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Preface

The 5th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2008) was held in Paris, France May 20-23, 2008.

The purpose of this conference series is to bring together researchers in the
fields of constraint programming, artificial intelligence, and operations research
to explore ways of solving large-scale, practical optimization problems through
integration and hybridization of the fields’ different techniques. Through the
years, this research community is discovering that the fields have much in com-
mon, and there has been tremendous richness in the resulting cross-fertilization
of fields.

This year, we allowed submissions of both long (15 page) and short (5 page)
papers, with short papers either being original work, a reduced version of a long
paper, or an extended abstract of work published elsewhere. We were not sur-
prised by the 69 submissions in the long paper category: this is an active field
with many researchers. We were surprised by the 61 short paper submissions.
This was far more than predicted. With 130 high-quality submissions, competi-
tion for acceptance in this year’s program was particularly fierce. In the end, we
accepted 18 long papers and 22 short papers for presentation and publication in
this volume.

In addition to the selected papers, there were three invited talks. Those speak-
ers were Cindy Barnhart, Professor of Civil and Environmental Engineering at
the Massachusetts Institute of Technology, Pascal Van Hentenryck, Professor of
Computer Science at Brown University, and Francois Laburthe, Director of Op-
erations Research and Innovation at Amadeus, a leading information technology
firm in the travel industry.

On May 20, a Master Class was held, organized by Cindy Barnhart and
Laurent Michel, Assistant Professor of Computer Science and Engineering at
the University of Connecticut. The theme of the Master Class was “Modeling
Practical Problems: The OR/CP Interface.” The Master Class is intended for
PhD students, researchers and practitioners.

Thursday afternoon was given over to three workshops: Open-Source Soft-
ware for Integer and Constraint Programming, organized by Robin Lougee-
Heimer of IBM Research and Ionut Aron, formerly of IBM Research, Bin Packing
and Placement Constraints, organized by a group led by Nicolas Beldiceanu of
EMN Nantes, and Constraint-Based Methods for Bioinformatics, organized by
Agostino Dovier of the University of Udine.

This year, the conference organization was divided. While we handled the pro-
gram, Francois Fages, Senior Research Scientist INRIA, joined Laurent in the
conference organization. Frangois and Laurent, with the help of the colloquium
office at INRIA, were responsible for organizing the venue, finding sponsorship



VI Preface

funds, and the million other details that go into running a successful confer-
ence. Francois was also particularly helpful in assisting us with program policy
decisions, and we are grateful for his thoughts and experience.

We would particularly like to thank the Program Committee for their efforts.
No one expected 130 submissions, and they did a tremendous job of reading,
reviewing, and commenting on papers in a timely and insightful fashion.

Finally, we would like to thank the sponsors who make this possible. These in-
clude the Association for Constraint Programming, INRIA, Microsoft Research/
INRIA Joint Center, National ICT Australia, ILOG, COSYTEC, Intelligent Infor-
mation Systems Institute at Cornell, KLS OPTIM, Jeppesen Technology Services
and the energy company Total.

May 2008 Laurent Perron
Michael Trick
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Airline Scheduling: Accomplishments,
Opportunities and Challenges

Cynthia Barnhart

Massachusetts Institute of Technology

Airline scheduling is characterized by numerous complexities, including a net-
work of flights, different aircraft types, limited numbers of gates, air traffic
control restrictions, environmental regulations, strict safety requirements, a myr-
iad of crew work rules and complicated payment structures, and competitive,
dynamic environments in which passenger demands are uncertain and pricing
strategies are complex. This, layered with the airline industry’s endemic issues
of low profitability, contentious labor issues, and outdated and inadequate infras-
tructure, poses daunting challenges that have intrigued operations researchers
for at least a half-century, and have provided a fertile ground for the develop-
ment and application of models and algorithms. In this talk, we first briefly
summarize the optimization-based accomplishments in this area, highlighting
the significant successes and impacts. While impressive, the problem is far from
solved today. The focus of this talk, then, is on the many remaining opportunities
and challenges, namely:

a) Robust scheduling: A trend in airline scheduling is to generate schedules that
are “robust” to the disruptions that plague airline operations. Because airlines
have typically constructed schedules with the assumption that every flight de-
parts and arrives as planned, plans are frequently disrupted and airlines often
incur significant additional costs beyond those originally planned. A more ro-
bust plan can reduce the occurrence and impact of these disruptions.

b) Dynamic scheduling: Stochasticity of passenger demands is a major challenge
for the airlines in their quest to produce profit-maximizing schedules. Even
using sophisticated optimization tools, many flights upon departure have
empty seats, while others suffer a lack of seats to accommodate passengers
who desire to travel. One approach to this challenge is to implement dynamic
scheduling approaches that re-optimize elements of the flight schedule during
the passenger booking process, recognizing that demand forecast quality for
a particular date improves as the date approaches.

¢) Recovery from irregular operations: We describe approaches designed for
use in near real-time mode to adjust operations in response to a variety of
disruptions. We present briefly some of the market-based mechanisms being
considered to address this problem, with a particular focus on minimizing
disruption and delay to passengers.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, p. 1, 2008.
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Selected Challenges from Distribution and
Commerce in the Airline and Travel Industry

Francois Laburthe

Operations Research & Innovation, Amadeus

Distribution for the travel industry is about connecting providers (airlines, train
companies, car rental companies, hoteliers ... who all have tickets to sell) to
customers (business travelers & tourists). Such sales can be done directly or
through a travel agent, both offline (during a discussion with an agent) or on-
line (through a web site). Distribution for the travel industry has gone through
impressive changes in the past decades with the advent of Global Distribution
Systems in 80’s, the rise sophisticated pricing & revenue management policies
in the 90’s and the growth of Internet in the past decade.

Though massive flows of money go through the distribution chain, most actors
have small margins, and need efficient commercial policies to be profitable. As
reservations are immaterial goods, information is key to business optimization,
in order to match supply with demand, price products effectively, and support
innovative offerings. In this talk, we will present several challenges for operations
researchers & computer scientists related to commerce and distribution systems
for the airline industry.

1. Fare search. These are the tools that power the web sites of online travel
agencies and airlines websites, as well as travel agent desktops. They sup-
port the search for travel solutions between two cities at a given date. Such
tools return sequences of flights with applicable fares. Whilst one could imag-
ine that they are based on simple database requests, or on shortest paths
computation, fare search turns out to be an incredibly combinatorial prob-
lem because of the sophisticated business rules governing the validity of a
fare. The success of fare search products yields interesting challenges to the
operations researcher such as:

— How fast can one design a graph exploration method, where the pricing
rules involve quantified formulas with negation (stating that a fare is
applicable if there exists no other travel solution through another airport
such that ...)?

— How can a search domain be partitioned into independent search domains
in order to process independent fare search sub-requests in parallel?

— If one uses a cache to store prices derived from fare rules, how can one
predict which are the prices needing to be recomputed after a change in
pricing rules?

— In the case of package search (where the traveler will book flights, ho-
tel stay, car rental & possibly others in a single transaction), how can
one index such combinations of products? How can they be efficiently
searched for?

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 2 2008.
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2. Inventory & availability management. Airlines are increasingly moving
towards complex commercial policies, with numerous fare classes potentially
available on a given flight and where the decision of the actual availability of
a fare depends on many characteristics of the request (end-to-end journey,
channel through which the request is arriving, membership to loyalty pro-
gram tier, ... ). This trend towards dynamic pricing does stress the inventory
management systems which now become solicited not only for performing ac-
tual bookings, but also for answering loads of availability requests from web-
site shoppers. The increased look-to-book ratio (with evermore fare search
transactions per actual booking) as well as the inability of legacy inventory
systems to cope with such transaction volumes calls for much smarter global
availability systems. Interesting challenges are:

— If one caches the availability traffic related to booking attempts (traffic
hitting the inventory system), can one reconstruct the availability logic
in order to accurately mimic its logic and therefore protect the inventory
from too heavy a traffic? In practice, how can one answer availability re-
quests for all availability traffic (including, say, trips from JFK to Rome’s
FCO airport, by knowing the precise availability information from only a
sample of the traffic, including JFK-CDG and LAX-FCO, but not JFK-
FCO). The commercial model of the airline is of course proprietary, but
the traffic can be sampled, and the availability model could be progres-
sively estimated.

— How can one predict, based on historical, the evolution of available fares?
Is it possible to evaluate a market situation and advise customers on
whether it is a good time to buy or not?

— How can one build a global model of market price for air trips?

3. Business management solutions for travel agents. Travel agents, both
off-line and on-line ones negotiate special fares & allotments with providers
airlines. They make a living both of service fees, and mark-ups (a share of
the price of the products they sell). They can optimize their revenues by
selling in case of products with similar benefits to the traveler, the product
that generates the most profit for them. Examples of challenges related to
that issue include:

— Forecasting the agency’s own revenue, based on historical data & the
current fee policy,

— Simulating how the revenue would evolve in case the rules for computing
service fees & mark-ups were to change,

— Deciding what are the proper reachable levels for all providers in order
to negotiate commissions based on volume targets

4. Revenue management solutions for airlines. The airline industry is
probably the industry that for which many of the revenue management con-
cepts have been introduced. Revenue management systems include a fore-
caster (estimating the future potential sales of tickets from now till the day
of departure) and an optimizer (defining the appropriate inventory controls
from the forecasted demand). Modern airline revenue management system in-
clude end-to-end availability logic (O&D logic) which states that an itinerary
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should be available for sale if its yield to the airline is greater than the sum
of the opportunity costs on each segment of the trip. Moreover, this network
logic is often further tailored by means of fare modifiers which further re-
strict the availability in cases of hints that the request is originating from a
business traveler. Scientific challenges include:

— Understand the real impact of O&D logic in the revenue management.
What is the actual positive impact of O&D revenue management com-
pared to simpler tools? Currently, all such questions are answered by
simulation. Defining the appropriate simulation protocol to assess such
methods is a difficult task.

— Define robust forecasting methods.

— Define incremental optimization methods, ie: methods that evaluate ac-
curately and in real time the actual revenue impact of a ticket sale.

With such a research agenda, I'T systems for the airline & travel industry, as
they embed more and more operation research components, will continue to offer
daunting challenges and tremedous opportunities and will inspire generations of
scientists to come.



30 Years of Constraint Programming

P. Van Hentenryck

Brown University, Box 1910, Providence, RI 02912

Abstract. This talk reviews 30 years of constraint programming. It sur-
veys computational and modeling progress, provides some historical per-
spectives on current research topics, explores some of the challenges faced
by constraint-programming technology, and contrasts its development
with mixed-integer programming. It also argues that the key strengths
of constraint programming will be ubiquitous future optimization sys-
tems and describes some of the significant engineering steps to be taken
for realizing this vision.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, p. 5, 2008.
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Constraint Integer Programming: A New
Approach to Integrate CP and MIP

Tobias Achterberg!, Timo Berthold?, Thorsten Koch?, and Kati Wolter?

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany
tachterberg@ilog.de
2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
berthold,koch,wolter@zib.de

Abstract. This article introduces constraint integer programming
(CIP), which is a novel way to combine constraint programming (CP)
and mixed integer programming (MIP) methodologies. CIP is a general-
ization of MIP that supports the notion of general constraints as in CP.
This approach is supported by the CIP framework SCIP, which also in-
tegrates techniques from SAT solving. SCIP is available in source code
and free for non-commercial use.

We demonstrate the usefulness of CIP on two tasks. First, we ap-
ply the constraint integer programming approach to pure mixed integer
programs. Computational experiments show that SCIP is almost com-
petitive to current state-of-the-art commercial MIP solvers. Second, we
employ the CIP framework to solve chip design verification problems,
which involve some highly non-linear constraint types that are very hard
to handle by pure MIP solvers. The CIP approach is very effective here:
it can apply the full sophisticated MIP machinery to the linear part of
the problem, while dealing with the non-linear constraints by employing
constraint programming techniques.

1 Introduction

In the recent years, several authors showed that an integrated approach of con-
straint programming (CP) and mized integer programming (MIP) can help to
solve optimization problems that were intractable with either of the two meth-
ods alone [TH2540]. Different approaches to integrate CP and MIP into a single
framework have been proposed, [BIOITA223637] amongst others.

Most of the existing work follows the concept of augmenting a CP frame-
work with basic MIP techniques, namely LP relaxations and sometimes cutting
planes. In contrast, this paper introduces a way to incorporate CP specific solving
methods and its strong modeling capability into the sophisticated MIP solving
machinery. This is achieved by a low-level integration of the two concepts. The
constraints of a CP usually interact through the domains of the variables. Sim-
ilar to [QUT4I36I37], the idea of constraint integer programming (CIP) is to offer
a second communication interface, namely the LP relaxation. Furthermore, the
definition of CIP restricts the generality of CP modeling as little as needed to
still gain the full power of all primal and dual MIP solving techniques.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 6120 2008.
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Constraint Integer Programming 7

Therefore, CIP is well suited for problems that contain a MIP core comple-
mented by some non-linear constraints. As an example for such a problem type,
the property checking problem is presented in Section [B

The concept of constraint integer programming is realized in the branch-
and-cut framework SCIP. It combines solving techniques for CP, MIP, and
satisfiability problems (SAT) such that all involved algorithms operate on a single
search tree, which yields a very close interaction. A detailed description of the
concepts and the software can be found in [2].

The plugins that are provided with the standard distribution of SCIP suffice
to turn the CIP framework into a full-fledged MIP solver. In combination with
either SOPLEX [42] or CLP [I7] as LP solver, it is the fastest non-commercial
MIP solver that is currently available, see [32] and our results in Sectiondl Using
CPLEX [23] as LP solver, the performance of SCIP is even comparable to the
today’s best commercial codes.

As a library, SCIP can be used to develop branch-cut-and-price algorithms,
and it can be extended to support additional classes of non-linear constraints by
providing so-called constraint handler plugins. We present a solver for the chip
design verification problem as one example of this usage.

SCIP is freely available in source code for academic and non-commercial use
and can be downloaded fromhttp://scip.zib.del The current version 1.00—as
of this writing—has interfaces to five different LP solvers and consists of 223178
lines of C code. The code is actively maintained and extended, and we hope to
be able to make further improvements.

The article is organized as follows: in Section 2] we introduce constraint in-
teger programs. Section [B] presents the building blocks of the constraint integer
programming framework SCIP. In Sections [ and Bl we demonstrate the usage
of SCIP on two applications. First, we employ SCIP as a stand-alone MIP
solver, and second, we use SCIP as a branch-and-cut framework to solve chip
verification problems. Computational results are given in the Sections @ and (.41

2 Constraint Integer Programs

Most solvers for CP, SAT, and MIP are based on dividing the problem into
smaller subproblems and implicitly enumerating all potential solutions. Because
MIP is a very specific case of CP, MIP solvers can apply sophisticated techniques
that operate on the subproblem as a whole, for example solving the linear pro-
gramming (LP) relaxation or generating cutting planes.

In contrast, due to the very general definition of CPs, CP solvers have to rely
on constraint propagators, each of them exploiting the structure of a single con-
straint class. Usually, the only communication between the individual constraints
takes place via the variables’ domains. An advantage of CP is, however, the pos-
sibility to model the problem more directly, using very expressive constraints,
which maintain the structure of the problem.

On the other hand, SAT is also a very specific case of CP with only one type
of constraints, namely Boolean clauses. Such a clause can easily be linearized,
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but the LP relaxation is rather useless, as it cannot detect the infeasibility of
subproblems earlier than domain propagation. Therefore, SAT solvers mainly
exploit the special problem structure to speed up the domain propagation algo-
rithm.

The hope of integrating CP, SAT, and MIP techniques is to combine their
advantages and to compensate for their individual weaknesses. We propose the
following slight restriction of a CP, which allows the application of MIP solving
techniques, to specify our integrated approach:

Definition. A constraint integer program CIP = (€, 1, ¢) consists of solving

(CIP) ¢ =min{c"z|Ci(x)=1foralli=1,...,m,
reR", z;€Zforal jel}

with a finite set € = {C1,...,Cy,} of constraints C; : R™ — {0,1},i=1,...,m,
asubset ] C N = {1,...,n} of the variable index set, and an objective function
vector ¢ € R™. A CIP has to fulfill the following additional condition:

Vi € 721 (A V) {zc € RE | €(&r,20)} = {zc € RC | A'zc <V} (1)
with C := N\ I, A’ € R**¢ and b’ € R* for some k € Z>o.

Restriction (l) ensures that the remaining subproblem after fixing all integer
variables is always a linear program. This means that in the case of finite do-
main integer variables, the problem can be—in principle—completely solved by
enumerating all values of the integer variables and then solving the correspond-
ing LPs.

Note, that this does not forbid quadratic or even more involved expressions.
Only the remaining part after fixing (and thus eliminating) the integer variables
must be linear in the continuous variables. Furthermore, the linearity restriction
of the objective function can be compensated by introducing an auxiliary objec-
tive variable z that is linked to the actual non-linear objective function with a
constraint z = f(x). Analogously, general variable domains can be represented
as additional constraints.

Therefore, every CP that meets Condition () can be represented as a CIP.
Especially, the following proposition holds.

Proposition. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming;:
(a) Every CP with finite domains for all variables can be modeled as a CIP.
(b) Every MIP can be modeled as a CIP.

3 The SCIP Framework

SCIP is a framework for constraint integer programming. It is based on the
branch-and-bound procedure, which is a very general and widely used method
to solve optimization problems.
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The idea of branching is to successively divide the given problem instance into
smaller subproblems until the individual subproblems are easy to solve. The best
of all solutions found in the subproblems yields the global optimum. During the
course of the algorithm, a branching tree is created with each node representing
one of the subproblems.

The intention of bounding is to avoid a complete enumeration of all poten-
tial solutions of the initial problem, which are usually exponentially many. If a
subproblem’s lower (dual) bound is greater than or equal to the global upper
(primal) bound, the subproblem can be pruned. Lower bounds are calculated
with the help of a relaxation which should be easy to solve. Upper bounds are
found if the solution of the relaxation is also feasible for the corresponding sub-
problem.

Good lower and upper bounds must be available for the bounding to be effec-
tive. In order to improve a subproblem’s lower bound, one can tighten its relax-
ation, e.g., via domain propagation or by adding cutting planes (see Sections 3.2
and B4l respectively). Primal heuristics, which are described in Section [3.3] con-
tribute to the upper bound.

The selection of the next subproblem in the search tree and the branching
decision have a major impact on how early good primal solutions can be found
and how fast the lower bounds of the subproblems increase. More details on
branching and node selection are given in Section

SCIP provides all necessary infrastructure to implement branch-and-bound
based algorithms for solving CIPs. It manages the branching tree along with all
subproblem data, automatically updates the LP relaxation, and handles all nec-
essary transformations due to presolving problem modifications, see Section B.7
Additionally, a cut pool, cut filtering, and a SAT-like conflict analysis mecha-
nism, see Section [3.3] are available. SCIP provides its own memory management
and plenty of statistical output.

Besides the infrastructure, all main algorithms of SCIP are implemented as
external plugins. In the remainder of this section, we will describe the most
important types of plugins and their role for solving CIPs.

