint pro-
gramming solution, and we have dramatically improved the convergence of the
search by using a local search approach.”

This paper shows that their constraint-programming model with a simple,
dynamic symmetry-breaking scheme leads to a constraint program solving the
problem in a few seconds, while maintaining the completeness of the approach
and removing the need for large neighborhood search.

2 The Steel Mill Slab Design Problem

The problem consists in producing n orders using a set of slabs. Each order o
has a color co and a weight wo representing the slab capacity it takes. Each
slab has a capacity that must be chosen from the increasing set of capacities
{u1, u2, ..., uk}. A solution is an assignment of orders to slabs such that

1. the total weights of the orders in a slab must not exceed the slab capacity;
2. the orders in a slab can be of two different colors only.

The objective is to minimize the sum of the weights of the slabs used in the
solution or, equivalently, the sum of losses (unused capacity) in the slabs used
in the solution.

3 The Constraint Program

Figure 1 depicts the constraint program for solving the steel mill slab problem in
Comet. Lines 1–16 are essentially the model of Gargani and Refalo, while lines
18–24 are the new search procedure including the dynamic symmetry breaking.

The ingenuity in their model is in the expression of the objective function.
Indeed, the model uses two sets of decision variables: variable x[o] specifies
the slab assigned to order o, while variable l[s] represents the load of slab s.
Once the load of a slab is known, it is easy to compute its loss: simply take the
smallest capacity supporting the load. Line 6 computes an array of losses for
each possible capacity, while the objective function in line 12 uses the element
constraint to compute the loss of each slab. Note that a slab with no order incurs
no loss. Gargani and Refalo use a global packing constraint [5] for computing
the weight: this constraint is semantically equivalent to

forall(s in Slabs)
cp.post(sum(o in Orders) weight[o] * (x[o] == s) == l[s]);

The Steel Mill Slab Design Problem Revisited 379

1 int capacities[Caps] = ...;
2 int weight[Orders] = ...;
3 int color[Orders] =...;
4 set{int} colorOrders[c in Colors] = filter(o in Orders) (color[o] == c);
5 int maxCap = max(i in Caps) capacities[i];
6 int loss[c in 0..maxCap] = min(i in Caps: capacities[i] >= c) capacities[i] − c;
7

8 Solver<CP> cp();
9 var<CP>{int} x[Orders](cp,Slabs);

10 var<CP>{int} l[Slabs](cp,0..maxCap);
11

12 minimize<cp> sum(s in Slabs) loss[l[s]]
13 subject to {
14 cp.post(packing(x,weight,l));
15 forall(s in Slabs)
16 cp.post(sum(c in Colors) (or(o in colorOrders[c]) (x[o] == s)) <= 2);
17 } using {
18 forall(o in Orders) by (x[o].getSize(),−weight[o]) {
19 int ms = max(0,maxBound(x));
20 tryall<cp>(s in Slabs: s <= ms + 1)
21 cp.label(x[o],s);
22 onFailure
23 cp.diff(x[o],s);
24 }
25 }

Fig. 1. The Constraint-Programming Model in COMET

and the experimental results will discuss its importance. The second set of con-
straints are meta-constraints specifying that the orders can be of at most two
different colors.

The search procedure in lines 18–24 is the main novelty here. It iterates on the
orders, selecting first the orders with the smallest domains (first-fail principle)
and breaking ties by choosing orders with the largest weight (line 18). The
search procedure then considers the slabs to assign to the selected order: it only
considers slabs in which some orders have been placed as well as one additional
empty slab. Line 19 computes the already used slabs (i.e., 1..ms), while line 20
is a nondeterministic instruction trying to assign the slabs to variable x[o].

Observe that the entire model is 25 lines of Comet, does not include large
neighborhood search, and is guaranteed to be complete, since two empty slabs
are equivalent for allocating an order. These value symmetries were studied the-
oretically in [6] and have been used in several constraint programs for graph
coloring, scene allocation, deployment of serializable services to name only a
few. Note also that there are other symmetries that could be broken: two slabs
with the same capacities and the same colors are also symmetric, but it was not
necessary to break these symmetries to achieve good performance.

380 P. Van Hentenryck and L. Michel

0

2.5

5.0

7.5

10.0

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 10
1

10
3

10
5

10
7

10
9

11
1

Performance of Constraint Programming on the Steel Mill Slab Design Problem
C

P
U

 T
im

e
s
 i
n

 S
e
c
o

n
d

s

Sizes

Fig. 2. Performance of the Comet Program on the Steel Mill Slab Design Problem

4 Experimental Results

Figure 2 depicts the experimental results on a 2.16 GHz Intel processor running
Mac OS X 10.5.1. As can be seen, the Comet program solves all instances within
less than 8 seconds, indicating that this problem has become extremely easy for
constraint programming.

Readers may wonder how much of the efficiency is due to the global constraint
for packing. To determine its contribution, it was replaced by the constraints

forall(s in Slabs)
cp.post(sum(o in Orders) weight[o] * (x[o] == s) == l[s]);

cp.post(sum(o in Orders) weight[o] == sum(s in Slabs) l[s]);

0

2.5

5.0

7.5

10.0

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 10
1

10
3

10
5

10
7

10
9

11
1

Performance of Constraint Programming on the Steel Mill Slab Design Problem

C
P

U
 T

im
e
s
 i
n

 S
e
c
o

n
d

s

Sizes

Fig. 3. Performance of the Comet Program with no Global Constraint

The Steel Mill Slab Design Problem Revisited 381

The first set of constraints was discussed earlier and captures the semantics
of the global constraint, while the last constraint is semantically redundant and
expresses that the total weight of the orders is equal to the total load of the slabs.
Figure 3 depicts the experimental results. They indicate that all the instances are
now solved within 10 seconds, showing that the global constraint is not strictly
necessary here. Observe also the similar shape of the computation results.

5 Conclusion

In recent work, Gargani and Refalo (G&R) presented an elegant model for the
Steel Mill Slab Design Problem (Problem 38 in the CSP LIB). Contrary to earlier
approaches, their model does not use 0/1 variables but exploits the traditional
expressiveness of constraint programming. G&R indicated that static symmetry-
breaking constraints proposed earlier are not effective on this model, as these
interact with their heuristic. Instead they use large neighborhood search to ob-
tain solutions quickly. This paper showed that an simple search procedure using
the first-fail principle and dynamic symmetry breaking leads to a constraint pro-
gram solving the problem in a few seconds, while maintaining the completeness
of the approach and removing the need for large neighborhood search.