3.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the constraint
handlers. Each constraint handler represents the semantics of a single class of
constraints and provides algorithms to handle constraints of the corresponding
type. The primary task of a constraint handler is to check a given solution for
feasibility with respect to all constraints of its type existing in the problem
instance. This feasibility test suffices to turn SCIP into an algorithm which
correctly solves CIPs with constraints of the supported types. To improve the
performance of the solving process, constraint handlers may provide additional
algorithms and information about their constraints to the framework, namely

— presolving methods to simplify the problem’s representation,
— propagation methods to tighten the variables’ domains,
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— a linear relaxation, which can be generated in advance or on the fly, that
strengthens the LP relaxation of the problem, and

— branching decisions to split the problem into smaller subproblems, using
structural knowledge of the constraints in order to generate a well-balanced
branching tree.

The distribution of SCIP includes the constraint handler for linear constraints
that is needed to solve MIPs. Additionally, some specializations of linear con-
straints like knapsack, set partitioning, or variable bound constraints are sup-
ported by constraint handlers, which can exploit the special structure of these
constraints in order to obtain more efficient data structures and algorithms.

3.2 Domain Propagation

Constraint propagation is an integral part of every CP solver [§]. The task is
to analyze the set of constraints of the current subproblem and the current
domains of the variables in order to infer additional valid constraints and domain
reductions, thereby restricting the search space. The special case where only the
domains of the variables are affected by the propagation process is called domain
propagation. If the propagation only tightens the lower and upper bounds of the
domains without introducing holes it is called bound propagation.

In mixed integer programming, the concept of bound propagation is well-
known under the term node preprocessing. Usually, MIP solvers apply a restricted
version of the preprocessing algorithm that is used before starting the branch-
and-bound process to simplify the problem instance (see, e.g., [38] or [20]).

Besides the integrality restrictions, there is only one type of constraints in a
MIP, namely the linear constraints. In contrast, CP models can include a large
variety of constraint classes with different semantics and structure. Thus, a CP
solver usually provides specialized constraint propagation algorithms for every
single constraint class.

Constraint based (primal) domain propagation is supported by the constraint
handler concept of SCIP. In addition, SCIP features two dual domain reduc-
tion methods that are driven by the objective function, namely the objective
propagation and the root reduced cost strengthening [33)].

3.3 Conflict Analysis

Current state-of-the-art MIP solvers discard infeasible and bound-exceeding
subproblems without paying further attention to them. Modern SAT solvers,
in contrast, try to learn from infeasible subproblems, which is an idea due to
Marques-Silva and Sakallah [31]. The infeasibilities are analyzed in order to gen-
erate so-called conflict clauses. These are implied clauses that help to prune
the search tree. They also enable the solver to apply so-called non-chronological
backtracking. A similar idea in CP are no-goods, see e.g., [39].

SCIP generalizes conflict analysis to CIP and, as a special case, to MIP.
There are two main differences of CIP and SAT solving in the context of conflict
analysis. First, the variables of a CIP do not need to be of binary type. Therefore,
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we have to extend the concept of the conflict graph: it has to represent bound
changes instead of variable fixings, see [1] for details.

Furthermore, the infeasibility of a subproblem in the CIP search tree usually
has its reason in the LP relaxation of the subproblem. In this case, there is no
single conflict-detecting constraint as in SAT or CP solving. To cope with this
situation, we have to analyze the LP in order to identify a subset of the bound
changes that suffices to render the LP infeasible or bound-exceeding. Note that
it is an ANP-hard problem to identify a subset of the local bounds of minimal
cardinality such that the LP stays infeasible if all other local bounds are removed.
Therefore, we use a greedy heuristic approach based on an unbounded ray of the
dual LP, see [1].

After having analyzed the LP, we proceed in the same fashion as SAT solvers:
we construct a conflict graph, choose a cut in this graph, and produce a conflict
constraint which consists of the bound changes along the frontier of this cut.

3.4 Cutting Plane Separators

Besides splitting the current subproblem @ into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order
to rule out the current solution & and to obtain a different one. The LP relax-
ation can be tightened by introducing additional linear constraints a”x < b that
are violated by the current LP solution & but do not cut off feasible solutions
from Q. Thus, the current solution & is separated from the convex hull of integer
solutions Qr by the cutting plane a”x < b, i.e., & ¢ {r € R|a"z <b} D Q.

The theory of cutting planes is very well covered in the literature. For an
overview of computationally useful cutting plane techniques, see [20/30]. A recent
survey of cutting plane literature can be found in [27].

SCIP features separators for knapsack cover cuts [10], complemented mixed
integer rounding cuts [29], Gomory mixed integer cuts [2I], strong Chvatal-
Gomory cuts [28], flow cover cuts [35], implied bound cuts [38], and clique
cuts [20038]. Detailed descriptions of the cutting planes algorithms integrated
into SCIP and an extensive analysis of their computational impact can be found
in [41].

Almost as important as finding cutting planes is the selection of the cuts
that actually should enter the LP relaxation. Balas, Ceria, and Cornuéjols [I1]
and Andreello, Caprara, and Fischetti [6] proposed to base the cut selection on
efficacy and orthogonality. The efficacy is the Euclidean distance of the cut hy-
perplane to the current LP solution, and an orthogonality bound makes sure that
the cuts added to the LP form an almost pairwise orthogonal set of hyperplanes.
SCIP follows these suggestions.

3.5 Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures in-
side a MIP solver: they help to find good feasible solutions early in the search
process, which helps to prune the search tree by bounding and allows to apply
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more reduced cost fixing and other dual reductions that can tighten the problem
formulation.

Overall, there are 23 heuristics integrated into SCIP. They can be roughly
subclassified into four categories:

— Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility for the constraints is maintained
or recovered by further roundings.

— Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search (see Section B0 in
the branch-and-bound tree.

— Objective diving heuristics are similar to diving heuristics, but instead of
fixing the variables by changing their bounds, they perform “soft fixings” by
modifying their objective coeflicients.

— Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

Detailed descriptions of the primal heuristics implemented in SCIP and an in-
depth analysis of their computational impact can be found in [I2], an overview

is given in [13].

3.6 Node Selection and Branching Rules

Two of the most important decisions in a branch-and-bound algorithm are the
selection of the next subproblem to process (node selection) and how to split the
current problem @ into smaller subproblems (branching rule).

The most popular branching strategy in MIP solving is to split the domain
of an integer variable x;, j € I, with fractional LP value &; ¢ Z into two parts,
thus creating two subproblems Q1 = QN{z; < |Z;|} and Q2 = QN{z; > [Z;]}.
Methods to select such a fractional variable for branching are discussed in [23].

SCIP implements most of the discussed branching rules, especially reliability
branching which is currently the most effective general branching rule for MIP.
Using SCIP, it is possible to implement arbitrary branching schemes such as
branchings that create more than two subproblems or branching on constraints.

SCIP offers several node selection strategies as default plugins. Depth first
search always chooses a child of the current node as the next subproblem to be
processed or backtracks to the most recent ancestor with an unprocessed child,
if the current node has been pruned. Depth first search is the preferred strat-
egy for pure feasibility problems like SAT. Additionally, it has the benefit that
successively solved subproblems are very similar, which reduces the subproblem
management overhead.

Best first search aims at improving the global dual bound as fast as possible
by always selecting a subproblem with the smallest dual bound of all remaining
leaves in the tree. Best first search leads to a minimal number of nodes that need
to be processed, given that the branching rule is fixed [I].
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Best Estimate search was suggested by Forrest et al. [I9]. It estimates the
minimum value of a rounded solution in each subproblem and chooses a node
with minimal estimate. The aim is to quickly find good feasible solutions. How-
ever, this node selection strategy may perform very poor in improving the global
dual bound.

The default node selection strategy of SCIP is a combination of these three
strategies: it performs depth first search for a few consecutive subproblems after
which a node with best estimate is chosen. At a certain frequency, a node with
smallest dual bound is selected instead of a node with best estimate.

3.7 Presolving

Presolving is a way to transform the given problem instance into an equivalent
instance that is (hopefully) easier to solve. The most fundamental presolving
concepts for MIP are described in [38]. For additional information, see [20].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality
information, e.g., to tighten the bounds of the variables or to improve coefficients
in the constraints. Third, it extracts information such as implications or cliques
from the model which can later be used, for example for branching or cutting
plane separation. SCIP implements a full set of primal and dual presolving
reductions for MIP problems, see [I].

Restarts differ from the classical presolving methods in that they are not
applied before the branch-and-bound search commences, but abort a running
search process in order to reapply other presolving mechanisms and start the
search from scratch. They are a well-known ingredient of modern SAT solvers,
but have not been used so far for solving MIPs.

Tt is often the case that cutting planes, strong branching [7], and reduced cost
strengthening in the root node identify fixings of variables that have not been
detected during presolving. These fixings can trigger additional presolve reduc-
tions after a restart, thereby simplifying the problem instance and improving
its LP relaxation. The downside is that we have to solve the root LP relaxation
again, which can sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart
directly after the root node processing if a certain fraction of the integer variables
has been fixed during the processing of the root node. In our implementation, a
restart is performed if at least 5% of the integer variables have been fixed.

4 SCIP as a MIP Solver

With the default plugins that are included in the distribution, SCIP can be
used as a stand-alone MIP solver. Some of the plugins have been described in
Section[3 In this section we evaluate the performance of SCIP for solving MIPs.

We tested SCIP 1.00 running on a 3.00 GHz Intel Xenon with 8 GB RAM
and 4 MB cache, using CPLEX 11.0 [23] as underlying LP solver. We set a time
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Table 1. Results of four MIP solvers on the MipLIB 2003. If a solver hit one of the
limits, we report the primal-dual gap in percent instead of the solving time in seconds.

SCIP /CPLEX CPLEX SCIP /SoPLEX CBC /CLP

Name Nodes Time Nodes Time Nodes Time Nodes Time
10teams 671 20.3 1 0.4 564 7.7 190 24.9
aflow30a 2353 13.5 3054 7.9 4293 35.6 30577 79.0
air04 334 98.9 263 8.2 159 189.7 565 172.1
air05 384 49.4 467 7.3 314 134.6 548 95.4
cap6000 3455 4.1 4227 0.7 2647 6.4 3390 7.1
disctom 1 85.4 1 6.0 1 64.4 1 4.2
fiber 24 1.1 60 0.2 12 1.3 40 2.2
fixnet6 26 1.6 71 0.6 10 2.8 114 3.4
gesa2-o 108 6.5 482 0.8 155 11.1 5695 32.6
gesa2 132 5.7 147 0.2 251 7.4 275 6.7
manna81 2 5.5 1 0.1 1 5.7 1 0.7
mas74 3275993 783.9 2673089 281.8 3036576 1582.8 4887385  2390.2
mas76 349635 73.4 398167 37.4 313718 118.0 687061 180.3
misc07 19719 15.2 25645 20.2 19831 27.7 29130 64.1
mod011 1751 76.8 54 20.7 2034 636.2 6318 132.4
modglob 21 0.9 183 0.1 3573 50.1 12664 26.3
nw04 457 92.7 283 29.2 49 369.5 22 12.5
p2756 45 2.6 11 0.2 109 3.3 37 1.4
pkl 219292 71.9 186390 81.7 226525 165.5 204094 81.8
pp08a 139 1.3 567 0.4 199 2.5 5087 31.3
pp08aCUTS 77 1.1 1102 1.1 109 2.6 5928 26.5
qiu 12653 76.9 7233 29.3 12973 337.5 31866 295.2
rout 11967 15.3 5260 8.8 10991 36.2 1011908 2219.9
vpm?2 297 0.9 1619 0.4 1077 2.2 459 4.3
aflow40b 347845  2067.6 491380 2342.5 427125 2.2% 1321287 4.0%
danoint 1158489  4856.1 778939  4975.1 330296 3.5% 683171 2.0%
fast0507 1350 395.2 2941 555.0 1380 2407.0 7770 1.6 %
glass4 7335667 < 79.6% 8939059 6595.8 322356  125.0% 1729411  95.8%
harp2 22481616 <0.1% 316170 144.8 5732001 0.1% 2589310 3448.6
mzzvll 3376 547.6 498 90.8 1545 0.6 % 2899 4.8%
mzzv42z 761 302.9 298 33.5 1369 5243.8 5500 3.9%
net12 5501 2139.0 2603 28.3% 1411 — 12191 22.3%
noswot 1510640 6110.8 8158083 4.7% 495596 238.4 5713896 2.8%
opt1217 3833790 16.3% 1 0.1 3558191 16.6 % 20584953 17.7%
setlch 27 1.4 330 0.2 8825 18.9 1317890 0.5 %
tr12-30 909033  2600.7 212451 294.2 1259733 4433.7 506441 1.3%
Geom. Mean 4101 58.0 2455 11.3 4224 136.5 12609 183.8
Solved Instances 33 34 29 25

> 10 % faster - 27 2 5

> 10 % slower - 6 30 29

limit of 2 hours and a memory limit of 4 GB. As a comparison we applied the
same test with CPLEX 11.0 as stand-alone MIP solver, with SCIP 1.00 using
SOPLEX 1.3.2 [42] to solve the LPs, and CBC 2.0 with CLP 1.6 [I7] as LP solver.
We used the provided default settings for all solvers. As test set we chose the 60
instances of the MIpLIB 2003 [4]. We left out the instances arki001, protfold,
and timtabl for which at least one of the solvers returned a wrong answer or
reported an error.

Tables[Iland [2] compare the results of the four solvers. The first part of Table[T]
lists the instances which were solved to optimality by all solvers, the second part
those which were solved by at least one solver, TableRlthose for which all solvers
reached a limit. For each instance listed in the “Name” column, the tables show



Constraint Integer Programming 15

Table 2. Results of four MIP solvers on the MiprLIB 2003 (continued). For the
markshare instances we report the upper bound instead of the primal-dual gap; the
lower bound is zero in all cases.

SCIP /CPLEX CPLEX SCIP /SoPLEX CBC /CLP

Name Nodes Gap Nodes Gap Nodes Gap Nodes Gap
alclsl 426057 15.8% 491631 5.7% 115512 20.7% 143591 41.0%
atlanta-ip 11342 5.5% 4011 8.1% 10 — 350 —

dano3mip 9911 22.8% 5565 18.8% 123 24.1% 12898 30.5 %
ds 4512 486.6 % 5760 314.2% 310 511.3% 456  1482.5%
liu 3146152 135.4% 319976 102.1% 347383 159.3% 157480  206.4 %
mkc 2396228 1.3% 140170 0.2% 1022181 0.9% 961565 2.5%
momentum1 6221 20.5 % 23623 18.7% 1276 — 5158 20.2 %
momentum?2 6004 28.7% 6144 28.7% 1260 — 5529 152.4 %
momentum3 11 — 140 466.5 % 1 — 1 —

msc98-ip 10301 0.7% 1996 12.1% 67 — 324 —

nsrand-ipx 592996 6.5 % 234970 1.1% 381553 8.8% 661104 2.0%
rd-rplusc-21 84288 >10000 % 35562  >10000 % 71 — 11795 —

roll3000 1180987 0.6% 1253352 0.4% 201728 1.2% 133378 3.8%
seymour 103485 2.2% 146297 1.9% 2829 11.5% 33374 5.9%
sp97ar 86939 3.4% 210446 0.8% 36063 4.6 % 180426 2.5%
stp3d 8 — 20 — 3 — 1 —

swath 429024 19.1% 262088 19.3% 257953  26.8% 2352638 40.7%
1717 2665 50.2 % 64721 60.4 % 898  37.0% 13016 76.9 %
timtab2 3095502 78.4% 1736172 52.5% 2420114  63.1% 639547 102.8%
marksharel 46 M 5 31M 4 52 M 6 42M 6
markshare2 42M 9 25M 12 40M 9 48 M 10

the number of nodes and the time in seconds needed to solve it with each of
the four solvers. For instances which could not be solved within the time and
memory limit, we report the primal-dual gap in percent instead of the solving
time. The primal-dual gap is defined as v = (¢ — ¢)/inf[¢, ¢] with ¢é being the
upper (primal) and ¢ being the lower (dual) bound. The symbol “—” indicates
instances for which no feasible solution was obtained within the limits.

There were 36 instances, given in Table [I for which at least one solver was
able to prove optimality within the time and memory limit. For these instances,
the results are summarized at the bottom of the table. The rows “> 10 % faster”
and “> 10% slower” give the number of instances for which the solver was
at least 10 % faster and at least 10 % slower, respectively, than SCIP-CPLEX.
Although SCIP supports the much more general concept of constraint integer
programming, it is still competitive to state-of-the-art MIP solvers. On this test
set, SCIP-CPLEX can solve only one instance less than CPLEX within the limits.

5 Using SCIP for Property Checking

One of the key technologies in the design of integrated circuits is the verification
of the correctness of the design [24]. One important aspect of this process is the
so-called property checking problem, which means to verify that certain expected
inherent properties of the chip design hold.

Today’s techniques validate these properties on the so-called gate level by
transforming the properties into Boolean clauses and hence the property checking
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problem into a SAT instance. However, complex arithmetic operations like mul-
tiplication lead to SAT instances with quite involved interrelationships between
the variables, which are hard to solve for current SAT solvers.

Our approach is to tackle the problem on a higher level, the register transfer
(RT) level. The property checking problem at RT level can be formulated as
CIP on bit vector variables o € {0,...,2%e~!} of width w,. The constraints
rt = C;(2%,y%, 2*) model the circuit operations.

For each bit vector variable o, we introduce single bit variables o, b =
0,...,w, — 1, with g, € {0,1}, for which linking constraints

we—1

0= Z 20 (2)
b=0

define their correlation. In addition, we consider the following circuit opera-
tions: ADD, AND, CONCAT, EQ, ITE, LT, MINUS, MULT, NOT, OR, READ, SHL,
SHR, SIGNEXT, SLICE, SUB, UAND, UOR, UXOR, WRITE, XOR, ZEROEXT with the
semantics as defined in [16].

5.1 CP Techniques

For the bit linking constraints (2) and for each type of circuit operation we im-
plemented a specialized constraint handler which includes a domain propagation
algorithm that exploits the special structure of the constraint class. In addition
to considering the current domains of the bit vectors ¢ and the bit variables gy,
we exploit knowledge about the global equality or inequality of bit vectors or
bits, which is obtained in the preprocessing stage of the algorithm.

Some of the domain propagation algorithms are very complex. For example,
the domain propagation of the MULT constraint uses term algebra techniques to
recognize certain deductions inside its internal representation of a partial product
and overflow addition network. Others, like the algorithms for SHL, SLICE, READ,
and WRITE, involve reasoning that mixes bit- and word-level information.

5.2 IP Techniques

Because property checking is a pure feasibility problem, there is no natural
objective function. However, the LP relaxation usually detects the infeasibility
of the local subproblem much earlier than domain propagation.

Table Bl shows the linearizations of the circuit operation constraints that are
used in addition to the bit linking constraints (2]) to construct the LP relaxation
of the problem instance. Very large coefficients like 2 in the ADD linearization
can lead to numerical difficulties in the LP relaxation. Therefore, we split the
bit vector variables into words of W = 16 bits and apply the linearization to
the individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the
right hand side of the next word’s linearization. The relaxation of the MuULT
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Table 3. LP relaxation of circuit operations. [, and u, are the lower and upper bounds
of a bit vector variable p.