It is interesting to observe that the steel mill slab design problem is now solved
efficiently using technology and concepts which were all available in 1991.

Acknowledgments. This research is partially supported by NSF awards DMI-
0600384 and ONR Award N000140610607.

References

1. Frisch, A., Miguel, I., Walsh, T.: Modelling a steel mill slab design problem. In:
Proceedings of the IJCAI 2001 Workshop on Modelling and Solving Problems with
Constraints (2001)

2. Frisch, A., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92.
Springer, Heidelberg (2001)

3. Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design
problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, Springer, Heidelberg
(2007)

4. Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Hybrid modelling for robust solving.
Annals of Operations Research 130(1–4), 19–39 (2004)

5. Shaw, P.: A Constraint for Bin-Packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

6. Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Tractable symmetry breaking
for csps with interchangeable values. In: International Joint Conference on Artificial
Intelligence (IJCAI 2003) (2003)

7. Walser, J.: Solving linear pseudo-boolean constraints with local search. In: Proceed-
ings of the Eleventh Conference on Artificial Intelligence, pp. 269–274 (1997)

Filtering Atmost1 on Pairs of Set Variables

Willem-Jan van Hoeve1 and Ashish Sabharwal2,�

1 Tepper School of Business, Carnegie Mellon University
2 Department of Computer Science, Cornell University

1 Introduction

Many combinatorial problems, such as bin packing, set covering, and combina-
torial design, can be conveniently expressed using set variables and constraints
over these variables [3]. In constraint programming such problems can be mod-
eled directly in their natural form by means of set variables. This offers a great
potential in exploiting the structure captured by set variables during the solution
process, for example to break problem symmetry or to improve domain filtering.

We present an efficient filtering algorithm, establishing bounds consistency,
for the atmost1 constraint on pairs of set variables with fixed cardinality. Com-
putational results on social golfer benchmark problems demonstrate that with
this additional filtering, these problems can be solved up to 50 times faster.

2 Domain Filtering for Set Constraints

A set variable is a variable whose domain values are sets. As the number of
possible values of a set variable can be enormous (the size of a power set, in
the worst case), one usually represents the domain of a set variable S by an
interval [L(S), U(S)], where L(S) and U(S) are a ‘lower’ and ‘upper’ bound on
the values that S can take. In addition, a lower bound l(S) and upper bound
u(S) on the cardinality of S are maintained. A natural (and widely adopted)
representation for the domain of set variables is based on the subset ordering of
the domain. That is, the lower bound L(S) represents all mandatory elements,
while the upper bound U(S) represents all possible elements, i.e., D(S) = {s |
L(S) ⊆ s ⊆ U(S), l(S) ≤ |S| ≤ u(S)}. We refer to this representation as the
subset+cardinality representation. It is applied in CP solvers such as ILOG
Solver, Eclipse, and Gecode.

For constraints involving set variables, the filtering task is to increase the
lower bounds and decrease the upper bounds of the domains such that we achieve
bounds consistency, which should formally be called subset+cardinality-bounds
consistency in our case:

Definition 1. Let S1, . . . , Sn be set variables. A constraint C(S1, . . . , Sn) is
called subset+cardinality-bounds consistent if for all i = 1, . . . , n, L(Si) and

� This research was partly supported by the Intelligent Information Systems Institute,
Cornell University under AFOSR Grant FA-9550-04-1-0151.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 382–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Filtering Atmost1 on Pairs of Set Variables 383

U(Si) are the intersection and the union, respectively, of all values in D(Si)
that can be assigned to Si in a solution to C, while in addition l(Si) and u(Si)
are equal to the minimum and maximum cardinality over these values, respec-
tively.

When a filtering algorithm for set constraints does not necessarily establish
bounds consistency, we call it a partial filtering algorithm.

The Atmost1 Constraint on Pairs of Set Variables

The atmost1 constraint was introduced by Sadler and Gervet [5] and speci-
fies, for a collection of n set variables with given cardinalities, that each pair
of variables overlaps in at most one element. Filtering the atmost1 constraint
to bounds consistency is NP-hard [1]. Therefore, [5] give in on bounds consis-
tency and present a partial filtering algorithm. In this work, we given in on the
number of variables instead, and consider the atmost1 constraint involving two
set variables only, which we will refer to as the pair-atmost1 constraint. For-
mally, pair-atmost1(S1, S2, c1, c2) = {(s1, s2) | s1 ∈ D(S1), s2 ∈ D(S2), |s1| =
c1, |s2| = c2, |s1 ∩ s2| ≤ 1}, where S1 and S2 are set variables and c1, c2 ≥ 1 are
integers representing the cardinalities of S1 and S2, respectively.

A natural way of implementing the pair-atmost1 constraint is to use the
following decomposition of pair-atmost1(S1, S2, c1, c2) into three constraints:
|S1| = c1, |S2| = c2, |S1 ∩ S2| ≤ 1. We will refer to this as the decomposition
for pair-atmost1. Unfortunately, filtering these constraints separately does not
establish bounds consistency on the pair-atmost1 constraint, as illustrated by
the following example:

Example 1. Let D(S1) = [{1, 2} , {1, 2, 3, 5, 6}], D(S2) = [{3} , {1, 2, 3, 4}], and
c1 = c2 = 3. Establishing bounds consistency on pair-atmost1(S1, S2, c1, c2)
leads to D(S1) = [{1, 2} , {1, 2, 5, 6}], D(S2) = [{3, 4} , {1, 2, 3, 4}]. This will not
be achieved by the decomposition.

3 The Bounds Consistency Filtering Algorithm

We next present the filtering algorithm that establishes bounds consistency on
the pair-atmost1 constraint, which we call BC-FilterPairAtmost1 (shown
as Algorithm 1).

First, we partition each of D(S1) and D(S2) into six disjoint sets. For this
purpose we define L1= L(S1) and P1= U(S1) \ L(S1), i.e., L1 represents the
lower bound, and P1 the possible values, for S1. We define L2 and P2 similarly
for D(S2). Using these shorthands, we define the partition of D(S1) into L1only
= L1 \ U(S2), L1L2 = L1 ∩ L2, L1P2 = L1 ∩ P2, P1L2 = P1 ∩ L2, P1P2
= P1∩P2, and P1only = P1\U(S2). D(S2) is similarly partitioned into L2only,
L2L1, L2P1, P2L1, P2P1, and P2only. Note that L1L2 = L2L1, P1L2 = L2P1,
and P2L1 = L1P2. For these three pairs, we explicitly maintain only one set per
pair, namely, L1L2, P1L2, and P2L1, respectively. (While P1P2 = P2P1 as well,
we still need to maintain both of these sets.)