Operation Linearization

r = AND (X,y) Ty S To, 7o S Y, TH > Tp + Yy — 1

r = OR(x,y) Ty 2 T, To 2 Yb, T < T + Yo

r = XOR (x,y) oy —Yp — 76 <0, —xp +yp — 15 < 0,
—rp— Yo+ 70 <0, zp +yp + 75 < 2

r = UAND (x) r<wp, >3 ay —we + 1

r = UOR (x) > ay, <

r = UXOR (x) r+ Z;fjo_l Ty =25, s € L>o

r = EQ(x,y) r—y=s—t,ptqtr=1,p<s, s <plus —1ly),
qg<t, t<quy—Iz), s,t € Z>o, p,q €{0,1}

r = LT (x,y) z—y=s—1,p<s s <plus —1ly), r<t,
t<r(uy—Ilz),p+r <1, st€Z=,pec{01}

r = ITE (x,y,2) r—y < (u:—1ly)1—2),r—y>(.—uy)(l—x)
r—z<(uy—lL)x,r—2z>(y—u)zx

r = ADD (x,y) r+2"o=xz+y, o€ {0,1}

r = MULT (X,y) Von < Uy, T, Vbn < Yny Vbn = Yn — Uy, (1 — Tb), Von € Z>o

L—1 ol L
On + ZH.J':n Zz:o 20415 = 27 0n41 + Tn, 0n € Z>o

constraint involves additional variables y,, and 7, which are “nibbles” of y and
r with L = v;/ bits.

No linearization is generated for the SHL, SLICE, READ, and WRITE constraints.
Their linearizations are very complex and would dramatically increase the size
of the LP relaxation, thereby reducing the solvability of the LPs. For example,
a straight-forward linearization of the SHL constraint on a 64-bit input vector x
that uses internal ITE-blocks for the potential values of the shifting operand y
already requires 30 944 inequalities and 20 929 auxiliary variables.

5.3 SAT Techniques

Conflict Analysis is particular useful on feasibility problems like property check-
ing. By applying reverse propagation, one or more conflict constraints can be
extracted from the conflict graph of an infeasible subproblem. In our implemen-
tation, we use the 1-FUIP [43] rule for generating conflict constraints. In ad-
dition to the 1-FUIP conflict constraints we extract clauses from reconvergence
cuts [A3] in the conflict graph to support non-chronological backtracking [31].

5.4 Computational Results

We examined the computational effectiveness of the described CIP techniques
on industrial benchmarks obtained from verification projects conducted together
with INFINEON and ONESPIN SOLUTIONS. The specific chip verification algo-
rithms were incorporated into SCIP 0.90i using CPLEX 10.0.1 [23] as LP solver.
All calculations were performed on a 3.8 GHz Pentium-4 workstation with 2 GB
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Table 5. Biquad properties

variant
Property Meth A B Ie
Table 4. ALU properties (time in seconds) g checkgpre ~ SAT 222 57.6 29.1
CIP 142 123 153
register width g2 checkg?2 SAT e — e
Prop.  Meth 5 49 15 20 25 30 35 40 CIP 2139 2048 257.6
muls SAT 0.5 —_ = = - — — — g25 checkg25 SAT 0.0 2.4 2.5
CIP 0.0 00 00 01 0.1 0.1 0.2 0.3 CIP 207 224 242
neg flag SAT 0.1 1000 — — — — — — g3 negres SAT 0.0 0.0 0.0
CIP 0.8 3.6 11.6 36.3 81.8 136.6 218.4 383.5 CIP 0.7 0.0 0.0

zero flag SAT 0.0 00 01 01 0.2 0.4 0.5 0.6 gBIG checkregl SAT 287.2 157.3 159.6
CIP 23 06 16 40 6.2 10.7 156 379.7 CIP  170.0 7.0 8.6

Table 6. Multiplier properties (time in seconds)

register width

Layout Meth 6 7 8 9 10 11 12 13 14
booth SAT 0.4 33 210  135.4 935.1 — — — —
signed CIP 213 701 3187  384.2 004.1 17562  2883.7 49959  3377.0
booth SAT 0.5 25 179 1029 879.0  4360.4 — — —
unsgnd CIP 157 517 2601 9113  1047.6  2117.7 22051 44034  7116.8
nonbth SAT 0.4 3.4 218 1341 13441 — — — —
signed CIP 128 312  100.6  265.9 560.8 690.8  1873.0 19763  4308.9
nonbth SAT 0.3 1.8 16.5 83.1 009.6 56215 — — —
unsgnd CIP 36 224 1112 2140 335.4 10401  1507.5 23477  4500.2

RAM. In all runs, we used a time limit of 2 hours. For reasons of comparison,
we also solved the instances with SAT techniques on the gate level. We used
MINISAT 2.0 [I8] to solve the SAT instances obtained after a preprocessing step.

The experiments were conducted on the valid properties included in the fol-
lowing sets of property checking instances: ALU (an arithmetical logical unit
which performs ADD, SUB, SHL, SHR, and signed and unsigned MULT operations),
Biquad (a DSP/IIR filter core obtained from [34] in different representations),
and Multiplier (gate level net lists for Booth and non-Booth encoded architec-
tures of signed and unsigned multipliers).

Tables BHG compare the results of MINISAT and our CIP approach on the
valid properties. For each property or layout and each input register width or
variant, the tables show the time in seconds of the two algorithms needed to
solve the instance. Results marked with ‘“— could not be solved within the time
limit. The experiments show that our approach outperforms SAT techniques for
proving the validity of properties on circuits containing arithmetics. For invalid
properties, which are not shown in the tables, our algorithm is usually inferior
to SAT for finding counter-examples. This is due to the much more involved
procedures employed in the CIP approach.
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Abstract. This paper describes new filtering methods for the cumulative con-
straint. The first method introduces bounds for the so called longest cumula-
tive hole problem and shows how to use these bounds in the context of the
non-overlapping constraint. The second method introduces balancing knapsack
constraints which relate the total height of the tasks that end at a specific time-
point with the total height of the tasks that start at the same time-point. Exper-
iments on tight rectangle packing problems show that these methods drastically
reduce both the time and the number of backtracks for finding all solutions as
well as for finding the first solution. For example, we found without backtracking
all solutions to 66 perfect square instances of order 23-25 and sizes ranging from
332 x 332 to 661 x 661.

1 Introduction

The utility of cumulative constraints in the context of non-overlapping rectangles has
been advocated for 15 years in the context of constraint programming [1I]. The two
main reasons for this utility are: first, it allows to come up with necessary conditions
for non-overlapping which reuse classical filtering algorithms for cumulative like task
intervals and compulsory parts [4]]; second, it reduces in practice the combinatorial
aspect by dividing by a factor of two the number of decision variables of the problemEl
More recently, cumulative constraints have been used by OR people [7] in the context
of rectangle packing problems for the reasons we have just mentioned. Knapsack con-
straints were also used, by both OR [8[7] and CP [9]] people, to solve the subset-sum
problem in the context of scheduling and packing.

In the context of tight rectangle placement problems one can observe that standard
filtering methods for the cumulative constraint are in fact rather weak. A first reason is
that they do not explicitly completely integrate the slack (i.e., the difference between the
available place and the total area of the rectangles to place) within the filtering process.
A second reason is that they relax too much the cumulative constraint by allowing to
split the tasks in small squares of size one. Based on these observations, we decided to

! Experiments have shown that, once all coordinates of the rectangles in one dimension are
fixed, it is usually straightforward to extend the partial solution to a full solution even if there
exist examples [[6] where this is not possible at all.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 21 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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develop new filtering methods that consider the slack and/or the fact that tasks should
not be split in too many small pieces.

The paper is organized as follows. SectionPlrecalls the definitions of the cumulative
and the non-overlapping constraints. Section 3 introduces the longest cumulative hole
problem, shows its use in the context of the cumulative constraint, and provides bounds
for this problem. Section[ presents a new knapsack model of the cumulative constraint
which considers the available slack. Section [3] evaluates the contribution of the two
methods on two types of tight placement problems. Finally, Section [ concludes.

2 Background

The cumulative constraint was introduced in [1]] in order to model scheduling problems
where one has to deal with a resource of limited capacity. It has the following definition:

cumulative(T, L)

where foratask ¢ € T, t.s, t.d and ¢.h denote respectively its start, duration and height.
They all correspond to integer variabled, while L is a non-negative integer correspond-
ing to the capacity of the resource. The constraint holds if the following condition is
true:

Vi e N, > th<L
tlt.s<i<t.s+t.d—1
In the context of a cumulative constraint, the compulsory part [4]] of a task ¢ is the
intersection of all feasible instances of ¢. It can be computed by making the intersection
between the task positioned at its earliest start and the task positioned at its latest start.
Then the compulsory part profile is the aggregation of all compulsory parts of the differ-
ent tasks of a cumulative constraint. When all tasks that have a non-empty compulsory
part are completely fixed, the compulsory part profile is simply called the cumulative
profile.
The diffn constraint was introduced in [10] in order to handle multi-dimensional
placement problems. It has the following definition:

diffn(B)

where for a box b € B, b.oy and b.s; (0 < k < n — 1) are integer variables that
respectively denote the origin and size of b in dimension k. The constraint holds when,
for each pair of boxes b, b’, there exist at least one dimension & where their projections
do not overlap.

Vo,b' € B(b#V),3k € [0,n—1] | b.og > b.0j + b5, V b .o > boog, + bsy

In the context of this paper we focus on the two-dimensional case (n = 2), and
assume that all the rectangle sizes are fixed. However note that most of the results of
this paper can be used when we have more than two dimensions, as it is actually the
case for our current implementation.

% An integer variable V ranges over a finite set of integers denoted by D(V'). The extremal
values in D(V') are denoted by V and V.
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3 The Longest Cumulative Hole Problem

This section first introduces the longest cumulative hole problem and then shows how it
can be used in the context of a non-overlapping constraint. Finally, it provides different
ways for evaluating an upper bound of the longest cumulative hole.

3.1 Defining the Longest Cumulative Hole

Given a cumulative(T, L) constraint that involves a set of tasks 7" and a resource
limit L, let o denote the difference between the available space and the needed space
(ie., 0 = (maxser(t.s + t.d) — minger(t.s)) - L — > ,cpt.d - £.h). Now, given an
integer € € [1, L] and the subset of tasks 7" of 7" for which the resource consumption
is at most e, the longest hole problerrﬁ is to find the largest integer Imaz (T") such that
there exist a cumulative placement of maximum height e involving a subset of tasks of
T’ where, on one interval [i,i + Imaz{ (T') — 1] of the cumulative profile, the area of
the empty space does not exceed o

Example 1. First, consider seven tasks of respective size 11 x 11,9 x 9,8 x 8,7 x 7,
6% 6,4 x4,2x2. Part (A) of Figure[[lprovides a cuamulative profile corresponding to the
longest hole problem according to € = 11 and o = 0. The longest hole lma:cél ({11 x
11,9 x 9,8 x 8,7 x 7,6 x 6,4 x 4,2 x 2}) = 17 since:

— The task 8 x 8 can not contribute since a gap of 3 cannot be filled by the unique
candidate the task 2 x 2.

— The task 6 x 6 can also not contribute since a gap of 5 cannot be completely filled
by the candidates 4 x 4 and 2 x 2.

Second, consider a task of size 3 x 2. Part (B) of Figure[[l provides a cumulative profile
corresponding to the longest hole problem according to e = 11 and ¢ = 20. The longest
hole Imazyy({3 x 2}) = 2.

Note that when the gap ¢ is equal to the resource capacity L, the problem of checking
whether or not a cumulative constraint has a solution coincides with the longest hole
problem so the longest hole problem is clearly NP-hard. Consequently, our goal is to
find upper bounds for the longest hole problem as well as easy cases which can be
solved in polynomial time.

3.2 Using the Longest Cumulative Hole for Filtering

The main advantage of the longest cumulative hole problem is that it can be used in
quite a number of different ways in the context of a two-dimensional non-overlapping
constraint, where the slack o is the difference between the available and the needed
space:

3 A related problem when the slack o is equal to 0 in the context of rectangles non-overlapping
(but not in the context of a cumulative constraint) is called the length of the longest flat surface
in http://www.stetson.edu/%7Eefriedma/mathmagic/1099.html.

* When the set of tasks 7' is empty we have that lmaz(T) = [ 7 |.
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Fig. 1. Two examples for illustrating the longest hole problem

First, as depicted by Part (A) of Figure2] it can be used for making an initial prun-

ing of the origin coordinates of the rectangles in order to avoid creating too small

holes that cannot be filled enough, with respect to the slack o, between the border

of a rectangle R1 and the border of the placement space. For instance, Part (A)

illustrates the fact that if, for a given distance ¢ € N between the lower border

of a rectangle to place and the lower border of the placement space, the quantity

Imax; (R) is strictly less than the width of R1, then R1 cannot start at the corre-

sponding position. R corresponds to the set of rectangles for which the height does

not exceed € (i.e., the rectangles that can fit within the gap). Finally, doing an initial
pruning of the origins of the rectangles is important for the knapsack constraints
that will be presented in the next section.

— Second, while fixing both origin coordinates of a rectangle R1 during the search, it
can also be used to check that the vis-a-vis between R1 and each rectangle that is
already completely fixed can be filled enough with respect to o. This is illustrated
by Part (B) of Figure 2l

— Finally, it can also be directly used within the two cumulative constraints, which

are well-known necessary conditions for a non-overlapping constraint. For this pur-

pose, consider the highest peak of the compulsory part profile that does not reach
the resource capacity (i.e., the difference between the resource capacity and the
height of the peak is equal to a strictly positive integer €). Again, we can use the
longest cumulative hole problem in order to check that we can fill enough the gap
on top of the highest peak. This is illustrated by Part (C) of Figure 2l

3.3 Evaluating the Longest Cumulative Hole

This section shows how to evaluate an upper bound of Imaz: (T). It assumes that we
already know:

— An upper bound of Imaz’ (T') for all non-negative integers e that are strictly less
than e.

3 Two fixed rectangles have a vis-a-vis if and only if (1) they intersect in one dimension, and
(2) if there is a non-empty gap between them in the other dimension.
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Fig.2. Three ways of using the longest cumulative hole for filtering a two-dimensional
non-overlapping constraint

— An upper bound of Imazg (T \ {t}) for all non-negative integers e that are strictly
less than € and for all ¢ € T for which ¢t.h < el This quantity will be used for
checking what can be put on top of a task ¢ without reusing ¢.

We first present three rules that simplify the problem by removing some tasks, one
rule that reduces the length of some tasksﬂ, and a rule that computes an exact value
of Imaz,(T) when a specific condition on the heights of the tasks holds. Finally, we
present two upper bounds of Imaz’(T') and show that they are incomparable. In the
following, a task ¢ of length ¢.d and height ¢.h will be denoted by ¢.d x t.h.

Simplification 1. Let ¢ be a task of 7" such that t.h > e. We have that ImazS (T) =
Imazt (T \ {t}).

Proof. By definition of the longest hole problem, a task of height strictly greater than e
cannot be used.

Example 2. Consider the set of tasks T' = {2x 2,4 x4, 6 x 6} and assume that we want
to compute Imaz}(T). Using Simplification 1, we have that lmazs(T) = Imaz3(0),
which means that we can only use the slack of 3 to cover a gap of height 1. Conse-
quently, lmaz3(T) = 3.

Simplification 2. Let T, denote the set of tasks of 7" for which the heights are equal
to €. We have that Imaz g, (T) =, cp t.d + Imaz (T'\ T¢).

Proof. Since the tasks of T, completely fill the height ¢, they can be considered sepa-
rately.

Example 3. Consider the set of tasks 7' = {2 x 2,4 x 4,6 x 6} and assume that we
want to compute lmazy(T). Using Simplification 2, we have that lmaz3(T) = 6 +
Imaz§(T \ {6 x 6}).

% If we don’t want to explicitly evaluate an upper bound of Imaz& (T \ {t}), we can take advan-
tage of the fact that Imaz§ (T') is an upper bound of Imazg (T \ {t}).
7 1f, as we will see later, a task cannot contribute on its full length to the longest cumulative hole.
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Simplification 3. Let ¢ be a task of T such that t.h < e and Imaz ""(T \ {t}) = 0.
We have that Imazg (T) = Imax5 (T \ {t}).

Proof. When lmaz§ "™ (T\ {t}) is equal to 0, this means that no gap of height ¢ — ¢.h
can be filled by the tasks of T\ {¢} without creating an empty space greater than the
slack 0. Consequently, if we use task ¢, we cannot fill enough any gap on top of task ¢.

Example 4. Consider the set of tasks T = {2 x 2,3 x 3} and assume that we want to
compute lmazy(T). Assume that we already know that Imaz{(T\ {2 x 2}) = 0. Then,
we have that Imazj(T) = Imazj(T \ {2 x 2}). In other words, we can eliminate task
2 x 2, since we cannot cover any gap of height 1 on top of task 2 x 2.

Shrinking 1. Consider a task ¢ of T such that £.h < ¢, t.d > Imaz S ""(T \ {t}) and
ImazS"M(T\ {t}) > 0. We have that Imaz® (T') < lmaz’ (T \ {t} U {Imaz<"""(T"\
{t}) x t.h}).

Proof. Similar to Simplification 3. We have an inequality since reducing the lengths
of more than two disjunctive tasks (i.e., two tasks for which the total height is strictly
greater than €) can lead to an overestimation of lmax{ (T"). This stems from the fact
that at most two disjunctive tasks can be reduced (and the other disjunctive tasks have
to be discarded since they would have to be completely included within the interval
corresponding to the longest cumulative hole).-

Example 5. Consider the set of tasks T' = {2 x 2,4 x 4, 6 x 6} and assume that we want
to compute Imaz{(T). Suppose we already know that Imazj (T \ {4 x 4}) = 2. Then
we have that Imaz(T) = Imaz§((T \ {4 x 4}) U {2 x 4}). In other words, the length
of task 4 x 4 is reduced to 2 (i.e., its maximum intersection in time with the longest
cumulative hole cannot exceed 2) since, for a gap of 2, we can cover at most a length of
2 without exceeding the slack o = 0.

In the following, all simplification and shrinking rules previously presented are system-
atically tried before applying the next rule and before evaluating any upper bound.

Termination rule. Given a set of tasks 7' = {t1.d x ¢;.h, to.d X t2.h, ..., t,.d X t,,.h}
such that ¢;.h > ti+1.h and t;.h = ti+1.h = t;.d > ti+1.d 1 <i<n),let Tdisj =
{ti.dxti.h to.dxta.h, ..., tpaisj.dX, trais; .1}, where ndisj is the largest integer that
satisfies ndisj = 1 or tpqssj—1.h + tn4:5.h > €, be the non-empty subset of disjunctive
tasks of 7. If the total height of the tasks in 7" \ T4;s; plus the maximum height of
the tasks in T'g;q; (i.e., t1.h) is at most ¢, then the quantity Imaz (T') can be directly
evaluated by using the construction depicted by Figure

The intuition of the first upper bound is to consider the total area of the tasks as well
as the slack. However, to get a sharper bound we take into account the fact that at most
two disjunctive tasks can partially overlap a given interval.

8 Assuming that the tasks were sorted, a direct algorithm implementing this construction has the
complexity of O(n) where n is the number of tasks.
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o1=uoyisde

Fig. 3. Illustration of the easy case on six tasks 3 X 6,2 X 6,2 x 5,9 x 1,5 x 2and 1 x 1 with
€ = 10 and a slack o of 23. Tasks {3 x 6,2 x 6,2 x 5} correspond to disjunctive tasks, while
tasks {9 x 1,5 x 2,1 x 1} correspond to small tasks that can be put on top of the disjunctive
tasks. Then the slack o = 23 is positioned as early as possible between the disjunctive tasks and
the small tasks, which gives a value of 8 for Imaz33({3 x 6,2 x 6,2 x 5,9 x 1,5 x 2,1 x 1}).

Upper bound 1. Given a set of tasks 7' = {#1.d x t;.h,t2.d X t3.h, ... t,.d X t,.h}
such that t;.h > ti+1.h and t;.h = ti+1.h = t;.d > ti+1.d (1 <i<mn),let Tdisj =
{ti.d x t1.h,to.d X to.h, ..., tnaisj.d X tngis;.h}, where ndisj is the largest integer
that satisfies ndisj = 1 or tpgisj—1.h + trais.-h > €, be the non-empty subset of
tasks of T'. Moreover, let T&isj C T4 be the subset of tasks of T'y;s; for which the
lengths were reduced by rule Shrinking 1. If T}, contains more than two tasks then
let area maz; and area mazs respectively denote the two largest areas of the tasks

of T}, and let area rest denote the total area of the tasks in 7"\ 77, . We have that

lma:cf,(T) S Larea rest+area maxi+area ma.’r2+0J .
€

Proof. Given a fixed interval [low, up] and a set of disjunctive tasks T'g;s;, at most two
tasks of Ty can partially overlap interval [low, up]. Note that disjunctive tasks for
which the lengths were reduced cannot be completely included within interval [low, up]
(i.e., they either overlap one border of interval [low, up], or they don’t overlap at all
interval [low, up]). Consequently, if we reason in terms of areas, we can only consider
the two largest areas of the disjunctive tasks for which the lengths were reduced.

Example 6. Figure[illustrates the computation of the first upper bound. From the set
of tasks T' we can construct the set Tq;s; = {2 X 5,2 x 5,2 x 5,2 x 5,1 x 4,3 x 3}
of disjunctive tasks, since for any pair of tasks in T;s; we have that their total height
exceeds € = 6. By hypothesis, T, = {2 x 5,2 x 5,2 x 5,2 x 5} and area maz, =
area mazo = 10. Finally, the total area of the tasks in 7"\ T(’hsj, area rest, is equal to

4+ 9+ 4+ 1 = 18. Consequently, lmazy(T) < | 1810103 | — 6,

The intuition of the next upper bound is not to reason any more just in terms of area,
but to take into account the fact that disjunctive tasks cannot be piled up. We sort the
disjunctive tasks by decreasing height and try now to reduce their length according to
the tasks (and the slack) that can be effectively placed on top of the disjunctive tasks.

Upper bound 2. Given a set of tasks 7' = {#1.d x t;.h,t2.d X t3.h, ... t,.d X t,.h}
such that t;.h > ti+1.h and t;.h = ti+1.h = t;.d > ti+1.d (1 <i<mn),let Tdisj =
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Fig. 4. (B) Illustration of the first upper bound on eight tasks (A) 7' = {2 x 5,2 x 5,2 X 5,2 X
5,1 x4,3x3,2x2,1x 1}, where the length of the first four tasks was reduced by applying
rule Shrinking 1 (this reduction is depicted by a dashed line along the right border of a task),
with ¢ = 6 and a slack o of 3. (C) A placement giving the exact value for Imaz$(T). Note
that a task for which the length was reduced can only be put at one of the two extremities of the
placement; consequently, we cannot add task 5 and task 7 to gain an extra unit for Imaz$(T)
(since the lengths of tasks 1 and 2 were reduced, tasks 1 and 2 have to be kept at one of the two
extremities).

{t1.dxt1.h, to.d xta.h, ..., tpais;-d X tnais; 1}, Where ndisj is the largest integer that
satisfies ndisj = 1 or tyqisj—1.h +tpnaisj-h > €), be the non-empty subset of tasks of 7'.
Lett1,%2,. .., tnds; denote the tasks of Tiy;s; sorted by decreasing height and for any h
let areay, denote the total area of the tasks of 7" that have a height less than or equal to
h.If there is an ¢ € [1, |Tg;s;|] such that:

-V S [1,i—1], Zi::l tp.d-tp.h+ aréte—t; n + 0 > Zizl tr.d-e,
- 22:1 tp.d -ty h+ areage—iy,n +0 < 22:1 tr.d-e,

p— i—1 . [
then the length of task ¢; can be reduced to | “"**<~ %+ *7 Ea’:‘jll tr-d-(e—in-h) |.

Now let T(’M-Sj be the set of tasks derived from T;,; by considering their reduced
length and by discarding the tasks for which the reduced length is equal to 0. Let area =
ZteT_T(;W t.d-t.h+ o and let t,t5, ... ’th,},,SJI’tiT; |41 denote the tasks of 77, ;

sorted by decreasing height, where tde, 4, stands for an additional task of height 0

isj

iy

and length [ *"“*]. In this context, let i be the smallest integer such that 22:1 t.d -

/ € i—1 4 area—Y" 171 ¢} .d-t).h
(e —t},.h) > area. We have that imaz, (T) < >, t)..d+ | ek_'t,:_hk L
Example 7. Figure[§ provides an example of application of the second upper bound on
asetoftasks T'= {3 x 5,2x4,2x4,5x 3,3 x3,2x 2,1 x 1} under the hypothesis
that we have a slack o = 3 and a gap € = 6. The set of disjunctive tasks Tj;s; built from
these rectangles is {3 X 5,2 x 4,2 x 4,5 x 3}. The length of task t3 (i.e., i = 3) can be
reduced since:
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[j=1]:t1.d-t1.h+ areag_5 +0=3-54+14+3=19> 36,

[j =2]:t1.d-t;.h+ta.d-t2.h+areag_g+0 = 3-5+2-44+5+3 =31 > (3+2)-6,
[i = 3} t1.d~t1.h+t2.d-t2.h+t3.d~t3.h+area6,4+o = 35+24+24+5+3 =
30<(3+2+2)-6.

The length of task t3 = 3 x 4 is reduced to LMea“”'“+J_t1'd'(e_tl'h)_tQ'd'(E_tQ'h)J =

Eftg.h
L5+373'(6g_5)172'(674)J = 0. Consequently, lmaz5(T) = 8 (instead of 9 if t3 is not
removed).

@ 5 B//fz

S

slack=3

=6

epsilon:

(B)

Imax<10

slack=3

W2z VT

epsilon=6
epsilon=6.

(© E— )

Imax<5+3+1 Imax=8

Fig.5. (A) Seven tasks 3 X 5,2 x4,2x4,5x3,3x3,2x2and 1 X 1 to place with a slack of 3
and a gap € of 6, (B) An upper bound of 9 obtained without shrinking, (C) A tighter upper bound
of 8 obtained by removing the third task, (D) An optimal placement which reaches the bound 8.

This second upper bound can be enhanced by trying to compute a bigger list of tasks in
disjunction. A task ¢; cannot overlap a task ¢; if the sum of their heights, ¢;.h + ¢;.h, is
greater than e. But we can also use the fact that we have already computed the longest
cumulative hole for smaller values of €. Tasks ¢; and ¢; are also in disjunction if there is
a gap g on top of the two tasks (i.e., g = € — t;.h — ¢;.h) for which lmaz? (T \ {t;,t;})
is equal to 0.

3.4 Illustrating the Incomparability of the Two Bounds

This section shows that the two bounds previously described are in fact incomparable.
For this purpose, consider the tasks of size 2 X 2,4 x 4,6 x 6,7 x 7,8 x 8,9 x 9,
11 x 11 and 15 x 15. Let B1 and B2{ respectively denote the upper bounds for imax?,
obtained by the first and the second upper bounds previously introduced. On the one

hand, we have that B1j> = 5 and B2}> = 4, while on the other hand we have that
B1;” = 30 and B2;° = 32.
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4 Balancing Knapsack Constraints

In the context of a cumulative(T, L) constraint with |7'| = n and slack o, let its
timespan be defined as [tmin, Umax] Where Uumin = min{t.s | t € T} and Uupax =
max{t.s+t.d—1]|t¢t € T}.If o = 0, then for every time point b € [Umin, Umax], the
total height of tasks intersecting b must equal L. This reasoning can be generalized to
non-zero slack and strengthened by considering adjacent pairs of time points (b — 1, b)
into the following proposition.

Proposition 1. For a cumulative(T, L) constraint with slack o and timespan [umn,
Umax), fOr every time point b € [umin + 1, Umax|, each of the following conditions is a
necessary condition for the constraint.

— Let Hy_y denote the total height of tasks intersecting b — 1. H,_y € [L — o, L]
must hold.

— Let Hy, denote the total height of tasks intersecting b. Hy € [L — o, L] must hold.

- Hy 1+ Hy€[2-L—0,2- L] must hold.

Let t; denote the ¥ task of 7. For every time point b € [Umin + 1, Umax] and task
t; € T, we have four mutually exclusive possibilities. We encode these possibilities as
0-1 variables S;p,, Cip, Op, Nip where S;p + Cip + O + Ny = 1 and:

Sip = 1 < t; intersects b but not b — 1, thatis, ¢;.s = b

Cip =1 < t; intersects b — 1 but not b, thatis, t;.s = b — t;.d

Oip = 1 & t; intersects both b — 1 and b, thatis, t;.s € [b—t;.d+ 1,b— 1]
Ny =1 < t; intersects neither b — 1 nor b, thatis, t;.s & [b — t;.d, b]

ey

For a given time point b, the set of tasks 7" and the above, we can set up the following
pseudo-boolean equation system, which essentially captures the above proposition.

Vie[l,n]: S+ Cip—+ O+ Nip=1
Hy_1 = Zie[l,n] t;.h- (Cib + Oib) S [L — 0, L] @)
Hy, = Zie[l,n] tih (Sip+ Op) €L —0,L]
Hy_ 1+ Hy € [2-L—J,2-L]
This equation system can be solved by a dynamic programming method similar to
the one described in [11]]. Define a function f(k, [, r) equal to 1 if and only if the derived
equation system (3) has a solution, and define the dynamic programming recursion as

in @).
Vi € [17k] : Slb+01b+01b+sz =1
Sicpn tih (Cin + Ow) =1 3)
Yiep g tih - (Sip + Op) =7

1,ifl=0Ar=0
F0,1,r) = {0 , otherwise
f(k,1,7) = max e Jifk >0

I
JkE—=1,1—tg.h,r —tg.h)
flk=1,1,r)



New Filtering for the cumulative Constraint 31

Now, intuitively, (Z) has a solution if and only if there exist [ and r such that [ €
[L—o,L],r € [L—o,L],l+r €[2-L—0,2-L],and f(n,l,r) = 1. One can visualize
this as a directed graph with a node for every (k, [, r) for which f(k,l,r) = 1 and arcs
corresponding to ). Also, each arc is annotated with the 0-1 variable that is assumed
to take the value 1 in that branch of the recursion:

Sk

(k—1,1,7r — tg.h) > (k,l, 1)
(k—1,0—tphr) % ~ (k,1,7)
(k= 1,0 — ty.hyr — th) O = (k,1,7)
(k_ lalaT) M >(kalaT)

Among the nodes, let the single source node be (0,0, 0), and let the sink nodes be all
nodes (n,l,r) wherel € [L —o,L],r € [L—o,L],andl+r € [2- L — 0,2 L]. Then
a path from the source to some sink corresponds to a solution to (2). By inspecting the
arcs of such paths, we can determine for each 0-1 variable whether it takes the value
1 in some solution to (@)). After computing all paths, we inspect each 0-1 variable: if it
does not take the value 1 in any solution, the corresponding start time domain is pruned
according to the equivalences given in (I). The complexity of this algorithm is O(nL?)
(space and time).

Example 8. Consider a cumulative({t1,t2,t3},6) constraint with tasks as defined in
Figure[6l Let us apply the method for b = 4 and o = 4 (the slack has been tightened
by other, fixed tasks that have been omitted in the example). The method explores the
digraph shown in Figure[@l The four sink nodes are denoted by ellipses. As there is no
arc annotated with O3, on a path reaching a sink, we conclude that ¢3 cannot intersect
both 3 and 4, hence the value 3 can be removed from D(¢3.s). In this example, the
digraph is a tree, which is not generally the case.

4.1 Strengthening the Method

The method can be strengthened by adding more knapsack constraints, e.g., constraints
that capture the fact that the height of the cumulative profile must not exceed L. This
can be done as follows:

— Identify subsets 7; C T" and 7T, C T such that the following properties hold:
e Foreach t; € Tj, both 0 and 1 are feasible values for Oy, and O;;, = 0 would
create a compulsory part of ¢; to the left of b.
e If O;, = 0 for all ¢; € Ty, the cumulative profile would exceed L.
e Foreach t; € T, both 0 and 1 are feasible values for O;;, and O;;, = 0 would
create a compulsory part of ¢; to the right of b.
e If O; = 0 forall t; € T,., the cumulative profile would exceed L.
— Add the knapsack constraint Zti eT, O;p > 1 for every such subset 7; found.
— Add the knapsack constraint Zti T, O, > 1 for every such subset 7. found.

Our implementation includes this idea, using at most one subset 7; and at most one
subset 7.
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Fig. 6. Tasks and digraph explored by dynamic programming forb =4,0 =4,L =6

4.2 Learning Solutions

Let the pre-signature of a cumulative(T, L) constraint and time point b be the set of 0-1
variables for which the value 1 is feasible according to () prior to solving the equation
system. Similarly, let its post-signature be the set of 0-1 variables for which the value 1
is still feasible after solving the equation system.

It is worth noting that, given fixed T, L, o, the pseudo-boolean equation system is
totally abstracted away from the chosen b as well as from the variable domains. It is
totally determined by its pre-signature. Thus having solved an equation system, it makes
sense to record its pre- and post-signatures. Later on, if an equation system with the same
pre-signature arises, we can retrieve the associated post-signature instead of recomputing
it. Experience shows that this idea saves about 75% of the computational effort.

5 Performance Evaluation

All the new filtering methods described in this paper were integrated into our geost ker-
nel [12] in order to strengthen the sweep-based filtering associated with non-overlapping
constraints. The experiments were run in SICStus Prolog 4 compiled with gcc -02 ver-
sion 4.0.2 on a 3GHz Pentium IV with IMB of cache. All benchmarks were run with the
following four phases search procedure, where at each phase, rectangles are considered
by decreasing area. Let 0.z denote the X coordinate variable of the rectangle o:

1. For each rectangle o, narrow by binary search the domain of o.x until it has a
compulsory part that is at least half the length of o.

2. For each rectangle o, fix o.x by binary search.

3. Repeat steps 1-2 for the Y coordinates.

Wanting to get an idea of their performance on perfect packing problems (i.e., 0%
slack), we considered the perfect square problem [119]. A perfect square of order n is
a square that can be tiled with n smaller squares where each of the smaller squares has
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a different integer size. We used the data available (i.e., the size of the small squares to
pack) from the catalogue and tested the corresponding 207 instances. On the one
hand, 66 problems were completely solved (i.e., finding all solutions and proving that
no other solution exists) without a single backtrack. On the other hand, 36, 84, 20, resp.
1 problems were solved by using 1-10, 11-100, 101-1000, resp. 1001-1438 backtracks.
This is an improvement by two orders of magnitude over [12]. From a time point of
view, 35, 169 resp. 3 problems were solved in less than 10, 100 resp. 200 seconds.

Set Ghk Gh G G
Butone N 170730 (29637) 275445 (25013) 520050 (94205) 1383888 (107317)
Squares N 10043 (4168) 96213 (10951) 17417 (5470) 1006336 (86080)
Squares1 996 (1557) 9730 (1203) 1817 (1840) 151905 (11813)
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1000 1000

1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Butone N: Ghk vs. Gh Butone N: Ghk vs. Gk
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Fig.7. Top: performance summary as total backtracks (seconds) per benchmark set. Bottom:
scatter plots of number of backtracks per instance. X coordinate values correspond to problem
instances with both methods enabled. In the left hand column, balancing knapsack constraints
were knocked out in the Y coordinate values. In the right hand column, the longest cumulative
hole method was knocked out in the Y coordinate values. G, G, Gk and G denote respectively
the geost kernel with both methods, with longest cumulative holes only, with balancing knapsack
constraints only, and with neither method added.
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In order to evaluate our method on non-perfect packing problems (with non-zero
slack), we took 202 out of the same 207 perfect square instances, removing in each in-
stance the smallest square to place. Five instances were excluded because they exceeded
the time limit.

To evaluate the effectiveness of the two methods described in this paper, Figure [7]
summarizes per benchmark set the performance. Square 1 denotes searching for the
first solution of a perfect square with symmetry breaking, whereas Square N denotes
searching for all (8 or 16) solutions of a perfect square instance with no symmetry
breaking, and Butone N denotes searching for all solutions of a perfect square instance
with the smallest square removed, also with no symmetry breaking. The figure also
contains six scatter plots. Each dot corresponds to a problem instance. Its X coordinate
equals the number of backtracks to solve it with both methods enabled. Its Y coordinate
equals the number of backtracks to solve it with only one method enabled.

On the perfect square instances, we find that both methods sharply decrease the num-
ber of backtracks, balancing knapsack constraints having the strongest effect. On the
non-perfect packing instances, the results suggest that the effectiveness of balancing
knapsack constraints degrades somewhat more rapidly with increasing slack than that
of the longest cumulative hole method. In both cases, we find a nice multiplicative ef-
fect from combining the two methods. However, when we tried the methods on the
2D orthogonal packing instances proposed by Clautiaux et al. [[7], the two methods did
not significantly decrease the number of backtracks on non-perfect packing instances,
whereas on instances with zero slack they did. So the results should be treated with
caution for non-perfect packing problemsé

6 Conclusion

This paper introduces two new filtering methods that can be used in the context of the
cumulative as well as the non-overlapping constraints.

1. The longest cumulative hole problem can be used to detect early that some specific
space can not be filled enough.

2. The balancing knapsack constraint relates the total height of the tasks that end at a
given time point to the total height of the tasks that start at the same time point.

As demonstrated by our benchmarks, these two methods are complementary, es-
pecially when the slack is very small. In such contexts, they reduce significantly the
number of backtracks and even allow to completely enumerate the search space for a
significant number of instances without any backtrack. An open issue is to come up
with more efficient methods for proving infeasibility when the slack is not so small.

Acknowledgements
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tract FP6-034691 “Net-WMS”.

? Unlike the squares instances, it is worth noting that Clautiaux instances contain rectangles that
are long in one dimension and short in the other dimension.
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Abstract. Software optimization for multicore architectures is one of the most
critical challenges in today’s high-end computing. In this paper we focus on a
well-known multicore platform, namely the Cell BE processor, and we address
the problem of allocating and scheduling its processors, communication channels
and memories, with the goal of minimizing application execution time.