384 W.-J. van Hoeve and A. Sabharwal

BC-FilterPairAtmost1(S1, S2, c1, c2)
begin

Scan L(S1), U(S1), L(S2), and U(S2) to compute the cardinality of each of the 9 sets:
L1only, L2only, L1L2, P1only, P2only, P1L2, P2L1, P1P2, P2P1

Initialize the ‘can-have’ and ‘not-necessary’ flags of each of the 9 sets to False

if |L1L2| > 1 then Fail
if |L1L2| = 1 then

Perform BC-Case0(c1 − 1, c2 − 1, nil)
Perform BC-UpdateDomains
Return

// |L1L2| = 0
Perform BC-Case0(c1, c2, nil) // no shared element
for each s ∈ { P1L2, P2L1, P1P2, P2P1 } do

// possible solution has a shared element from s
if BC-Case0(c1 − 1, c2 − 1, s) then s.can-have ← True

Perform BC-UpdateDomains
end

sub BC-Case0(c1, c2, s)
begin

k1 ← c1 − (|L1only| + |L1L2| + |P2L1|); if s = P2L1 then k1++
k2 ← c2 − (|L2only| + |L1L2| + |P1L2|); if s = P1L2 then k2++
slack1 ← (|P1only| + |P1P2|)− k1
slack2 ← (|P2only| + |P2P1|)− k2
slack3 ← (|P1only| + |P2only| + |P1P2|)− (k1 + k2)

if (slack1 ≥ 0) and (slack2 ≥ 0) and (slack3 ≥ 0) then
// solution exists
P1only.can-have ← True; P2only.can-have ← True
P1L2.not-necessary ← True; P2L1.not-necessary ← True
if slack1 > 0 then

P2P1.can-have ← True; P1P2.not-necessary ← True
if slack3 > 0 then P1only.not-necessary ← True

if slack2 > 0 then
P1P2.can-have ← True; P2P1.not-necessary ← True
if slack3 > 0 then P2only.not-necessary ← True

return True;

else
return False;

end

sub BC-UpdateDomains
begin

for each s ∈ { P1L2, P2L1, P1P2, P2P1 } do
if s.can-have = False or s.not-necessary = False then

for all y ∈ s computed by re-scanning L(S1), U(S1), L(S2), U(S2) do
if s.can-have = False then Remove y from U(Si) for corresponding i
if s.not-necessary = False then Add y to L(Si) for corresponding i

end

Algorithm 1. Bounds consistency domain filtering for pair-atmost1

Example 2. For the scenario of Example 1, we have L1 = {1, 2}, P1 = {3, 5, 6},
L2 = {3}, and P2 = {1, 2, 4}. The 9 sets in this case are: L1only = ∅, L2only =
∅, L1L2 = ∅, P1only = {5, 6}, P2only = {4}, P1L2 = {3}, P2L1 = {1, 2}, P1P2
= ∅, and P2P1 = ∅.

For each of the 9 sets, we maintain two Boolean flags: The “can-have” flag
and the “not-necessary” flag, that are all initialized to False. Some of them will
be set to True during the course of the algorithm when we find a solution. If

Filtering Atmost1 on Pairs of Set Variables 385

at the end, for a set s, s.can-have is still False, we remove s from the upper
bound of the corresponding domain. If s.not-necessary is still False, we add s
to the lower bound.

We find a solution by comparing the cardinalities of the 9 sets. In our base
case (BC-Case0), we assume that the variables already have one element in
common. For S1 we need k1 = c1 − |L(S1)|− 1 additional values (or one more, if
the common element was in L(S1)). Similarly, we need k2 more values for S2. If
we can meet the demand (verified by nonnegativity of slack1, slack2, and slack3
Algorithm 1), there exists a solution, and we update the flags for our 9 sets.

When we are not in the base case, i.e., L1L2 = 0, there are two possibilities.
First, there could be a solution in which there is no common element. For this
we run the base case, as is. Second, there will be a shared element, originating
from P1L2, P2L1, P1P2, or P2P1. For each of these possibilities, we ‘remove’
the shared element from S1 and S2, which brings us in the base case again.

Theorem 1. Algorithm 1 establishes bounds consistency on the pair-atmost1
constraint.

Theorem 1 can be proved by a careful case analysis. The time complexity of
BC-FilterPairAtmost1 is dominated entirely by the creation of the 9 sets
during search, which takes O(n) time where n is the integer domain size. The
rest of the algorithm has only a constant number of calls to BC-Case0 and one
call to BC-UpdateDomains. BC-UpdateDomains takes time O(n + k log n),
where k is the number of elements removed from an upper bound or added to a
lower bound, assuming standard set operations used for maintaining these upper
and lower bounds take time O(log n). We can tighten this analysis by amortizing
over an entire path in the search tree from the root to any leaf, such that the
total filtering complexity is O(n log n), while updating the flags takes total time
O(n), for the path.

4 Experimental Results

We evaluated the performance of the pair-atmost1 constraint on the well-known
social golfer problem (problem prob010 in CSPLib). The problem golf-g-s-w
asks for a partition of n golfers into g groups, each of size s, for w weeks, such
that no two golfers are in the same group more than once throughout the whole
schedule. We apply the following standard model, using set variables Sij to
represent the set of golfers of week i and group j:

partition(Si1, . . . , Sig, {1, . . . , n}), 1 ≤ i ≤ w
pair-atmost1(Sij , Skl, s, s), 1 ≤ i < k ≤ w, 1 ≤ j ≤ g, 1 ≤ l ≤ g
|Sij | = s, 1 ≤ i ≤ w, 1 ≤ j ≤ g
Sij ∈ [∅, {1, . . . , n}], 1 ≤ i ≤ w, 1 ≤ j ≤ g.

To speed up the computation, we also applied a redundant global cardinality
constraint [4] on integer variables xij representing the group in which golfer j

386 W.-J. van Hoeve and A. Sabharwal

Table 1. Computational results on a number of social golfer instances

Decomposition BC-FilterPairAtmost1
Problem (partial filtering) (bounds consistency)

time (s) backtracks time (s) backtracks
golf-6-5-5 2106.7 10,986,224 75.5 239,966
golf-6-5-4 1517.7 10,930,370 39.7 197,837
golf-6-5-3 1060.5 10,930,016 29.6 197,607
golf-6-5-2 635.5 10,879,368 17.2 171,664
golf-8-4-4 226.7 1,555,561 157.7 738,393
golf-10-3-10 128.1 150,911 67.2 78,976
golf-10-3-9 86.0 150,452 52.4 78,613
golf-10-3-6 21.3 110,429 17.3 57,364
golf-10-4-5 51.3 310,110 4.5 22,044
golf-10-4-4 42.5 310,109 4.0 22,043
golf-7-4-4 22.5 184,641 4.4 27,877

plays in week i. Our search strategy is a smallest-domain-first on these variables.
Finally, to account for some symmetry-breaking, we partly instantiate some of
the set variables before starting the search, following Fahle et al. [2]. We note
that our filtering algorithm can be applied to any model, including those with
more advanced symmetry-breaking techniques.