We have developed a complete optimization strategy based on Benders’ de-
composition. Unfortunately, a traditional two-stage decomposition produces un-
balanced components: the allocation part is difficult, while the scheduling part is
much easier. To address this issue, we have developed a multi-stage decomposi-
tion, which is a recursive application of standard Logic based Benders’ Decom-
position (LBD). Our experiments demonstrate that this approach is very effective
in obtaining balanced sub-problems and in reducing the runtime of the optimizer.

1 Introduction

Multicore architectures on a single chip are emerging as the most significant paradigm
shift in high-end computing platforms in the last twenty years. From the technology
viewpoint, multicores are a necessity: a single processor cannot meet the ever increasing
performance requirements of applications within a reasonable power budget. Moreover,
multicore architectures are intrinsically more robust to variations and hardware failures
that characterize current and future silicon technologies.

The Cell Broadband Engine (BE), jointly designed by IBM, Toshiba and Sony, is
probably one of the most visible examples of high-end multicore architecture. These
industry-leading companies have invested several hundred million dollars in its devel-
opment, and the Cell BE is now a strategic component for embedded computing (i.e.
game consoles) as well as for general-purpose high-performance computing.

The shift toward multicores has pushed to the center stage the critical issue of pro-
gramming these highly parallel architectures, and more in general, the need for opti-
mally exploiting the available resources in time and space. Cell is a pivotal example
also in this area: even though its hardware capabilities are impressive, it is extremely
difficult to program it effectively, mostly because software designers cannot manually
allocate and schedule processors, communication channels and storage resources in an
optimal way.

For this purpose, we have developed a programming infrastructure embedding
constraint and integer programming optimization technology for the allocation and

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 36 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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scheduling of embedded applications on the Cell BE architecture. We have an applica-
tion modeled as a task graph. The application workload is partitioned into computation
sub-units denoted as tasks, which are the nodes of the graph. Graph edges connecting
any two nodes indicate task dependencies due, for example, to communication and/or
synchronization. Tasks communicate through queues and each task can handle several
input/output queues. We have to allocate tasks to processors, memory requirements and
input/output queues to memory devices and schedule the overall application in order to
minimize the application execution time (i.e., the schedule makespan).

We have previously solved similar applications [1]], [2] via Logic-based Benders De-
composition [7]], by facing allocation via Integer Linear Programming and scheduling
via Constraint Programming, and the method was proved to be effective. In this case,
however, a similar approach scales poorly. The main problem is that for the problem at
hand the two-stage decomposition produces two unbalanced components. The alloca-
tion part is extremely difficult to solve while the scheduling part is indeed easier.

We have experimented a multi-stage decomposition, which is actually a recursive ap-
plication of standard Logic based Benders’ Decomposition (LBD), that aims at obtain-
ing balanced and lighter components. An extensive set of experimental results confirms
that the multi-stage decomposition pays off in terms of efficiency and in the quality of
the solutions provided, when the proof of optimality cannot be completed in the avail-
able time. Also, we analyze the impact of Benders cuts and number of iterations in the
traditional Benders’ approach and in the variant we propose.

2 Problem Description

2.1 The Architecture

In this section we give a brief overview of the the Cell hardware architecture, focus-
ing on the features that are most relevant for our optimization engine. Cell is a non-
homogeneous multicore processor which includes a 64-bit PowerPC processor
element (PPE) and eight synergistic processor elements (SPEs), connected by an in-
ternal high bandwidth Element Interconnect Bus (EIB) [[10]. Figure Il shows a pictorial
overview of the Cell Broadband Engine Hardware Architecture. The PPE is dedicated
to the operating system and acts as the master of the system, while the eight synergis-
tic processors are optimized for compute-intensive applications. The PPE is a multi-
threaded core and has two levels of on-chip cache, however, the main computing power
of the Cell processor is provided by the eight SPEs. The SPE is a compute-intensive
coprocessor designed to accelerate media and streaming workloads [5]. Each SPE con-
sists of a synergistic processor unit (SPU) and a memory flow controller (MFC). The
MEFC includes a DMA controller, a memory management unit (MMU), a bus interface
unit, and an atomic unit for synchronization with other SPUs and the PPE.

Efficient SPE software should heavily optimize memory usage, since the SPEs oper-
ate on a limited on-chip memory (only 256 KB local store) that stores both instructions
and data required by the program.
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Fig. 1. Cell Broadband Engine Hardware Architecture

2.2 The Target Application

The target application to be executed on top of the hardware platform is input to our
methodology, and for this purpose it must be represented as a task graph. This latter
consists of a graph pointing out the parallel structure of the program. The application
workload is therefore partitioned into computation sub-units denoted as tasks, which are
the nodes of the graph. Graph edges connecting any two nodes indicate task dependen-
cies due, for example, for communication and/or synchronization. Tasks communicate
through queues and each task can handle several input/output queues. Task execution is
modeled and structured in three phases: all input communication queues are read (In-
put Reading), task computation activity is performed (Task Execution) and finally all
output queues are written (Output Writing). Each phase consists of an atomic activity.
Each task also has two kinds of associated memory requirements:

1. Program Data: storage locations required for computation data and for processor
instructions;

2. Communication queues: each task needs queues to transmit and receive messages
to/from other tasks, eventually mapped on different SPEs.

Both these memory requirements can be either allocated on the local storage of each
SPE or in the shared memory (DRAM in figure[T)). Clearly the duration of the reading
and writing phases are related to the corresponding queue allocation and the duration
of the execution is related to the corresponding program data allocation. Remote mem-
ory allocation requires a bus access and the time spent is greater than the one for the
local memory access. Tasks do not have deadlines, but these constraints could be easily
handled by our method.

2.3 Problem Definition

The problem we have to solve is the allocation of tasks to SPE processors, the allocation
of program data and communication queues of each task either on the local memory
or on the remote DRAM, and the corresponding schedule. For the overall scheduling
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problem with alternative resources we have to minimize the total application execution
time (i.e., the makespan).

3 Multi-stage Benders Decomposition

The problem we have to solve is a scheduling problem with alternative resources and
allocation dependent durations. A good way of facing these kind of problems is via Ben-
ders Decomposition, and its Logic-based extension [7]. Previous papers have shown the
effectiveness of the method for similar problems. Hooker in [§] and [9] has shown how
to deal with several objective functions in problems where tasks allocated on different
machines are not linked by precedence constraints. Similar problems have been faced
by Jain and Grossmann [6], Bockmayr and Pisaruk [4] and Sadykov and Wolsey [12],
the latter comparing this approach with branch and cut and column generation. Many of
these approaches consider multiple independent subproblems: that is, once the master
problem is solved, then many decoupled subproblems result which can be solved in an
independent fashion. The same approach is used by Tarim and Miguel [16] to solve
stochastic problems with complete linear recourse.

The allocation is in general effectively solved through Integer Linear Programming,
while scheduling is better faced via Constraint Programming. In our case, the schedul-
ing problem cannot be divided into disjoint single machine problems since we have
precedence constraints linking tasks allocated on different processors. We have im-
plemented such an approach, similarly to [1], [2]], and experimentally experienced a
number of drawbacks. The main problem is that for the problem at hand a two stage
decomposition produces two unbalanced components. The allocation part is extremely
difficult to solve while the scheduling part is indeed easier. We will see in sectiond] that
this approach scales poorly.

We have experimented a multi-stage decomposition, which is actually a recursive
application of standard Logic based Benders’ Decomposition (LBD), that aims at ob-
taining balanced and lighter components. The allocation part should be decomposed
again in two subproblems, each part being easily solvable.

In figure 2] at level one the SPE assignment problem (SPE stage) acts as the master
problem, while memory device assignment and scheduling as a whole are the subprob-
lem. At level two (the dashed box in figure 2)) the memory assignment (MEM stage)
is the master and the scheduling (SCHED stage) is the correspondent subproblem. The
first step of the solution process is the computation of a task-to-SPE assignment; then,
based on that assignment, allocation choices for all memory requirements are taken.
Deciding the allocation of tasks and memory requirements univocally defines task dura-
tions. Finally, a scheduling problem with fixed resource assignments and fixed durations
is solved.

When the SCHED problem is solved (no matter if a solution has been found), one
or more cuts (labeled A) are generated to forbid (at least) the current memory device
allocation and the process is restarted from the MEM stage; in addition, if the schedul-
ing problem is feasible, an upper bound on the value of the next solution is also posted.
When the MEM & SCHED subproblem ends (either successfully or not), more cuts
(labeled B) are generated to forbid the current task-to-SPE assignment. When the SPE
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SPE

_

Fig.2. Solver architecture: two level Logic  Fig. 3. Solver architecture with schedulability
based Benders’ Decomposition test

stage becomes infeasible the process is over converging to the optimal solution for the
problem overall.

We found that quite often SPE allocation choices are by themselves very relevant:
in particular, a bad SPE assignment is sometimes sufficient to make the scheduling
problem infeasible. Thus, after the task to processor allocation, we can perform a first
schedulability test as depicted in figure 3l In practice, if the given allocation with min-
imal durations is already infeasible for the scheduling component, then it is useless
to complete it with the memory assignment that cannot lead to any feasible solution
overall.

3.1 SPE Allocation

The computation of a task-to-SPE assignment is tackled by means of Integer Linear
Programming (ILP). Given a graph with n tasks, m arcs and a platform with p process-
ing elements the ILP model we adopted is very simple: this a first visible advantage of
the the multi-stage approach. We introduce a decisional variable T;; € {0, 1} such that
T;; = 1lis task i is assigned to PE j. The model to be solved is:

min z
n—1

st. 2> Ty Vj=0,...p-1 (1)
1=0

p—1
Y Tyy=1  V¥i=0,..,n-1 )
§=0

Ty €{0,1} Vi=0,...,n—1,Yj=0,...p—1

Constraints (2)) state that each task can be assigned to a single SPE; constraints (I)
are needed to express the objective function. The makespan objective function depends
only on scheduling decision variables. Here we adopt an objective function that tends
to spread tasks as much as possible on different SPEs, which often provides good
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makespan values pretty quickly. Constraints (Il) force the objective variable z to be
greater than the number of tasks allocated on any PE.

Constraints on the total duration of tasks on a single SPE were also added to a priori
discard trivially infeasible solutions; this methodology in the LBD context is often re-
ferred to as “adding a subproblem relaxation”, and is crucial for the performance of the
method. In practice the model also contains the constraints:

n—1
> dmin(i)Ti; < dline  ¥j=0,...,p—1
=0

Where dmin(i) is the minimum possible duration of task i (reading and writing phases
included), and dline is a deadline. Since tasks have no deadline in the present problem,
we impose as deadline the makespan of the best solution found so far.

Since the SPE are symmetric resources, the allocation model also features quite stan-
dard symmetry breaking ordering constraints to remove SPE permutations.

3.2 Schedulability Test

We modified the solver architecture by inserting a schedulability test between the PE
and the MEM stage, as depicted in figure 3

In practice, once a SPE assignment is computed, the system checks the existence of
a feasible schedule using model of section 3.4} with all activity durations (execution,
read, write) set to their minimum. If no schedule is found cuts that forbid (at least) the
last SPE assignment are generated. Once a feasible schedule is found, the task-to-SPE
assignment is passed to the memory device allocation component.

3.3 Memory Device Allocation

Once tasks are assigned to processing elements, their memory requirements and com-
munication buffers must be properly allocated to storage devices. We tackled the prob-
lem by means of Mixed Integer Linear Programming, devising a model with a relatively
simple “core”.

Given a task-to-SPE assignment, for each task we introduce a boolean variable M;
such that M; = 1 if ¢; allocates its computation data on the local memory of the
SPE it is assigned to (let this be pe(7)). Similarly, for each arc/communication queue
a, = (tp,tx), we introduce two boolean variables W,. and R, such that W, = 1 if
the communication buffer is on SPE pe(h) (that of the producer), while R, = 1 if the
buffer is on SPE pe(k) (that of the consumer).

M;e{0,1} Vi=0,....n—1
W, €{0,1},R, € {0,1} Vr=0,...,m—1

Note that, if for an arc a,. = (¢, t)) it holds pe(h) # pe(k), then either the commu-
nication buffer is on the DRAM, or it is local to the producer or local to the consumer;
if instead pe(h) = pe(k), than the communication buffer is either on the DRAM, or it is
local to both the producer and the consumer. More formally, for each arc a,. = (¢, t1):
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R, + W, <1 ifpe(h)# pe(k) (3
R, =W, if pe(h) = pe(k) 4)

Constraints on the capacity of local memory devices can now be defined in terms of
M, W and R variables. When a task executes it always works on local data, therefore
everything it needs (input and output buffers, internal data) is copied to the local device
when the task starts. At the end of the execution all data allocated in DRAM are copied
back, while all locally allocated requirements are left on the local device.

Therefore, in order to state memory capacity constraint we first define:

base usage(j) = Z comm(r)Rr+ Z mem(i) M;+ Z comm(r)Wy
ar = (tn,tr) pe(i)=3 ar = (tn,ty)
pe(k) =j pe(h) =j
pe(h) # pe(k)

Where mem(i) is the amount of memory required to store internal data of task ¢ and
comm(r) is the size of the communication buffer associated to arc r. Thebase usage(j)
expression is the amount of memory needed to store all data permanently allocated on
the local device of processor j. Then we can post the constraints:

Vj=0,...,p— 1, Visuch that pe(i) = j :
base usage(j) + Z (1 — R,)comm(r) +

ar:(th ’tz)

(1 — M;)mem(i) + Z (1 —W,)comm(r) < Cj

ar:(tzxtk)

As in the previous stage, we also add to the model a scheduling subproblem relax-
ation; again, the two basic ideas are that the length of the longest path and the total
duration of tasks on a single SPE must be lower than any current deadline. However,
since memory allocation choices influence task duration, the relaxation is much more
complex than that used in the SPE stage. Details on the relaxation can be found in [J3].

The use of multistage Benders decomposition enables the complex resource alloca-
tion problem to be split into the drastically smaller SPE and MEM models. However,
adding a decomposition step hinders the definition of high quality heuristics in the allo-
cation stages and makes the coordination between the subproblems a critical task. We
tackle these issues by devising effective Benders’ cuts and using poorly informative,
but very fast to optimize objective functions in the SPE and MEM stages. In practice
the solver moves towards promising part of the search space by learning from its mis-
takes, rather than taking very good decisions in the earlier stages. Some preliminary
experimental results showed how in our case this choice pays off in terms of computa-
tion time, compared to using higher quality (but harder to optimize) heuristics, or less
expensive (but weaker) cuts.

3.4 Scheduling Subproblem

The scheduling subproblem is modeled and solved with ILOG Scheduler. In particular,
we introduce an activity for each execution phase (exec;) and buffer reading/writing
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operation (rd,., wr,.). Task are not preemptive, thus all activities regarding a single task
execute without interruption in a pre-specified sequence. Suppose rd,, ...rd,, , are
the reading activities of task ¢; and wr,., , ..., wry, , its writing activities, then:

Vi=0,....,h—2 end(rdy,) = start(rd,,_,)
end(rd,, ,) = start(exec;)
end(exec;) = start(wr,,)
Vi=h,....,k =2 end(wr,) = start(wr,, )

Each communication buffer must be written before it can be read. Thus for each pair
of tasks 5, t; linked via a precedence constraint a,, = (5, tx) in the task graph we
impose:

Vr=0,...,m—1 end(wr,) < start(rd,)

Processing elements are modeled as unary resources, and all activities regarding task
t; use SPE of index pe(i). Task durations are fixed and depend on memory allocation;
in particular, a local memory requirement allocation always yields smaller durations.
The objective function to minimize is the makespan.

In the previous papers on similar problems we introduced a bus model using
cumulative constraints. Here the applications we face are not communication intensive
and the Cell platform provides plenty of communication bandwidth. We therefore did
not impose such a constraint on the bus capacity.

3.5 Benders Cuts

Benders cuts are used in the Logic Based Benders Decomposition to control the iterative
solution method and are of extreme importance for the success of the approach.

In first place, cuts are generated at each iteration yielding an infeasible subproblem
in order to forbid (at least) the current master problem solution; when, after a number
of iterations, the master problem becomes infeasible the solution process ends. The
efficiency and the effectiveness of those cuts have therefore a strong influence on the
total solution time.

Second, whenever a feasible complete solution is found, a new deadline constraint
is added to the makespan requiring the forthcoming solutions to be better than the cur-
rent one; then, cuts for the master problem are generated as in the previous case. In
principle, the effectiveness of the method could be further improved by analyzing the
last feasible solution to deduce cost bounds for not yet explored master problem assign-
ments. Unfortunately, devising effective bounds of that kind is tricky in our case, due
to the presence of precedence relations between tasks on different SPEs: we therefore
decided to focus on generating strong feasibility cuts.

In a multi stage Benders Decomposition approach we have to define Benders cuts
for each level. Here we have to specify both level 1 and level 2 cuts: we start from the
level 2 Benders cuts, between the SCHED ad the MEM stage (“A” cuts in figure ).
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Let o be a solution of the MEM stage, that is an assignment of memory requirements
to storage devices. If X is a variable, we denote as o(X) the value it takes in o. The
level 2 cuts we used are:

> M+ > R+ D> Wex1 5)

o(M;)=0 o(R,)=0 o(W,)=0

This forbids the last solution ¢ and all solutions one can obtain from o by remotely
allocating one or more requirements previously allocated locally: this would only yield
longer task durations and worse makespan. In practice we ask for at least one previously
remote memory requirement to be locally allocated.

Similarly, level 1 cuts (“B” cuts in figure ), between the SPE and the MEM &
SCHED stage must forbid at least the last proposed SPE assignment. Again, let o be
such a (partial) solution. Since the processing elements are symmetric resources, we
can forbid together with the last assignment all its possible permutations. This is done
by means of a polynomial size family of cuts.

For each processing element j we introduce a variable S; € {0, 1} such that §; =1
iff all and only the tasks assigned to SPE j in o are on a single SPE in a new solution.
This is enforced by the constraints:

Vik=0...p-1 > (1-Tw+ Y Ta+Sz1  (©
o(Tij)=1 o(Ti;)=0

We can then forbid the assignment ¢ and all its permutations by posting the con-
straint:

p—1
d Si<p-1 (7
j=0

The level 1 and level 2 cuts we have just presented are sufficient for the method to
work, but they are too weak to make the solution process efficient enough; we therefore

Algorithm 1. Refinement procedure

1: let X be the set of all master problem decisional variables in the original cut
2: sort the X set in nonincreasing order according to a relevance score
3t setlb=0,ub=|X|,n=1b+["";"]
4: while ub > [bdo
5:  feed subproblem with current MP solution
6:  relax subproblem constraints linked to variables X, , X, ,,..., Xs
7:  solve subproblem to feasibility
8: if feasible then
9: setlb=n+1
10:  else
11: setub =n
12 endif

13:  restore relaxed subproblem constraints
14: end while
15: return lb



Multi-stage Benders Decomposition for Optimizing Multicore Architectures 45

need stronger cuts. For this purpose we have devised a refinement procedure (described
in Algorithm[I)) aimed at identifying a subset of assignments which are responsible for
the infeasibility. We apply this procedure to (&), (&) and (7).

Algorithm [ refines a cut produced for the master problem, given that the correspon-
dent subproblem is infeasible with the current master problem solution; an example is
shown in figure ] where X, ... X;5 are variables involved in the Benders cut we want
to refine.