We implemented our model in ILOG Solver 6.3, and all experiments run
on a 3.8 GHz Intel Xeon machine with 2 GB memory running Linux 2.6.9-
22.ELsmp. We evaluated the performance of the decomposition implementation
of pair-atmost1 (achieving partial filtering) with our filtering algorithm BC-
FilterPairAtmost1 (achieving bounds consistency) on a number of instances,
as reported in Table 1. The results demonstrate that using the bounds consis-
tency algorithm, one can solve these instances up to 50 times faster, with a
similar reduction in the number of search tree backtracks.

References

[1] Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: Disjoint, partition and inter-
section constraints for set and multiset variables. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 138–152. Springer, Heidelberg (2004)

[2] Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T.
(ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

[3] Gervet, C.: Constraints over structured domains. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, Elsevier, Amster-
dam (2006)

[4] Régin, J.-C.: Generalized arc consistency for global cardinality constraint.
In: AAAI 1996, vol. 1, pp. 209–215 (1996)

[5] Sadler, A., Gervet, C.: Global reasoning on sets. In: Proc. of Workshop on
Modelling and Problem Formulation (FORMUL 2001) (2001)

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 387–391, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Mobility Allowance Shuttle Transit (MAST) Services: MIP
Formulation and Strengthening with Logic Constraints

Luca Quadrifoglio1, Maged M. Dessouky2, and Fernando Ordóñez2

1 Zachry Department of Civil Engineering
Texas A&M University

lquadrifoglio@civil.tamu.edu
2 Daniel J. Epstein Department of Industrial and Systems Engineering

University of Southern California

We study a hybrid transportation system referred to as Mobility Allowance Shut-
tle Transit (MAST) where vehicles may deviate from a fixed path consisting of a
few mandatory checkpoints to serve demand distributed within a proper service
area. In this paper we propose a Mixed Integer Programming (MIP) formulation
for the static scheduling problem of a MAST type system. Since the problem is
NP Hard, we develop sets of logic cuts, by using reasonable assumptions on pas-
sengers’ behavior. The purpose of these constraints is to speed up the search for
optimality by removing inefficient solutions from the original feasible region.
Experiments show the effectiveness of the developed inequalities, achieving a
reduction up to 90% of the CPU solving time for some of the instances.

Summary1

We study a hybrid transportation system referred to as Mobility Allowance Shuttle
Transit (MAST) where vehicles may deviate from a fixed path consisting of a few
mandatory checkpoints to serve demand distributed within a proper service area. A
MAST system is described by a set of vehicles driving along a base fixed-route and
serving a specific geographic area. The base route can be laid out around a loop or
between two terminals. Vehicles must stop at a set of checkpoints along the main
path. The checkpoints are conveniently located at major transfer points or high den-
sity demand zones, are relatively far from each other and have fixed departure times.
Given a proper amount of slack time, vehicles are allowed to deviate from the fixed
path to serve (pick-up and/or drop-off) customers at their desired locations, as long as
they are within a service area.

The MAST system considered consists of a single vehicle, associated with a prede-
fined schedule along a fixed-route consisting of C checkpoints. A trip r is defined as a
portion of the schedule beginning at one of the terminals and ending at the other one
after visiting all the intermediate checkpoints. The service area is represented by a

1 This is a summary of the following paper: Quadrifoglio L., Dessouky M., Ordóñez F., “Mo-

bility Allowance Shuttle Transit services: MIP formulation and strengthening with logic con-
straints”, European Journal of Operational Research, 2008, 185, 481–494.

388 L. Quadrifoglio, M.M. Dessouky, and F. Ordóñez

rectangular region defined by L×W, where L (on the x axis) is the distance between
terminals 1 and C and W/2 (on the y axis) is the maximum allowable deviation from
the main route in either side (see Figure 1).

The demand is defined by a set of requests. Each request is defined by pick up/drop off
service stops and a ready time for pick up. The MAST service can respond to four differ-
ent types of requests: pick up (P) and drop off (D) at the checkpoints; non checkpoint pick
up (NP) and drop off (ND), representing customers picked up/dropped off at any location
within the service area. A certain amount of slack time between any consecutive pair of
checkpoints is needed in order to allow deviations to serve NP or ND requests. There are
consequently four different possible types of customers’ requests: PD (“Regular”), pick up
and drop off at the checkpoints; PND (“Hybrid”), pick up at the checkpoint, drop off not at
the checkpoint; NPD (“Hybrid”), pick up not at the checkpoint, drop off at the checkpoint;
NPND (“Random”), pick up and drop off not at the checkpoints. In this paper we consider
a static scenario in which all the demand is known in advance. We also assume one cus-
tomer per request, no vehicle capacity constraint and a deterministic environment.

L

W/2

W/2

r

r+1

1 C

x

y

2 3 c C-1

L

W/2

W/2

r

r+1

1 C

x

y

2 3 c C-1

Fig. 1. MAST system

The MAST scheduling problem can be formulated as a mixed integer linear program:

Objective

Function()
() ()⎟

⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑∑
∈∈∈ KKA

τωωvδω
k

kk
k

kk
ji

i,ji,j ppdx 32
,

1min
Objective

Function()
() ()⎟

⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑∑
∈∈∈ KKA

τωωvδω
k

kk
k

kk
ji

i,ji,j ppdx 32
,

1min

()ktdo

1, =∑
i

jix

1, =∑
j

jix

()
1

HRD
, =∑

∈ kr
rkz

∀j∈N/{1}

∀i∈N/{TC}

ti = θi ∀i∈N0

pk = tpu(k) ∀k∈K/KPND

dk = ∀k∈K/KNPD

∀k∈KHYB

()rkt ,do

()rkt ,do

jt

pk ≥ tpu(k,r) – M(1-zk,r) ∀k∈KPND, ∀r∈HRD(k)

pk ≤ tpu(k,r) + M(1-zk,r) ∀k∈KPND, ∀r∈HRD(k)

dk ≥ – M(1-zk,r) ∀k∈KNPD, ∀r∈HRD(k)

dk ≤ + M(1-zk,r) ∀k∈KNPD, ∀r∈HRD(k)

pk ≥ τk ∀k∈K

dk > pk ∀k∈K

≥ ti + xi,jδi,j/v – M(1–xi,j) ∀(i,j)∈A

Subject to:

()ktdo

1, =∑
i

jix

1, =∑
j

jix

()
1

HRD
, =∑

∈ kr
rkz

∀j∈N/{1}

∀i∈N/{TC}

ti = θi ∀i∈N0

pk = tpu(k) ∀k∈K/KPND

dk = ∀k∈K/KNPD

∀k∈KHYB

1, =∑
i

jix

1, =∑
j

jix

()
1

HRD
, =∑

∈ kr
rkz

∀j∈N/{1}

∀i∈N/{TC}

ti = θi ∀i∈N0

pk = tpu(k) ∀k∈K/KPND

dk = ∀k∈K/KNPD

∀k∈KHYB

()rkt ,do

()rkt ,do

jt

pk ≥ tpu(k,r) – M(1-zk,r) ∀k∈KPND, ∀r∈HRD(k)

pk ≤ tpu(k,r) + M(1-zk,r) ∀k∈KPND, ∀r∈HRD(k)

dk ≥ – M(1-zk,r) ∀k∈KNPD, ∀r∈HRD(k)

dk ≤ + M(1-zk,r) ∀k∈KNPD, ∀r∈HRD(k)

pk ≥ τk ∀k∈K

dk > pk ∀k∈K

≥ ti + xi,jδi,j/v – M(1–xi,j) ∀(i,j)∈A

()rkt ,do

()rkt ,do

jt

pk ≥ tpu(k,r) – M(1-zk,r) ∀k∈KPND, ∀r∈HRD(k)

pk ≤ tpu(k,r) + M(1-zk,r) ∀k∈KPND, ∀r∈HRD(k)

dk ≥ – M(1-zk,r) ∀k∈KNPD, ∀r∈HRD(k)

dk ≤ + M(1-zk,r) ∀k∈KNPD, ∀r∈HRD(k)

pk ≥ τk ∀k∈K

dk > pk ∀k∈K

≥ ti + xi,jδi,j/v – M(1–xi,j) ∀(i,j)∈A

Subject to:

 Mobility Allowance Shuttle Transit (MAST) Services 389

SETS of TRIPS
RD = all trips
HRD(k) ⊂ RD, ∀k∈KHYB = feasible trips of k

VARIABLES
xi,j = {0, 1}, ∀(i, j) ∈ A
ti, ∀i∈N = departure time from i

, ∀i∈N/{1} = arrival time at i

pk, ∀k∈K = pick-up time of request k

dk, ∀k∈K = drop-off time of request k

zk,r = {0,1}, ∀k∈KHYB, ∀r∈HRD(k)

PARAMETERS
δi,j, ∀(i, j)∈A = distance from i to j
v, vehicle speed
bi, boarding/disembarking time at i
θi, ∀i∈N0 = departure times from checkpoints
τk, ∀k∈K = ready time of request k
ω1/ω2/ω3 = objective function weights

SETS of NODES
N0 = checkpoints
Nn = non-checkpoints
N = N0 ∪ Nn

SETS of ARCS
A = all arcs

SETS of CUSTOMERS
KPD = PD requests
KPND = PND requests
KNPD = NPD requests
KNPND = NPND requests
KHYB = KPND ∪ KNPD

K = KPD ∪ KHYB ∪ KNPND

pu(k)∈N, ∀k∈K/KPND = pick-up of k

do(k)∈N, ∀k∈K/KNPD = drop-off of k

pu(k,r)∈N, ∀k∈KPND = pick-ups of k

do(k,r)∈N, ∀k∈KNPD = drop-offs of k

Where xi,j indicates whether an arc (i,j) is used (xi,j = 1) or not (xi,j = 0) and zk,r indi-
cates whether the checkpoint stop of the hybrid request k (a pick-up if k∈KPND or a
drop-off if k∈KNPD) is scheduled in trip r, ∀r∈RD.

The above formulation is sufficient to find the optimal solution of the problem, but
it is ineffective in the sense that it includes many feasible inefficient solutions and
thus has a weak LP relaxation.

A way to speed up the search for optimality is the development of constraints and
their addition to the math program formulation. These constraints are called valid if
they reduce the dimensions of the relaxed feasible region, but all integer feasible solu-
tions of the original model are not touched. The ideal purpose of these constraints is
to produce the convex hull of the integer feasible solutions which would allow LP
algorithms to solve the problem much faster. Another category of constraints, the so
called “logic cuts”, have the purpose to eliminate some integer feasible solutions that
are provably suboptimal. Thus, they can not be considered valid, but they can be in-
deed very effective. They may significantly shrink the feasible region, even by some
orders of magnitude, and they allow improving the quality of the LP relaxation bound,
considerably speeding up the reduction of the optimality gap throughout the iterations
of the solver. As a result, they can be extremely beneficial in reducing the CPU time
in the search for optimality.

In this paper we develop and add “logic cuts” to strengthen the above MAST for-
mulation. The underlying concept behind all the developed inequalities is that hybrid
customers will be choosing their P or D checkpoints as close as possible to their cor-
responding ND or NP stop, once these are placed in the schedule. More formally, we
can state (proofs in the full paper) the following Propositions 1 and 2:

390 L. Quadrifoglio, M.M. Dessouky, and F. Ordóñez

Proposition 1. A necessary condition for optimality is that NPD customers must dis-
embark the vehicle at the first occurrence of their D checkpoint following their sched-
uled NP pick-up stop.

Proposition 2. If ω2>ω3, a necessary condition for optimality is that PND customers
must board the vehicle at the last occurrence of their P checkpoint prior to their
scheduled ND drop-off stop.

Although the logic behind the above Propositions may seem obvious to a human
mind, it is not explicitly stated in the formulation and the solver would still consider
several feasible but inefficient solutions (violating the above Propositions) as possible
candidates while searching for optimality. Therefore, based on the above Proposi-
tions, we develop three different groups of valid inequalities to add to the formulation.