First all master problem variables in the original cut (let them be in the X set) are
sorted according to some relevance criterion: least relevant variables are at the end of
the sequence (figure[-1). The algorithm iteratively updates a lower bound (/b) and an
upper bound (ub) on the number of decisional variables which are responsible for the
infeasibility; initially b = 0, ub = | X |. At each iteration an index n is computed and all
subproblem constraints linked to decisional variables of index greater or equal to n are
mbmmhﬂgmemln:0+{PfJ:BTMMLmememhmmmmm¢ﬁak%mk
solution is found we know that at least variables from X, to X;  are responsible of the
infeasibility and we set the lower bound to n + 1 (figure @}2). If instead the problem
is infeasible (see figure d-3), we know that variables from X;, to X;_ _, are sufficient
for the subproblem to be infeasible, and we can set the upper bound to n. The process
stops when [b = ub. At that point we can restrict the original cut to variables from X,
to X; -

When we apply the Algorithm 1 to level 2 cuts the X set contains all M, R and
W variables in the current cut (B); the relevance score is the difference between the
current duration of the activity they refer to in the scheduling subproblem (resp. exe-
cution, buffer reading/writing) and the minimum possible duration of the same activity.
Relaxing constraints linked to M, R and W variables means to set the duration of the
corresponding activities to their minimum value.

Level 1 cuts are more tricky to handle: the X set contains tasks (ranked by their
minimum duration) rather than decisional variables, and to relax the constraints we
have to: A) set to the minimum the duration of all activities related to the considered
task; B) remove all related (3) and (@) constraints in the memory allocation subproblem

@ | %] x| X‘Zl X, | %.| Xs| FEASIBLE

@ | X\Ol Xi1| X\Z | X\B -X\4

]
| x.| INFEASIBLE
L]
n

B [ *o] *a] X | X@[ X.| X;| FEASIBLE

n=LB UB

@ [ %] %[ % [ %] x| Xs| END

LB=UB

Fig. 4. Refinement procedure: an example
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and set to 0 the memory requirement associated to all the corresponding M, R and W
variables in the capacity constraints.

This cut refinement method has some analogies with what is done in Cambazard and
Jussien [[17]], where explanations are used to generate logic based Benders cuts.

Note that refinement of level 2 cuts requires to repeatedly solve (relaxed) scheduling
problems, which are by themselves NP-hard; the situation is even worse for level 1 cuts,
since the subproblem is in this case the couple MEM & SCHED, which is iteratively
solved. Therefore generation of refined cut is very expensive: the question is how much
effort is worthwhile to spend in generating strong cuts. This is an issue which will be
considered in the section about experimental results.

Finally, the described refinement procedure finds the minimum set of consecutive
variables in X which cause the infeasibility of the subproblem, without changing the
order of the sequence. Note however that is possible that some of the variables from
X, to X, | arenot actually necessary for the infeasibility. To overcome this limitation
Algorithm [ can be used within the iterative conflict detection algorithm described in
[13], [14] to find a minimum conflict set. We implemented such an iterative procedure
to generate even stronger (but of course more time consuming) cuts.

4 Experimental Results

Our approach has been implemented using the state of the art solvers ILOG Cplex
10.1 and Scheduler/Solver 6.3. We tested the approach on 200 task graphs represent-
ing realistic applications. All graphs were randomly generated by means of a specific
instance generator designed to produce realistic task graphs. All instances feature high
parallelism and complex precedence relations; durations and memory requirements are
randomly generated, but based on values taken from real applications. The Cell config-
uration we used for the tests has 6 available SPEs.

Table [l compares performance results for the traditional two stage logic based Ben-
ders decomposition approach referred to as BD, and the three stage that we propose
in this paper, referred to as TD. In the two level solver, the master problem performs
allocation of tasks to SPEs and memory requirements to storage devices through Inte-
ger Linear Programming while the subproblem is a scheduling problem and is solved
via Constraint Programming. Instances are grouped by number of tasks; each group
contains 20 instances, for which the minimum and maximum number of arcs is also re-
ported. The table reports the average number of SPE, MEM iterations for the three-stage
approach and the average number of iterations between the master and subproblem in
the two stage approach (we refer to this quantity as PM iterations). In the time columns
we report the average solution time for both solvers. All tests were run with a cutoff
time of 1800 seconds: the last three columns report the number of instances (out of 20)
for which: 1) both TD and BD exceed the time limit (TD A BD); 2) BD exceeds the
time limit ad TD does not (— TD A BD); 3) TD exceeds the time limit and BD does not
(TD A = BD).

Note that in general TD is much more efficient than BD. Starting from group 20 — 21,
the high number of timed out instances makes the average execution time a less relevant
index; by looking at the last three columns, however, one can easily see how in many
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Table 1. Performance tests

TD BD Timed out
ntasks narcs SPEit. MEMit. time PMit. time TD A BD -TDABD TDA —-BD
10-11 4-11 12 13 3.67 73 73.30 0 0 0
12-13 8-14 17 15 11.19 46 151.31 0 1 0
14-15 8-15 19 28 1025 9 144.49 0 0 0
16-17  11-17 30 41 29.53 101 387.24 0 2 0
18-19  13-19 47 73 158.93 122 814.75 1 4 0
20-21 16-22 90 129 403.20 114 1291.90 2 10 0
22-23  19-26 87 132 571.88 95 1686.00 3 15 0
24-25 20-29 107 162 920.00 79 1639.00 9 7 0
26-27  23-29 88 187 837.50 30 1706.50 6 12 0
28-29  25-35 109 224 1218.50 24 1721.00 9 10 0

large instances TD can still find the optimal solution, while BD is not able to provide
it within the time limit (column — TD A BD); note also that the opposite never occurs
(column TD A = BD). Of course as the number of nodes and arcs grows the number of
instances for which both solvers exceed the time limit also increases (column TD A BD).

Note that TD has a lower execution time, despite it generally performs more itera-
tions than BD. This suggest that the two solvers have in practice a very different behav-
ior: TD tends to work by solving many easy subproblems, while BD performs fewer
and slower iterations.

This is more clearly shown in table [2I which reports for each instance group the
average number of SPE, MEM, SPE & MEM (PM) and SCHED subproblems solved
by both solvers. For each solver the average time to solve a single subproblem of every
type is reported.

One can see how TD solves thousands of problems (mostly to generate cuts), while
BD faces fewer of them. On the other hand TD subproblems are very easy; note that
the difference between the number of SPE, MEM and SCHED subproblems for the
TD solver is around one order of magnitude, while the time to solve each subproblem
type follows an analogous, inverse trend: once again this suggest that the TD solver
has a quite balanced behavior. On the contrary, the resource allocation stage for the BD
solver is instead often very time consuming compared to the scheduling; moreover, the
gap becomes larger as the size of the instance increases.

Going more deeply, it is interesting to observe the distribution of the solution time
between the problem components in the instances solved within the time limit and in
those which are not.

Figure [5] reports histograms that show the distribution of the allocation/scheduling
time ratio for the TD solver (where “allocation” means SPE + MEM). The X axis is di-
vided into intervals, the Y axis counts the number of instances which fall in each interval.

Intuitively, in a balanced three stage decomposition strategy, the resource allocation
is expected to take around 2/3 of the total solution time. One can see how the distribution
for the instances solved within the time limit roughly follows a bell-shaped curve, with
a peak around 0.7-0.8, slightly more than 2/3. The solution time for instances not solved
within the limit appears to be more unbalanced with most of the time absorbed by the
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Table 2. Number of subproblems solved and their difficulty

TD #probs TD time BD #probs BD time
ntasks SPE MEM SCHED per SPE per MEM per SCHED PM SCHED per PM  per SCHED
10-11 12 177 484 0.0362 0.0046 0.0013 12 165 2.1314  0.0010
12-13 17 285 573 0.0954 0.0078 0.0013 13 195 4.8076  0.0014
14-15 19 389 1312 0.0291 0.0083 0.0016 14 201 6.0836  0.0016
16-17 30 692 2304 0.0656 0.0141 0.0019 18 302  35.5924 0.0017
18-19 47 1463 6014 0.1266 0.0270 0.0028 26 495  84.7409  0.0024
20-21 90 2764 12641 0.7690 0.0549 0.0030 23 428 246.3311 0.0037
22-23 83 2707 12010 0.7709 0.0585 0.0988 19 448 270.8062 0.0049
24-25 107 3807 20877 1.4909 0.0860 0.0077 10 203 773.3269 0.0055
26-27 88 3959 24692 0.6456 0.0824 0.0087 5 87 1088.9167 0.0205
28-29 109 4731 31267 1.4714 0.1091 0.0104 5 140 1080.7726 0.0099

allocation. This suggests that for the TD solver more time could be spent in scheduling,
for example to generate stronger cuts for the MEM stage.

This differentiated behavior between timed out and not timed out instances is not
observed for the BD solver where substantially all the process time is spent in solving
allocation subproblems (see figure[@)).

Since most instances in the last two groups were not solved to optimality by both
the approaches, we now want to compare the solution quality when optimality is not
proved. In these cases the TD solver always finds the best solution and the average
improvement is around 9%.

Finally, we considered the impact of strong Benders cuts on the TD solver. We dis-
abled the strong cut refinement system in the TD solver: instead of finding a minimum
conflict at each iteration we only remove some non relevant elements, using Algorithm
1. Table[Blreports the number of SPE and MEM iterations, the average solution time and
the number of instances not solved within the time limit for the first three groups, with-
out and with strong cut refinement. Note how disabling the refinement process causes a
drastic performance breakdown: the weak refinement procedure is therefore not strong
enough. Tuning the effort to be spent in cut generation remains an open problem.

#INSTANCES
#INSTANCES

15 4
10 2
s 0o B! O i |
0 0.0-0.1 0.1-02 0203 0304 0405 0506 0607 0708 0809 0910
0.0-0.1 01-0.2 0203 0304 0405 0506 0607 0708 0809 0910

ALL_TIME/SCHED_TIME ALL_TIME/SCHED_TIME

Fig. 5. TD execution time distribution for instances solved within the time limit (on the left) and
not solved within the time limit (on the right)
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Fig. 6. BD execution time distribution for instances solved within the time limit (on the left) and
not solved within the time limit (on the right)

Table 3. Performance results for the TD solver with and without strong cut refinement

Without strong ref. With strong ref.
ntasks SPE it. MEM it. time > TL SPE it. MEM it. time > TL
10-11 192 90 49790 5 12 13 367 O
12-13 386 295 114421 11 17 15 11.19 0
14-15 410 539  1181.24 12 19 28 1025 O

5 Conclusion and Future Works

In this paper we have shown how to optimally solve allocation and scheduling of em-
bedded applications modeled as task graphs on the Cell BE architecture. We have pro-
posed a multi-stage logic based Benders decomposition approach featuring different
components interleaved through Benders cuts. Experimental results show that the multi-
stage is more efficient than the traditional two stage approach. Open problems remain:
the issue concerning how to tune the strength of Benders cuts is extremely important
for improving our approach. Also, the question of whether it is possible to determine
the optimal number of stages for Benders decomposition based approaches is still open.

Finally, the choice of Benders’ decomposition was motivated by the successful appli-
cation of such method to similar problems with different objective functions; however,
the use of other solution techniques, possibly better suited to makespan minimization
(such as pure CP or heuristics methods), is of great interest and is subject of current
research.

References

1. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSOCs via
decomposition and no-good generation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
Springer, Heidelberg (2005)

2. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation, Scheduling and Voltage Scal-
ing on Energy Aware MPSoCs. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, Springer, Heidelberg (2006)



50

10.

11.

12.

13.

14.

15.

16.

17.

L. Benini et al.

Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-stage Benders
Decomposition for Optimizing Multicore Architectures. Technical Report LIA-008-07
Bockmayr, A., Pisaruk, N.: Detecting infeasibility and generating cuts for MIP using CP.
In: Int. Workshop Integration AI OR Techniques Constraint Programming Combin. Optim.
Problems CP-AI-OR 2003, Montreal, Canada (2003)

Flachs, B., et al.: A streaming processing unit for a cell processor. In: Solid-State Cir-
cuits Conference. Digest of Technical Papers. ISSCC. 2005 IEEE International, pp. 134-135
(2005)

Grossmann, L.E., Jain, V.: Algorithms for hybrid milp/cp models for a class of optimization
problems. INFORMS Journal on Computing 13, 258-276 (2001)

Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Program-
ming 96, 33-60 (2003)

Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 305-316. Springer, Heidelberg (2004)

Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 314-327. Springer, Heidelberg (2005)

Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: Built for
speed. IEEE Micro 26(3), 10-23 (2006)

Pham, D, et al.: The design and implementation of a first-generation cell processor. In: IEEE
International Solid-State Circuits Conference ISSCC 2005, vol. 1, pp. 184-592 (2005)
Sadykov, R., Wolsey, L.A.: Integer Programming and Constraint Programming in Solving
a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates. IN-
FORMS Journal on Computing 18(2), 209-217 (2006)

de Siqueira, N.J.L., Puget, J.F.: Explanation-Based Generalisation of Failures. In: European
Conference on Artificial Intelligence, pp. 339-344 (1988)

Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained
Problems. In: Proc. of the Nineteenth National Conference on Artificial Intelligence - AAAI
2004, San Jose, California, USA, July 2004, pp. 167-172. AAAI Press / The MIT Press
(2004)

Lombardi, M., Milano, M.: Stochastic Allocation and Scheduling for Conditional Task
Graphs in MPSoCs. In: Proc. of the Intl. Conference in Principles and Practice of Constraint
Programming (2006)

Tarim, A., Miguel, I.: A Hybrid Benders Decomposition Method for Solving Stochastic Con-
straint Programs with Linear Recourse. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.)
CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 133-148. Springer, Heidelberg (2006)
Cambazard, H., Jussien, N.: Integrating Benders Decomposition Within Constraint Program-
ming. In: Proc. of the Intl. Conference in Principles and Practice of Constraint Programming,
pp- 752-756. Springer, Heidelberg (2005)



Fast and Scalable Domino Portrait Generation

Hadrien Cambazard, John Horan, Eoin O’Mahony, and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
{h. cambazard, j.horan,e.omahony,b. osullivan}@4c .ucc.ie

Abstract. A domino portrait is an approximation of an image using
a given number of sets of dominoes. This problem was first stated in
1981. Domino portraits have been generated most often using integer
linear programming techniques that provide optimal solutions, but these
can be slow and do not scale well to larger portraits. In this paper we
propose a new approach that overcomes these limitations and provides
high quality portraits. Our approach combines techniques from opera-
tions research, artificial intelligence, and computer vision. Starting from
a randomly generated template of blank domino shapes, a subsequent
optimal placement of dominoes can be achieved in constant time when
the problem is viewed as a minimum cost flow. The domino portraits one
obtains are good, but not as visually attractive as optimal ones. Combin-
ing techniques from computer vision and large neighborhood search we
can quickly improve our portraits to be visually indistinguishable from
those found optimally. Empirically, we show that we obtain many orders
of magnitude reduction in search time.

1 Introduction

In 1981 Kenneth Knowlton filed for a United States Patent entitled “Repre-
sentation of Designs” [] in which he proposed the use of dominoes to render
monochrome images. Twenty five years later, at the 2006 Conference on Con-
straint Programming, Artificial Intelligence and Operations Research (CP-AI-
OR 2006), Robert Bosch gave an invited talk on “OptArt”, focusing on how
optimisation could be used to create pictures, portraits, and other works of art.
In that talk, Bosch not only demonstrated the beauty of computer-generated
art, but also the technical challenges involved in producing it. A domino por-
trait is simply a rendering of an image using a given number of sets of dominoes.
Generally he uses “double nine” domino sets, which contain all dominoes from
the “double blank” to the “double nine”, giving fifty five dominoes in all.

The nice property of “double nine” domino sets is that they give a wide range
of shades from complete black (the blank domino) to a bright white (the double
nine domino). A set of dominoes gives us a constrained palette of monochrome
shades, which we can use to produce images. We say that the palette is con-
strained for two reasons. Firstly, each set of dominoes contains only one domino
of each type. Secondly, we are not allowed to break dominoes into two parts, but
rather use the entire domino.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 51[65] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A well known portrait of George Boole is presented on the left, with a sequence
of domino portraits generated from this image using 1, 4 and 16 sets of dominoes as
we move to the right, respectively

Several examples of domino portraits based on a well known portrait of George
Boole are presented in Figure [Il It is clear that as we increase the number of
dominoes we have at our disposal, the domino portrait we obtain is a better
approximation of the target input image. In Figure [2] a much larger domino
portrait of Boole is presented, which is sufficiently large for the reader to see
each of the individual dominoes that comprise the portrait.

A problem with current approaches to generating domino portraits is that they
do not scale very well. This is mostly due to the fact that Bosch has been interested
in finding optimal domino portraits; we will explain how the notion of optimality is
defined later in this paper. We set out to develop a scalable approach to generating
domino portraits that would not be concerned with whether the portraits found
were optimal or not, but be concerned with whether the portraits were sufficiently
good so as to be visually indistinguishable from the optimal ones.

In this paper we present a new approach to building approximations of a target
image using a specified number of complete sets of “double nine” dominoes [3]J2].
We adopt an approach similar to Knowlton’s [4] (and to Knuth’s [5]), in which
the image is divided up into blank domino outlines to which we assign dominoes.
Rather than treating this problem as a traditional assignment problem, which
can be solved using the Hungarian Method, and other similar algorithms, we
formulate it as a minimum cost flow. The advantage is that the assignment step
becomes constant time, allowing us to scale to arbitrary sized portraits. However,
because we predetermine the orientations of the dominoes, we are unlikely to find
an optimal domino configuration. Therefore, we adopt a heuristic approach to
identifying regions of the domino placement that, if redesigned, would improve
the quality of the resultant portrait. This last step is performed using a large
neighborhood search. An empirical evaluation demonstrates the utility of our
approach.

The remainder of the paper is organised as follows. Section Bl presents the
domino portrait problem and explains in detail how it is defined. We then briefly
summarise an existing linear model for finding optimal domino portraits in Sec-
tion B as well as other heuristic approaches that have been studied. Section [
describes the two-step approach we employ here, and our innovation based on a
minimum cost flow formulation. In Section Bl we outline a practical improvement
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Fig. 2. A domino portrait of George Boole generated by our approach using 49 sets of
“double nine” dominoes, i.e. 49 x 55 = 2695 individual dominoes

to our basic approach that involves locally perturbing the portrait. Section
presents and discusses the results. A number of concluding remarks are made in
Section [1]

2 The Domino Portrait Generation Problem

A domino portrait can be generated for any target image. The first step in the
process is to convert the target image into a grayscale graphic image using, for
example, the UNIX pgm command. Each pixel in a grayscale image is given a
grayscale value between 0 (black) and 255 (white).