Group #1: The first group of inequalities is developed by directly applying Proposi-
tions 1 and 2. They include constraints linking the z variables to the t variables (de-
parture times) of non checkpoint stops of hybrid requests and constraints linking the z
variables to some of the x variables. An example is

tdo(k) < zk,rθj + M(1-zk,r), with j = pu(k,r+1), ∀k∈KPND, ∀r∈RD/{R}

Group #2: A second group of inequalities includes constraints linking z and x vari-
ables by making use of Propositions 1 and 2 along with the ready times τ of the re-
quests. An example is

τq(i) + δi,j + bj ≤ zk,rθj + M(2-zk,r-xdo(k),i),

with i = pu(q(i)), j = pu(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(do(k),i)∈An

Group #3: A third group of inequalities links z and x variables by applying the re-
sults from the Propositions to pairs of hybrid requests. An example is

zh,sθi - zk,rθj < M(3-zh,s-zk,r-xdo(k),do(h)),

with i = pu(h,s), j = pu(k,r+1), ∀k,h∈KPND, ∀r∈RD/{R}, ∀s∈RD

Experimental results on several instances (which we are omitting in this summary,

but are explained in details in the full paper) show the effectiveness of the developed
inequalities, which are able to reduce the CPU solution time by up to more than 90%
for some cases. Specifically, Group “#1” provide the best overall results that always
effective, followed in general by Group “#2” and Group “#3”, which are not always
effective. The synergistic effect of including all the cuts together further reduces the
CPU solution time in many cases. We provide the result for one case in the following
Table 1.:

 Mobility Allowance Shuttle Transit (MAST) Services 391

Table 1. Experimental results

Case: B1a TS=10: R=2; |KPD|=1; |KPND|=2; |KNPD|=1; |KNPND|=1

cuts var bin lin con sec n i rel opt ub lb gap
none 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0%
#1 67 43 24 91 0.03 27 221 81.8 114.7 / / 0.0%
#2 67 43 24 87 0.04 50 324 81.2 114.7 / / 0.0%
#3 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0%
all 67 43 24 93 0.03 25 217 81.8 114.7 / / 0.0%

Case: B1b TS=15: R=4; |KPD|=1; |KPND|=2; |KNPD|=2; |KNPND|=1

cuts var bin lin con sec n 103 i rel opt ub lb gap
none 124 89 35 156 0.56 695 7.91 105.8 164.9 / / 0.0%
#1 123 88 35 199 0.19 126 1.39 105.8 164.9 / / 0.0%
#2 124 89 35 188 0.50 643 5.46 105.8 164.9 / / 0.0%
#3 124 89 35 256 0.62 815 7.25 105.8 164.9 / / 0.0%
all 123 88 35 309 0.25 89 1.55 105.8 164.9 / / 0.0%

Case: B1c TS=20: R=4; |KPD|=1; |KPND|=5; |KNPD|=4; |KNPND|=1

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap
none 247 197 50 299 619.0 723.3 5.58 132.8 217.8 / / 0.0%
#1 244 195 49 351 49.0 60.7 0.47 132.8 217.8 / / 0.0%
#2 247 197 50 400 355.7 319.9 3.33 132.8 217.8 / / 0.0%
#3 247 197 50 639 508.1 460.2 4.03 132.8 217.8 / / 0.0%
all 244 195 49 742 32.0 27.2 0.31 132.8 217.8 / / 0.0%

Case: B1d TS=25: R=4; |KPD|=2; |KPND|=6; |KNPD|=6; |KNPND|=2

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap
none 398 336 62 452 36,000 20.2 249 193.0 ? 312.8 293.0 6.3%
#1 398 336 62 506 36,000 17.5 235 193.0 ? 312.8 304.4 2.7%
#2 398 336 62 552 36,000 17.0 246 193.0 ? 312.8 293.4 6.2%
#3 397 335 62 590 36,000 14.4 215 193.0 ? 312.8 295.6 5.5%
all 397 335 62 744 36,000 15.3 219 193.0 ? 312.8 299.8 4.1%

In the table, TS is the total number of stops in the network, R is the number of trips.
We solved the same instance without adding any groups of inequalities (“none”), add-
ing only one group at a time (“#1”, “#2” or “#3”) or adding all the groups together
(“all”). For each run we show the size of the problem solved: total variables (“var”),
divided into binary (“bin”) and linear (“lin”) and total number of constraints (“con”).
The following columns show the time to reach optimality in seconds (“sec”), the num-
ber of nodes visited in the branch and bound tree (“n”), the number of simplex itera-
tions performed (“i”), the relaxed optimal value (“rel”) and the real optimum (“opt”).

Author Index

Achterberg, Tobias 6, 278
Albert, Patrick 328
Altner, Doug 283

Barlatt, Ada 288
Barnhart, Cynthia 1
Beck, J. Christopher 112, 263
Beldiceanu, Nicolas 21
Benini, Luca 36
Berthold, Timo 6
Brand, Sebastian 218

Cambazard, Hadrien 51
Carlsson, Mats 21
Cesta, Amedeo 355
Christie, Marc 372
Cohn, Amy M. 288

Demoen, Bart 158
Dessouky, Maged M. 387
Dooms, Grégoire 66

El Hachemi, Nizar 293
Ergun, Özlem 283

Fränzle, Martin 248
Fukunaga, Alex S. 82

Galinier, Philippe 298
Garcia de la Banda, Maria 158
Gendreau, Michel 293
Gomes, Carla P. 303
Graça, Ana 308
Grohe, Birgit 97
Gusikhin, Oleg 288
Gutkovich, Boris 313

Hadzic, T. 318
Heckman, Ivan 112
Heinz, Stefan 278
Hertz, Alain 298
Hooker, J.N. 318
Horan, John 51

Katsirelos, George 323
Khichane, Madjid 328
Koch, Thorsten 6, 278
Kroc, Lukas 127

Laburthe, François 2
Lau, Hoong Chuin 333
Leventhal, Daniel H. 142
Lombardi, Michele 36
Lye, Kong Wei 333
Lynce, Inês 308

Maier, Paul 338
Mantovani, Marco 36
Marques-Silva, João 308
Mears, Christopher 158
Mercier, Luc 173
Michel, Laurent 188, 377
Milano, Michela 36
Miller, Andrew J. 343

Namazifar, Mahdi 343
Narodytska, Nina 323
Naveh, Yehuda 349
Nguyen, Viet Bang 333
Normand, Jean-Marie 372

O’Mahony, Eoin 51
O’Sullivan, Barry 51
Oddi, Angelo 355
Oliveira, Arlindo L. 308
Ordóñez, Fernando 387

Paroz, Sandrine 298
Pesant, Gilles 203, 298
Petit, Thierry 361
Poder, Emmanuel 21, 361
Policella, Nicola 355
Puchinger, Jakob 218

Quadrifoglio, Luca 387
Quimper, Claude-Guy 203

394 Author Index

Régin, Jean-Charles 233
Rousseau, Louis-Martin 293
Ruggiero, Martino 36

Sabharwal, Ashish 127, 303, 382
Sachenbacher, Martin 338
Sellmann, Meinolf 142, 367
Selman, Bart 127
Shvartsman, Alexander 188
Smith, Stephen F. 355
Solnon, Christine 328
Sonderegger, Elaine 188
Stuckey, Peter J. 218

Teige, Tino 248
Tiedemann, P. 318
Truchet, Charlotte 372

Van Hentenryck, Pascal 5, 66, 173,
188, 377

van Hoeve, Willem-Jan 303, 382

Wallace, Mark 158, 218
Walsh, Toby 323
Watson, Jean-Paul 263
Wedelin, Dag 97
Wolter, Kati 6

	Title Page
	Preface
	Organization
	Table of Contents
	Airline Scheduling: Accomplishments, Opportunities and Challenges
	Selected Challenges from Distribution and Commerce in the Airline and Travel Industry
	30 Years of Constraint Programming
	Constraint Integer Programming: A New Approach to Integrate CP and MIP
	Introduction
	Constraint Integer Programs
	The SCIP Framework
	Constraint Handlers
	Domain Propagation
	Conflict Analysis
	Cutting Plane Separators
	Primal Heuristics
	Node Selection and Branching Rules
	Presolving

	SCIP as a MIP Solver
	Using SCIP for Property Checking
	CP Techniques
	IP Techniques
	SAT Techniques
	Computational Results

	New Filtering for the {\it cumulative} Constraint in the Context of Non-Overlapping Rectangles
	Introduction
	Background
	The Longest Cumulative Hole Problem
	Defining the Longest Cumulative Hole
	Using the Longest Cumulative Hole for Filtering
	Evaluating the Longest Cumulative Hole
	Illustrating the Incomparability of the Two Bounds

	Balancing Knapsack Constraints
	Strengthening the Method
	Learning Solutions

	Performance Evaluation
	Conclusion

	Multi-stage Benders Decomposition for Optimizing Multicore Architectures
	Introduction
	Problem Description
	The Architecture
	The Target Application
	Problem Definition

	Multi-stage Benders Decomposition
	SPE Allocation
	Schedulability Test
	Memory Device Allocation
	Scheduling Subproblem
	Benders Cuts

	Experimental Results
	Conclusion and Future Works

	Fast and Scalable Domino Portrait Generation
	Introduction
	The Domino Portrait Generation Problem
	An Integer Linear Programming Model
	A Two-Step Approximation
	Generating the Pattern of Empty Domino Holders
	Solving the Assignment Problem as a Min-Cost Flow

	Improving the Pattern Using Local Search
	Experiments
	Conclusion

	Gap Reduction Techniques for Online Stochastic Project Scheduling
	Introduction
	Online Stochastic Project Scheduling
	The Generic Online Decision-Making Algorithm
	Instantiating The Online Decision-Making Algorithm
	Heuristically-Confined Dynamic Programming
	The One-Step Anticipatory Algorithm
	Gap Reduction through Waiting
	Gap Reduction through Gap Correction
	Gap Reduction through Time Scaling
	Gap Reduction by Problem Reduction
	Experimental Results
	Conclusion

	Integrating Symmetry, Dominance, and Bound-and-Bound in a Multiple Knapsack Solver
	Introduction
	Bin-Completion Algorithm for the MKP
	Exploiting Symmetry
	Path-Symmetry
	Path-Dominance
	Combining Symmetry Breaking Strategies
	Relationship to Previous Work on Symmetry Detection

	Bound and Bound
	Experimental Results
	Conclusions

	Cost Propagation – Numerical Propagation for Optimization Problems
	Introduction
	Cost Propagation
	Cost Updates
	Propagation with Cost Updates

	Non-conflicting Updates
	Analysis of Non-conflicting Updates
	The Fractional DP-Update

	Propagation Experiments
	The Simple Assignment and Set Partitioning Problems
	A Crossword Puzzle

	Conclusions

	Fitness-Distance Correlation and Solution-Guided Multi-point Constructive Search for CSPs
	Introduction
	Background
	Solution-Guided Multi-point Constructive Search
	Descriptive Models of Algorithm Behavior
	The Multi-dimensional Knapsack Problem

	Initial Experiment
	Experimental Details
	Results

	Building a Descriptive Model
	A Measure of Distance
	Analysis of the Initial Experiments
	Manipulating the Fitness-Distance Correlation
	Toward Better Heuristic Evaluations

	Discussion
	Conclusion

	Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting
	Introduction
	Notation
	Lower Bounds Using BP Marginal Estimates
	Counting Using BP: BPCount

	Upper Bound Estimation
	Counting Using Backtrack Search: MiniCount
	Estimating the Upper Bound

	Experimental Results
	Conclusion

	The Accuracy of Search Heuristics: An Empirical Study on Knapsack Problems
	Motivation
	A Disturbing Case Study
	A Case for the Direct Assessment of Heuristic Accuracy

	Knapsack Problems
	Branch and Bound for Knapsacks
	Stronger Inference: Knapsack Cuts and Knapsack Constraints

	Two Performance Measures for Value Selection Heuristics
	Heuristic Accuracy as a Function of Depth
	How Inference Affects the Robustness of Search Heuristics
	Conclusions

	A Novel Approach For Detecting Symmetries in CSP Models
	Introduction
	Background and Definitions
	From CSPs to Parameterised CSPs
	A Framework for Detecting Parameterised Symmetries
	Step One: Detecting Symmetries for Some CSP[{\it d}]
	Step Two: Lifting Symmetries to Parameterised Permutations
	Step Three: Filtering Parameterised Permutations
	Step Four: Proving Class Symmetries

	Detailed Examples
	Results
	Conclusions

	{\it Amsaa}: A Multistep Anticipatory Algorithm for Online Stochastic Combinatorial Optimization
	Introduction
	A Stochastic Project Scheduling Problem
	Exogeneity and Endogeneity: Problem Classification
	Background in Stochastic Dynamic Programming
	Exogenous Markov Decision Processes
	Amsaa: An Algorithm for Decision Making in X-MDPs
	Experimental Results on Anytime Decision Making
	Comparison with Mathematical Programming
	Conclusion and Research Opportunities

	Optimal Deployment of Eventually-Serializable Data Services
	Introduction
	Deployment of Eventually-Serializable Data Services
	Modeling Optimal EDSD Deployments
	The MIP Model
	The CP Model
	Experimental Results
	The Benchmarks
	The MIP Model
	The CP Model