We consider rendering images using sets of “double nine” dominoes. There
are 55 dominoes in a complete set of double nine dominoes: 10 dominoes with
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equal face values in both halves, i.e. all dominoes with face valuations equal to
(0,0),...,(9,9) along with an additional 45 non-equal face dominoes with face
values in {(vi,v2)v1 € {0,...,8},v2 € {v1 +1,...,9}}. The area covered by a
single set of dominoes is 110 square units, since we have 55 dominoes each with
2 units. Therefore, given s sets of dominoes, the grayscale image is divided into
11s x 10s cells and for each cell in row r; and column ¢; the mean grayscale value
is computed and scaled to an integer between 0 and 9 called g;;. The values in
each cell defines the perfect half domino value to place in that cell.

Each domino with equal valued halves has two possible orientations, vertical
and horizontal, whereas each non-equal valued dominoes have 4 orientations
since such a domino can be flipped along its vertical and horizontal axes. For
k = s2 sets of dominoes we can use a canvas of size 11s x 10s to be filled with
the 55 x k dominoes, but in practice we can represent any canvas of size 110 x k.
The following notation will be used throughout the paper:

— k is the number of sets of dominoes, and N = 55 x k is the number of
individual dominoes.

— d; = (p},p?) for domino number 4, with p € {0,...,9}

— gij is the grey value of cell (r;,¢;) between 0 and 9. The whole matrix of
grey values is refered to as the grey matrix in the following.

The cost of positioning a half-domino p} on a cell (r;,¢;) is equal to (p] — gi;)*.
Notice that it is quadratic so that the cost grows faster than the error and
large errors are strongly penalised. The problem is to place the dominoes on the
canvas so that the overall cost (the sum of the costs of each cell of the canvas)
is minimised and every domino is used exactly once. A graphical representation
of the process is presented in Figure
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(a) The grayscale values (b) The result of the (¢) An example place-
are scaled to 0...9. scaling process. ment of dominoes.

Fig. 3. A summary of the process of generating a domino portrait from an image
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3 An Integer Linear Programming Model

Robert Bosch proposed an integer linear programming formulation of the domino
portrait generation problem in [3]. His model is based on boolean variables that
specify if a given domino is placed with a given orientation with respect to
its reference square (the top left corner of each horizontally placed domino in
Bosch’s model) in a given cell of the canvas. Constraints then stipulate that
each domino has to be used exactly once, and that each cell has to be covered by
a domino. The resulting integer programs are quite large, with more than one
million decision variables and five thousand constraints for k& = 49, but Bosch
reports that they are relatively easy to solve, requiring almost two hours when
k = 49.

We used this model in our experiments as a baseline, with a very simple
improvement not described by Bosch in his papers, but used by Knowlton, which
involves keeping only the optimal orientation for each domino. A domino can be
placed in two orientations at a given position but one often dominates the other,
in terms of cost, and it is only necessary to consider the best orientation; this
can be seen as a form of symmetry breaking over individual dominoes. The
scalability of this model is, however, very limited and we will present a non-
optimal, but much more efficient, approach to generating domino portraits in
the next section, and then follow this presentation with an improvement based
on large neighbourhood search.

4 A Two-Step Approximation

In his original patent, Knowlton outlined a two-stage process for generating
domino portraits. The first step in his approach involved generating an initial
arrangement of empty domino holders (rectangles) on the canvas, i.e. pairs of ad-
jacent cells, which were later “filled” using dominoes. In this step he maximised
the average unbalance of each domino holder by maximising the average differ-
ence between the two brightness values it contained. The second step involved
assigning dominoes to the holders computed from the first step in order to min-
imise the error between the brightness provided by a domino and the brightness
required in the domino holder computed from the first step. Donald Knuth sub-
sequently recast Knowlton’s method as an assignment problem [5], but because
the two steps are independent, there is no guarantee the the resulting domino
portrait will be close to optimality.

Here, we use another modification of Knowlton’s method in which the initial
pattern of empty dominoes is generated randomly, the dominoes are then placed
into this pattern using an assignment problem formulation. This approach relies
on the observation that the problem becomes polynomial if the pattern of the
dominoes is known, since the assignment step is itself polynomial. This suggests
that restricting ourselves to searching over alternative patterns is enough to
generate optimal domino portraits. In practice we will show that any random
pattern provides a very good upper bound on the cost of the domino portrait.
We will present the details of each step in detail.
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4.1 Generating the Pattern of Empty Domino Holders

We generate a random packing of empty domino holders on the canvas using
Algorithm [Il We refer to this arrangement of empty domino holders as a pattern.
Generating the pattern can be regarded as a packing problem. An example
pattern is presented in Figure [l

201192011

Fig. 4. An example of a pattern on the right that covers the grey matrix on the left

Algorithm [I] proceeds by filling the grid from the bottom to the top, line by
line from the left to the right (lines 2 and 3). At each step it randomly assigns
a rectangle vertically or horizontally (line 4) before going into a propagation
step. Once a cell is surrounded (orthogonally) by three cells already covered by
a domino holder, the orientation of the rectangle covering this cell is known and
can be propagated (lines 5—6). This is performed until a fixed-point is reached,
or a contradiction is met. A contradiction is raised when an odd number of
connected cells remains in the grid, since dominoes cover pairs of cells. Each
time a contradiction is met a restart step is performed. A small sub-region of
the pattern is wiped out by removing a given number of lines.

Algorithm 1. Random pattern generator

1: while there exists an empty cell in the grid do
2: i« the first row containing an empty cell

3:  j < the first column such that (7,7) is empty

4:  Place a rectangle randomly at position (i, 7), (i + 1,7) or (¢,5), (i,5 + 1)

5:  while there exists (i, 7), an empty cell with three occupied orthogonal neighbours
and all regions of empty connected cells are of even size do

6: Place a rectangle to cover (i,7) and the empty cell next to (4, 5)

7:  end while

8:  if there is a region of an odd number of connected empty cells in the grid then

9: Wipe out part of the grid

10:  end if

11: end while
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This non-deterministic approach to random pattern generation performs very
well in practice. In particular, we found this approach much faster than a com-
plete backtracking algorithm for large number of dominoes.

4.2 Solving the Assignment Problem as a Min-Cost Flow

Once the pattern is known, placing the dominoes optimally is a polynomial
problem — it is an optimal assignment problem. Figure [ presents an example of
the assignment problem. Notice that the cost ¢(d;, {a, b)) of assigning a domino
d; = (p},p?) in a given rectangle of grey values (a,b) is defined as the best cost
among the two possible orientations of the domino:

e(di, (a, b)) = min((p; —a)* + (b} = b)%, (p; = b)* + (0] —a)*). (1)
55 x k dominoes 55 x k rectangles
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Fig. 5. An example of the assignment problem to be solved once the pattern is known

Solving the assignment problem can be done very efficiently using the Hungar-
ian method in O(n?). However, in our setting n denotes the number of individual
dominoes, which can quickly become very large. A good portrait often requires
at least 100 sets of dominoes, giving 5500 individual dominoes. Clearly, the Hun-
garian method would not scale to those sizes.

We propose a novel formulation of this step as a min-cost flow. Observe that
in the bipartite graph in Figure[, dominoes on the left side are repeated k times
and many rectangles on the right side have identical costs. In fact as the number
of points varies from 0 to 9 on each square, there is only 55 possible pairs of
points (for two adjacent squares) in the portrait. We can take advantage of these
symmetries using the following formulation. We define the following notation:

— An area is a set of all rectangles with identical pairs of costs in the pattern.
Area j corresponds to a rectangle of cost (ji,j2) and the number of such
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rectangles is denoted capa;. Moreover, the total number of areas is denoted
by nbArea and nbArea < 55.

— x;; is the number of dominoes of kind 7 assigned to area j.

— ¢(d;,7) is the cost of assigning a domino of kind d; into area j. ¢(d;,j) is
the same cost as previously so that c(d;,j) = ¢(d;, (j1,72)) as defined by
Equation [

In the pattern given in Figure @ we would have nbArea = 6 where each area
would be defined by one of the six rectangles {(6,3), (2,1),(2,0), (4,4), (1,1),
(9,9)}. The optimal assignment can be reformulated as follows:

Minimize Zi,j CijTij
subject to )
Zj Tij = ]{},VZ S 55
> Tij < capaj,Vj < nbArea

The first constraint of this linear program ensures that exactly & dominoes
of each kind are assigned. The second constraint ensures that no more than
capa; dominoes are placed in the same area. In practice, there are exactly capa;
dominoes to fill the area as we have j capa; = 55 X k. This problem can be
better understood, and more efficiently solved, as a min-cost flow problem on
the graph presented in Figure [6, where the 2 variables can be interpreted as the
amount of flow from a domino i to an area j.

There are two key observations to be made about this formulation. Firstly, we
only need to know the area where a domino is assigned and not specifically where
it is placed in this area. Secondly, we only need to know how many dominoes
of each kind are assigned in each area and not where each specific domino is
assigned. The min-cost flow formulation takes these symmetries into account and
provides a much more efficient way of solving the previous assignment problem.
Notice that the size of the graph (number of nodes and edges) supporting the
flow is independent of k; only the flow and capacities are increasing, making the
approach robust to increases in k.

Once reduced to a min-cost flow formulation the problem can be solved in a
variety of ways. It is easy, for example, to formulate it as a linear program (see
Model B)). Fortunately this linear program has the quality of integrality, thus
only the linear relaxation needs to be solved. Alternatively, there exist many
algorithms to solve min-cost flow, e.g. the Successive Shortest Path (SSP) [1]
algorithm which sends the largest possible flow along the shortest path from
source to sink, found by Dijkstra’s algorithm, at each iteration. The complexity
of this algorithm with a small optimisation is O(n X maxjc(i.. nbarea}(capa;))
where n is the number of nodes.

An alternate algorithm, the Enhanced Capacity Scaling algorithm [I], is a
strongly polynomial improvement on the Successive Shortest Path algorithm. It
has a complexity of O((mlogn)(m + nlogn)), where n is the number of nodes
and m is the number of arcs. This means that for our min-cost flow formulation
the algorithm runs in constant time as the number of nodes and the number of
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55 X k units of flow through the network

55 Dominoes At most 55 areas

Fig. 6. The assignment problem translated as a min-cost flow problem

arcs are constant and not dependent on the number of sets of dominoes used to
generate the portrait.

5 Improving the Pattern Using Local Search

Using the min-cost flow formulation we can solve the assignment step of the
domino portrait generation problem in constant time. The only obstacle to gen-
erating optimal domino portraits is the choice of pattern to provide to the flow
step. Notice that the pattern only matters where the grey values are unbalanced;
the pattern in uniform areas has almost no effect on the final cost. In terms of
the flow formulation, it means that a change of the pattern that would not affect
the size of the areas of the flow graph, the capa; values, has no effect on the
optimal assignment. Therefore, we consider perturbing the pattern slightly in a
local search approach to affect the capa; values in order to improve the flow.

The algorithm we implemented can be described as a Large Neighborhood
Search [§] over patterns. It proceeds as follows:

1. Identify the regions of the canvas where the grey values are unbalanced and
thus, where the pattern might benefit from improvement. We denote as X
the set of points (4, j) corresponding to those regions.

2. Select a point x € X and remove it from X. If X is empty then select a
point randomly.

3. Remove M dominoes around z; x can be seen as the centre of the new empty
region.
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4. Enumerate all possible patterns that can fill the empty region. For each
of those patterns incrementally update the capa; values and compute the
corresponding new min-cost flow denoting the cost of the overall resulting
pattern. Note that this is a global optimization step as the dominoes that
were previously assigned in the region might now be in a completely different
place.

5. Return to Step 2 (above) as long as the average improvement over the last
20 iterations remains above a threshold (set very low in practice).

The points in the set X are weighted in such a way that any points of interest
adjacent to one already chosen for improvement are less likely to be selected than
those that are independent of chosen points. This is to maximize the impact of
the improvements during the initial executions and to ensure an overall faster
convergence.

The first point is performed using an algorithm from computer vision that
performs corner detection, or interest point detection, to extract certain kinds
of features to infer the contents of an image. We used the FAST (Features from
Accelerated Segment Test) algorithm from [6/7]. This approach seems very well
suited for portraits as it highlights the important characteristics of the face (eyes,
mouth, hair etc...) which matter in the final domino portrait. Figure shows
the result of FAST on the “Girl with a Pearl Earring”.

The neighborhood explored is defined by all the possible patterns for a small
region of 2 x M squares of the grid (M = 15 is the setting used in our ex-
periments). The enumeration is performed using the propagation described in
Algorithm [M in a complete backtracking search. Finally, the problem of finding
the optimal flow regarding small changes of capa; is a sensitivity analysis prob-
lem on the min-cost flow and can be performed incrementally [I]. The optimal

LB

(b) The X region detected by the FAST
ring”. algorithm for k = 225.

i

(a) Vermeer’s “A Girl with a Pearl Ear-

Fig. 7. Selecting the interesting region to focus on in the local search step
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flow is maintained while performing a local search on the capa; values reflecting
the changes in the pattern. This is possible due to the efficiency of the flow model
and its incremental behaviour.

6 Experiments

Robert Bosch proposed an integer linear programming (ILP) approach to solv-
ing this problem, which we discussed earlier in the paper, and we used his ap-
proach as a baseline in our experiments. We used Vermeer’s “A Girl with a Pearl
Earring” (Figure[7(a)). All times quoted are the times it takes to generate and
solve the respective models; they do not include the time taken to convert the
solution into a viewable image. Experiments were run on a 2.8GHz Intel Xeon
processor running Linux Fedora Core 2 with 4Gb of RAM.

Firstly, we sought to compare the performance of the min-cost flow and Hun-
garian method to demonstrate the scalability of the flow algorithm (Table [II).
The flow algorithm used is SSP, mentioned previously, which was efficient enough
for our purposes and easy to implement. Clearly, the Hungarian method does
not scale, while the min-cost flow does very well. While the min-cost flow is
constant-time in this setting (although not necessarily so when using the SSP
algorithm), there is a small variation for different numbers of sets of dominoes
due to the time spent generating the problem.

Table 1. Comparing the Hungarian and Min-Cost Flow approaches to solving the
assignment phase of domino portrait generation

#Sets of Time (in seconds)
Dominoes Min-Cost Flow Hungarian

9 0.23 0.47

25 0.15 6.87

49 0.15 50.17
121 0.17 734.69
2,500 0.31 -
10,000 0.63 -

Table 2. Comparing the quality and speed of ILP and random patterns

ILP Two phase (100 runs) Gap (%)
k  Cost Time (s) Avg Cost Best Cost Time (s) Avg Best
1 1,192 1.04 1,260 1,222 0.02 5.96 2.52
4 4,844 13.8 5,228 5,139 0.04 7.99 6.09

9 11,255 65.9 12,183 12,013 0.07 8.26 6.73
25 33,673 32562 36,265 35998 0.12 7.71 6.90
49 69,585 7,030.29 74,075 73,639 0.13 6.45 5.83
121 171,961 9,797.55 181,768 180,991 0.16 5.72 5.25
225 376,176 44,895.86 386,870 386,326 0.17 2.84 2.69
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Secondly, we show the average quality of a random pattern (over 100 runs)
for different number of sets of dominoes to support our claim that any random
pattern provides a good bound on the quality of the domino portrait (see Ta-
ble ). The ILP model is solved with CPLEX using Bosch’s model discussed
in Section [Bl In Table 2 the cost is the total cost of the optimal solution; we
present both the average and best costs for the random pattern approach. It
is interesting to note that as the number of sets of dominoes is increased, the
quality of the portrait generated from a random pattern is improving; we can
find portraits that are 2.69% worse than the optimal cost found using ILP when
using 225 sets of dominoes. A very important difference between methods here,
of course, is that the random pattern-based portrait is generated in a fraction
of a second, while ILP takes several hours for larger numbers of dominoes.

EREHRE
SHiDOGGEEEEEIHHARIRAHA
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(b) Random Pattern + Min Cost Flow (c) Large Neightbourhood Search

Fig. 8. Comparing the output of the ILP versus our full approach combining min-cost
flow and local search
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Fig.9. A domino portrait of Alan Turing generated by our approach using 361 sets
of “double nine” dominoes, i.e. 19,855 individual dominoes. The min-cost flow phase
for this portrait required 0.194 seconds, and the local search phase required 33.965
seconds. We also generated a much larger portrait using 10,000 sets of dominoes (55,000
individual dominoes), which required 0.539 seconds and 26.285 seconds for the min-cost
flow and local search phases, respectively. This portrait is not included in the paper
since it would look almost like a standard grayscale image.

Thirdly, in Table Bl we show the results of the ILP formulation and the flow-
based approach using local search over patterns which provide very good por-
traits within a few percent of the optimal value with orders-of-magnitude of
speed-up in search time. The resulting images are indistinguishable visually from
the optimum for “A Girl with a Pearl Earring” as shown on Figure[8l We show
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Table 3. Comparing the quality and speed of ILP against the flow-based approach
using local search to improve the pattern

ILP LNS patterns
k Opt Cost Time (s)  Cost Time (s) Gap (%)
1 1,192 1.04 1,207 8.32 1.26

4 4,844 13.80 4,903 14.00 1.22
9 11,255 65.90 11,512 14.54 2.28
25 33,673 325.62 34,498 15.72 2.45
49 69,5685 7,030.29 70,977 17.66 2.00
121 171,961 9,797.55 175,669 27.34 2.16
225 376,176 44,895.86 380,408 32.71 1.13

three portraits using 49 sets of dominoes corresponding to the optimal value ob-
tained by the ILP, random pattern and local search approaches. For interesting
sizes (between 9 and 225 sets of dominoes), the local search approach outper-
forms the ILP model in time without losing any relevant quality in the picture
(gap no more than 2.45% and visually irrelevant).

We could not solve the ILP model for portraits requiring more than 225 sets of
dominoes because of memory problems. However, even portraits requiring 10, 000
sets of dominoes (55,000 dominoes) are not a challenge for our approach. In fact,
the larger the number of domino sets we use, the less we need to optimize the
pattern using local search. In Figure @l we show a very complex portrait of Alan
Turing generated using 361 sets of dominoes, and report the times required by
the min-cost flow and local search phases in its caption. We also report that
using 10, 000 sets of dominoes we can generate portraits even faster because we
have a much shorter local search step.

7 Conclusion

We have proposed a new solving technique for the domino portrait problem which
is based on an original and efficient reformulation of part of the problem as a
min-cost flow problem combined with local search. We show that we can obtain
several orders-of-magnitude of speed-up to get high quality portraits within a few
percent of the optimal value. This approach does not provide optimal solutions
but produces high quality solutions within a couple of seconds. It is moreover
very robust to the increase of the size of the problem.

Interesting ideas have been explored that might be useful in the context of
packing problems with a positioning cost. The packing problem here is easy, as
it is only made of rectangles of the same size, but the overall approach might be
interesting in more complex and real-life applications where the objects are of
different shapes.