	Conclusion

	Counting Solutions of Knapsack Constraints
	Introduction
	Counting with Domain Consistent Knapsacks
	Counting with Bounds Consistent Knapsacks
	Experiments
	Market Split Problem
	Multidimensional Knapsack Problem
	Magic Square Completion Problem
	Cost-Constrained Rostering Problem

	Discussion

	From High-Level Model to Branch-and-Price Solution in G12
	Introduction
	Dantzig-Wolfe Decomposition and Column Generation
	Solving with G12
	Dantzig-Wolfe Decomposition and Column Generation in Zinc
	Implementation
	The Trucking Problem

	Identical Subproblems
	Aggregating Identical Subproblems
	Automatic Disaggregation When Branching on Original Variables
	The Cutting Stock Problem

	Specialised Branching Rules
	Related Work and Conclusion

	Simpler and Incremental Consistency Checking and Arc Consistency Filtering Algorithms for the Weighted Spanning Tree Constraint
	Introduction
	Preliminaries
	Graph Theory
	Constraint Programming

	Consistency Checking
	Arc Consistency Filtering Algorithm
	Tree of Connected Components Merges

	Maintenance During the Search
	Consistency Checking
	AC Filtering Algorithm
	Restoration

	Conclusion

	Stochastic Satisfiability Modulo Theories for Non-linear Arithmetic
	Introduction
	Stochastic Satisfiability Modulo Theories
	SSMT Algorithm for Non-linear Arithmetic
	Solution-Directed Backjumping

	Evaluation of the Algorithm
	Description and Encoding of the Case Studies
	Experimental Results

	Conclusion and Future Work

	A Hybrid Constraint Programming / Local Search Approach to the Job-Shop Scheduling Problem
	Introduction
	Problem Description and Benchmark Instances
	Algorithms
	Iterated Simple Tabu Search
	Solution-Guided Multi-point Constructive Search
	A Very Simple Hybrid Approach

	Experimental Methodology
	Results
	Parameter Sensitivity
	Performance Relative to the State-of-the-Art
	Best-Known Upper Bounds
	On Proving Optimality

	Discussion
	Conclusions and Future Research Directions

	Counting Solutions of Integer Programs Using Unrestricted Subtree Detection
	Introduction
	Problem Definition
	Branch-and-Count Approach
	Pruning by Detecting Unrestricted Subtrees
	Computational Results

	Rapidly Solving an Online Sequence of Maximum Flow Problems with Extensions to Computing Robust Minimum Cuts
	Introduction
	The Maximum Flow Single Arc Reoptimization Problem
	Robust Minimum Capacity s-t Cuts
	Computational Results
	Conclusions

	A Hybrid Approach for Solving Shift-Selection and Task-Sequencing Problems
	Introduction
	Problem Statement
	Formal Problem Statement

	Test-and-Prune Algorithm
	Computational Results, Conclusions and Future Research

	Solving a Log-Truck Scheduling Problem with Constraint Programming
	Introduction
	Modelling the LTSP
	An Hybrid Approach
	Experimental Results
	Conclusion

	Using Local Search to Speed Up Filtering Algorithms for Some NP-Hard Constraints
	Introduction
	Description of the Filtering Algorithm
	A Colorability Test Procedure
	A Tabu Search Heuristic Used for Marking

	Computational Experiments
	Workforce Management Data
	Random Graphs
	Graphs with a Unique D-Coloring

	Conclusion and Future Work

	Connections in Networks: A Hybrid Approach
	References

	Efficient Haplotype Inference with Combined CP and OR Techniques
	Introduction
	Haplotype Inference by Pure Parsimony (HIPP)
	RPoly: A Pseudo-boolean HIPP Model
	Optimizations to the RPoly Model
	Experimental Results
	Acknowledgments

	Integration of CP and Compilation Techniques for Instruction Sequence Test Generation
	Introduction
	Instruction Sequence from Constraints on Expression: Example
	Instruction Sequence from Constraints on Expression: Method
	Feasibility of the Proposed Method
	References

	Propagating Separable Equalities in an MDD Store
	A Propagator for the {\it Separable} Equality constraint
	Pruning
	Refining

	Empirical Results
	Conclusions and Future Work

	The Weighted CFG Constraint
	Introduction
	The Weighted Cfg Constraint
	Decomposition of the Weighted Cfg Constraint
	The Soft Cfg Constraint
	Experimental Results

	CP with ACO
	Description of Ant-CP
	Using Ant-CP to Solve the Car Sequencing Problem

	A Combinatorial Auction Framework for Solving Decentralized Scheduling Problems (Extended Abstract)
	Introduction
	Lagrangian Relaxation and Combinatorial Auction
	Decentralized Lot-Sizing-Cum-Transportation Problem
	Experimental Results
	References

	Constraint Optimization and Abstraction for Embedded Intelligent Systems
	Introduction
	Adaptive Abstraction for Constraint-Based Models
	Future Work Directions

	A Parallel Macro Partitioning Framework for Solving Mixed Integer Programs
	Introduction
	Primal Heuristics
	LP-and-FIX
	Relaxation Induced Neighborhood Search (RINS)
	Local Branching

	The Parallel Macro Partitioning (PMaP) Framework
	Processors
	Brancher Processor.
	Worker Processors.
	Assigner Processor.

	Data Pools
	Sub-problem Pool.
	Feasible Solution Pool.

	Implementation and Numerical Results
	Implementation
	Results

	Conclusions

	Guiding Stochastic Search by Dynamic Learning of the Problem Topography
	Introduction
	Results
	Conclusions

	Hybrid Variants for Iterative Flattening Search
	Introduction
	Iterative Flattening Search
	Experimental Analysis
	Conclusions

	Global Propagation of Practicability Constraints
	Introduction
	Cumulative Constraint with Over-Loads
	Variable-Based vs Valuation-Based Model

	The Polytope of Tree-Structured Binary Constraint Satisfaction Problems
	Binary Constraint Satisfaction
	The Support Formulation
	The Polytope of Tree-Structured BCPs

	A Tabu Search Method for Interval Constraints
	Interval Constraints
	Tabu Search on Intervals
	Framework
	Implementation
	Discussion

	Conclusion

	The Steel Mill Slab Design Problem Revisited
	Introduction
	The Steel Mill Slab Design Problem
	The Constraint Program
	Experimental Results
	Conclusion

	Filtering Atmost1 on Pairs of Set Variables
	Introduction
	Domain Filtering for Set Constraints
	The Bounds Consistency Filtering Algorithm
	Experimental Results

	Mobility Allowance Shuttle Transit (MAST) Services: MIP Formulation and Strengthening with Logic Constraints
	Author Index