Our application involves well known OR algorithms (Hungarian, Min-cost
flow and sensitivity analysis of the flow), search techniques (large neighbourhood
search, depth first search with constraint propagation) as well as an algorithm



Fast and Scalable Domino Portrait Generation 65

from the computer vision area (FAST) and is, therefore, well suited for teach-
ing Operations Research. It has been used with great success at the Discovery
Exhibition 2007 in CorkEl, a science outreach event for pupils aged between 10
and 16.
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Gap Reduction Techniques
for Online Stochastic Project Scheduling

*
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Abstract. Anticipatory algorithms for online stochastic optimization have been
shown very effective in a variety of areas, including logistics, reservation systems,
and scheduling. For such applications which typically feature purely exogenous
uncertainty, the one-step anticipatory algorithm was shown theoretically to be
close to optimal when the stochasticity of the problem, measured by the anticipa-
tory gap, is small. This paper studies the behavior of one-step anticipatory algo-
rithms on applications in which the uncertainty is exogenous but the observations
are endogenous. It shows that one-step anticipatory algorithms exhibit a much
larger anticipatory gap and proposes a number of gap-reduction techniques to ad-
dress this limitation. The resulting one-step anticipatory algorithms are shown to
outperform significantly the state-of-the-art dynamic-programming approach on
an online stochastic resource-constrained project scheduling application.

1 Introduction

Online anticipatory algorithms [8] have been recently proposed to address a wide va-
riety of online combinatorial optimization problems in areas such as logistics, net-
working, scheduling, and reservation systems. The applications emerged from progress
in telecommunication and in information technologies which enable organizations to
monitor their activities in real time and collect significant amount of historical data.
One-step anticipatory algorithms only rely on two black-boxes: a conditional sampler
to generate scenarios consistent with past observations and an offline solver which ex-
ploits the combinatorial structure of the application to solve the deterministic version of
the problem. Their essence is to transform the multi-stage stochastic optimization ap-
plication into a 2-stage problem by ignoring all non-anticipativity constraints but those
of the current decision. This 2-stage problem is then approximated by sampling, and
the approximated problem is solved optimally by computing the offline optimal solu-
tions for all pairs (scenario,decision). One-step anticipatory algorithms were shown to
be very effective on a variety of online stochastic combinatorial problems in dynamic
fleet management [1I2], reservation systems [8], resource allocation [6], and jobshop
scheduling [[7]. They were also analyzed theoretically in in terms of the global an-
ticipatory gap (GAG) which is a measure of the stochasticity of the application. The
analysis shows that, when the GAG is small, anticipatory algorithms are guaranteed to
return high-quality solutions when ran with enough scenarios.
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N000140610607.
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This paper examines the behavior of one-step anticipatory algorithms on online
Stochastic Resource-Constrained Project Scheduling Problems (S-RCPSP). Such ap-
plications are increasingly common for research and development projects, as well as
the management of projects in the services industry. Contrary to the above applications
in which the uncertainty is purely exogenous, the uncertainty in online S-RCPSP is ex-
ogenous but the observations are endogenous: it is necessary to execute an activity to
observe its cost, its duration, and its outcome. The endogenous nature of the observa-
tions produces a significantly higher GAG, making these applications more challenging.

This paper shows that, despite these difficulties, one-step anticipatory algorithms still
outperform the state-of-the-art algorithm proposed in which applies dynamic pro-
gramming to a heuristically-confined state space (HCDP). Moreover, the paper investi-
gates a number of generic gap-reduction techniques, including a waiting strategy, gap
correction, time scaling, and problem pruning. These techniques significantly improve
the behavior of one-step anticipatory algorithms which produce an average improve-
ment of about 15% compared to the HCDP algorithm.

The rest of the paper is organized as follows. SectionPlspecifies the online S-RCPSP.
Section [3| generalizes the generic online algorithm proposed in to accommodate
endogenous observations. Section B shows how to instantiate the generic algorithm to
the online S-RCPSP. Section [j] presents an improved version of the HCDP algorithm
from [J3]]. Section[6] presents the one-step anticipatory algorithm and studies its behavior
experimentally. Sections[7] and 10 describe the gap-reduction techniques. Section
[Tl presents the experimental results and Section[I2] concludes the paper.

2 Online Stochastic Project Scheduling

This section describes the online Stochastic Resource-Constrained Project Scheduling
Problem (S-RCPSP) from [3]]. It starts with the offline (deterministic) problem, presents
its stochastic and online versions, and illustrates the problem visually.

The Resource Constrained Project Scheduling. The RCPSP consists of a set of projects
(jobs) that must be scheduled on a number of laboratories (machines). Each project con-
sists of a sequence of experiments (activities) which are characterized by their durations
and their costs. Each project brings a reward which depends on its completion time. The
goal is to schedule the jobs to maximize revenues, i.e., the sum of the project rewards
minus the sum of the activity costs. More formally, given a set of labs L, and a set of jobs
J, a RCPSP instance ¢ consists of a sequence of n(j,§) activities aj j¢, ..., Gn(je),j.¢
for each job j € J. Activity a; ;¢ has duration d; j ¢ and cost ¢; j¢. The reward of
project j is given by a function f; : N — R which, given a completion time ¢ of project
J, returns its reward f;(¢). A solution to a RCPSP instance § is a schedule o, i.e., is
a partial assignment of activities to labs and starting times (¢ : A — L x N). The
schedule typically assigns only a subset of activities but satisfies the constraint that, if
an activity is assigned to a lab at a given start time, all the preceding activities of the
job must have been assigned to a lab and completed before the start time. The set of
activities scheduled in ¢ is denoted by dom(c); We abuse notations and use a; j ¢ € 0
instead of a; ;¢ € dom(0).If a € o, we use o5(a) to denote the start time of activity a
in 0. A project j is scheduled in o, denoted by j € o, if all its activities are scheduled in
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o and its completion time ct(j, o) is given by 0 (s (j.¢),j.¢) + dn(j¢),j.c- The objective
value of a schedule is given by

f(O', g) = ij(Ct(jv U)) - Z Cij.¢-

JjECT a;, ;¢ €0

The S-RCPSP. The S-RCPSP has uncertainty regarding the durations, the costs, and
the outcomes of activities. In particular, an activity can now fail, in which case the en-
tire project fails. It may also succeed, in case the project is successful and completed. If
the activity neither fails or succeeds, its status is “open”. Activities whose outcome is
a success or a failure have no successors. Formally, a S-RCPSP is specified by a prob-
ability distribution over the set = of RCPSP scenarios. Each scenario £ € = specifies
a RCPSP instance. Moreover, for each activity a; ; ¢, the scenario specifies an outcome
0i.j,¢ € {success, fail,open}. A job j is a success in &, denoted by success(j, ), if
its sequence of activities is of the form

0156 = .-+ = On(j,€)—1,j,6 = OPEN & Op(j¢) j,¢ = Success.

It is a failure otherwise, which means that its sequence is of the form

01j = - = On(je)—1,j,6 = 0pen & On(j¢) jc = failure.

The goal in the S-RCPSP is to find a schedule o maximizing the objective

Ee > filetGo) = Y cije

jEo:success(,§) ai,j,6€0

In [3]], the distribution of S-RCPSP scenarios is specified as follows. The number of
jobs, labs, and the reward functions of all jobs are the same for all scenarios. The un-
certainty on the sequence of activities of each job is modeled using a Markov chain.
Each activity a; ; has a set R of potential realizations which are tuples of the form
(01-7]-7“ Cijrs di7j7r> specifying the outcome 0; j ., cost ¢; j-, and duration d; ; , of the
activity. The probability to reach a given realization for an activity is conditioned on the
realization of its preceding activity. More formally, a transition matrix P; ; defines the
conditional probability p; ; ., of activity a; ; having realization r given that activity
a;—1,; has realization 1/, i.e.,

it = Pr((cije: dije, 0ij.e) = (Cijrydijrs 0ijir) |
(Cim1,j,6s dim1,j,6,0i-1,5,6) = (Cim1,j,r's dim1,j,r, 0i—1,5,17))

FigureDlillustrates such a Markov chain. In the figure, the failing activities are depicted
in color, the costs are given inside the activities, and the durations are specified by the
length of the tasks. The probability distributions are shown implicitly by the thickness
of the transition arrows. For instance, the first activity has a low probability of having a
realization with a cost of 400. However, if such a realization happens, it has then a high
probability of having a second realization with a cost 250 and a rather long duration.

The Online S-RCPSP. In the online S-RCPSP, the decision maker alternates between
scheduling activities and observing the uncertainty. Although the uncertainty about the
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Online Schedule
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Offline schedule Deadlines and
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Fig.1. An Example of Online and Offline Fig. 2 A Markov Chain Describing the Un-
Schedules for the S-RCPSP certainty of a Job

projects and their activities is exogenous, the decision maker must schedule an activity
to observe its realization, that is its duration, its cost, and its outcome. In particular, its
outcome is revealed only when the activity is completed, at which time the decision
maker also knows its duration and its cost. The online S-RCPSP is thus of a funda-
mentally different nature than the online stochastic optimization applications presented
in [8]. Indeed, in these applications, the uncertainty is purely exogenous and is about
which requests arrive and when: Once a request is placed, its information is fully re-
vealed. In the online S-RCPSP, the decision maker must schedule an activity to reveal
its uncertainty, which means that the observation is conditioned to a prior decision (thus
it is endogenous). This poses some serious computational issues, partly due to the fact
that activities may fail, in which case their project will incur a cost, take scheduling
time, and bring no reward.

Hlustration. Figure[Tlillustrates the concepts visually. It depicts the reward functions of
five jobs (bottom right of the figure). The reward f; of each job is a constant before its
first deadline d;; it then decreases linearly until a second deadline after which it remains
constant. For instance, the third job has a reward of 10,000 if it is completed before time
20 and the reward decreases linearly between 20 and 29 to reach 1,100 at the second
deadline.

The bottom-left of the figure describes the clairvoyant schedule which has observed
all the uncertainty. The solution schedules the first and the fourth job, which finish at
times 14 and 13 and yield rewards of 5, 000 and 11, 000 respectively. The inside of each
activity specifies the job number, the activity number, and the outcome. The top of the
figure describes an online schedule. The online schedule includes activities of failing
jobs 2, 3, and 5, with job 5 failing very late. These failed projects push the finish time of
job 1 which only brings a reward of 3, 800. Of course, the value of the entire schedule
further decreases by the cost of scheduling the activities of the failed projects.

3 The Generic Online Decision-Making Algorithm

Because of the endogenous nature of observations, the online generic algorithm pre-
sented in [8] must be generalized to accommodate the concept of observation explicitly.
The new generic algorithm is depicted in Figure Bl It receives a decision-making agent
A and a scenario £ unknown to the decision maker and it maintains the current state of
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ONLINEDECISIONMAKING(.A, £)
1 s« (0,9,9);

2 while true do

3 d — A .decide(s);

4 if d = L then

5 return f(s,&);

6 s «— applyDecision(d, s);
7 s < observe(s, £);

Fig. 3. The Generic Online Decision-Making Algorithm

decisions and observation s. As long as the decision maker does not decide to terminate
(decision L in line 4), the online algorithm calls the agent to obtain a decision d (line 3).
The decision is applied to the state in line 6 and possible realizations of the uncertainty
are observed in line 7. When the decision-maker terminates, the algorithm returns the
value of the final state (line 5).

4 Instantiating The Online Decision-Making Algorithm

We now describe how to instantiate the states, the decisions, and the functions applyDe-
cision and observe for the online S-RCPSP. The rest of the paper will then be concerned
with how to make the decision in line 3.

States of the Online Decision-Making Algorithm. The states for the online S-
RCPSP are triples (¢,C, R), in which ¢ represents the time, C the scheduling deci-
sions whose activities have been completed and R the scheduling decisions whose
activities are still running on the labs. The set C contains tuples of the form
<Z',j7 Cij&s di)j’& 0i,5.¢, ti,j,g; li)j’§>, specifying that completed activity Qi j.¢ has cost
¢i,j,¢» duration d; ; ¢, outcome 0; j ¢, and has been scheduled at time #; j ¢ in lab [; ; ¢.
The set R contains tuples of the form (i, j,¢; j.¢, li j,¢), specifying that running activity
a; j,¢ has been scheduled at time ¢; j ¢ in lab I; ; ¢. For simplicity, we use a; j ¢ € C to
denote 3¢, d, 0,t,1 : (i,7,¢,d,0,t,1) € C and use a similar notation for membership in
R. Finally, we use f(s, &) to denote the objective value of a state s for scenario &.

Decisions. In a first approximation, there are only two types of decisions: scheduling
a job in a lab and terminating. Scheduling a job j is feasible in state s, denoted by
Feasible(j, s), if none of its activities are currently running and if all its completed
activities have open outcomes, i.e., =3¢ : a; ;¢ € R A Vajje € C: 0;5¢ = open.
The set of feasible scheduling decisions in state s consists of scheduling feasible jobs
in some available lab, i.e.,

Feasible(s)={schedule(j,1) | j € J A Feasible(j,s) A =i, j,t: (i,j,t, 1) € R}.

Terminating is the equivalent of rejecting all requests in request-based online applica-
tions and consists in renouncing to schedule all the remaining activities.
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Applying a Decision. We are now in position to specify the function applyDecision
which describes the effect of applying a decision in a state:

applyDecision(schedule(j,1), (t,C,R)) = <t,C,R U (next(j,C), j, t, l)>

where next(j,C) denotes the next activity of job j to schedule. Scheduling a job on a
lab simply inserts the next activity of the job on the lab.

Observations. 1t remains to specify the observe function which returns the next decision
state. This happens whenever one of the running activities is completed. For a state s
and a scenario &, this is given by N7 (s,£) = ming, , .er ti j,c +di j.c. The completed
activities, i.e., Completed(s,&) = {(i,j,t,1) € R | t +d; ;e < NT(s,£)}. must
then be removed from the running set and transfer, with their observations, to the set of
completed decisions, i.e.,

Backup(s,€) = {(i, ], ¢ije, dije, 0i e, t, 1) | (4,7,t,1) € Completed(s, &)}
With this at our disposal, the observe function can be specified as
observe((t,C,R),&) = (NT (s,£),C U Backup(s,&), R\ Completed(s,§))

We also use 7(s, d, §) = observe(applyDecision(d, s), &) to denote the transition ob-
tained by taking decision d in state s and observing ¢ in the resulting state.

5 Heuristically-Confined Dynamic Programming

The online S-RCPSP originated from who also proposed an innovative solution
technique to approach it: dynamic programming in a heuristically-confined state space
(HCDP). Their approach is motivated by the fact that, on their instances, there are 109
possible scenarios. Combined with the inherent combinatorics of the offline problem
itself, this would generate a gigantic state space, which would preclude the use of dy-
namic programming techniques.

To tackle this complexity issue, they propose a three-stage algorithm. In the first
step, their algorithm applies a set H of heuristics on a set = of scenarios to explore
a number of reasonable trajectories in the state space. In the second step, these states
are then merged to form a directed acyclic graph that defines a heuristically-confined
state space. In the third step, the algorithm uses dynamic programming to obtain the
best decision in this state space. The algorithm can be specified as an instantiation of
the generic online algorithm as follows. Let D(s, H, Z) be the set of decisions taken
by the heuristics in H in state s for the set = of scenarios during the first phase of the

algorithm and let C(s, =) be the set of scenarios in = compatible with state s, that is

. . . d d di—1
the set of scenarios ¢ such that there exists a trajectory sg — §; —» ... —— 5, = s

satisfying s;+1 = 7(s;,d;, &) for all i < t. The HCDP policy value of decision d in
state s for a set of scenarios = and the set H of heuristics is given by

1

v(s,d, =, H) = 40(5.5)

S QUr(s,d.€), C(s,2), H)

£eC(s,2)
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where the (Q-value is defined as follows
= _ #0(1375) deC(s,E) f(s,8) if s is a leaf;
Qs,=. H) = > .
max, o, =) v(s,d, 5, H) otherwise.

We specify the HCDP algorithm as an instance of the online generic algorithm:

HCDP.DECIDE(s)
1 =« {sample(s) | i € 1..10,000};
2 return argmax, .y =) v(s,d, 2, H);

where sample is conditional sampling procedure to generate scenarios of the future
compatible with the observation in state s. This implementation is in fact an im-
provement over [3]] because the heuristics and the dynamic program are run for every
decision, instead of once at the beginning of the computation. The results improve sig-
nificantly with this online implementation. Moreover, our actual implementation also
uses the fact that the graph is acyclic to improve the runtime performance.

6 The One-Step Anticipatory Algorithm

We now study the use of one-step anticipatory algorithm for the online S-RCPSP. Antic-
ipatory algorithms for online stochastic combinatorial optimization [8] make decisions
by generating scenarios of the future, solving these scenarios optimally, and exploiting
the resulting optimal solutions to select a decision. They typically use two black-boxes:
(1) An optimization algorithm O(s, £) to solve the offline problem associated with state
s and scenario ¢ and (2) A conditional sampling procedure sample(s) to generate sce-
narios of the future compatible with the observation in state s. In the S-RCPSP, the
offline problem associated with a state s and scenario & is the scenario ¢ with the ad-
ditional constraints that all scheduling decisions in state s must be enforced. Note that
the uncertainty is completely revealed in this offline problem: the costs and durations
of the activities, as well as their outcomes, are known to O. As a result, failed projects
and their activities are never scheduled in their optimal solutions.

This paper focuses on the one-step anticipatory algorithm which solves a number
of scenarios and selects the best decision with respect to these scenarios. This algo-
rithm was initially proposed for exogenous uncertainty but generalizes naturally to
those applications with endogenous observations. Its pseudo-code is depicted in Fig-
ure @l We use the notation O (s,d, &) = O(s,d, &) — f(s,€), where O(s,d, &) =
O(applyDecision(d, s), ), to denote the “future” value of the scenario when decision
d is taken. The algorithm first collects the set of possible decisions (line 1) and initial-
izes their scores (lines 2-3). It then generates m scenarios (lines 4-5), which are solved
optimally (line 7) for each decision d, whose score is updated accordingly. The decision
d with the best score is computed in line 8. The algorithm terminates (decision _L) if the
score of the best decision is not positive and returns the best decision otherwise.

This one-step anticipatory algorithm was analyzed for purely exogenous problems in
[4]. Tt was shown that the expected loss of the anticipatory algorithm compared to the
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A.DECIDE(s)

1 D « Feasible(s);

2 fordec Ddo

3 score[d] < 0;

4 foricl.mdo

5 & «— sample(s);

6 for d € D do

7 score[d] « score[d] + O (s,d, £);

8 d «— argmax . scoreld];

9 if score[d] > 0 then return d else return _L;

Fig. 4. The Basic One-Step Anticipatory Algorithm
Table 1. Experimental Results of the One-Step Anticipatory Algorithm .4

Agr C2 C5 D6 DI5 Reg Pl P2 P3 P4 R.6 R15 Avg
CV 14096 10806 4216 10062 13425 12418 17939 21242 28014 30051 7595 20394 15855
HCDP 12192 4218 0 6432 10333 7318 12638 16114 21657 24084 3571 13605 11013
A 12731 4342 -6197 5712 10441 8115 14347 18602 26587 28851 3906 15096 11878

clairvoyant (i.e., the expected value of the offline problems) is bounded by the global
anticipatory gap, which measures the stochasticity of the problem (instance + distribu-
tion) and a sampling error which can be arbitrarily small. Moreover, many applications
in online routing, scheduling, and resource allocation were shown to have a small global
anticipatory gap, explaining the excellent behavior of (approximations) of the one-step
anticipatory algorithms. The anticipatory gap of a decision d in a state s is defined as

24(9) = Be [ Ol 0.8)| - e [0(5,4.)

and measures the difference in expectation between being clairvoyant now and after the
decision in state s. The global anticipatory gap for an algorithm is simply the sum of
the local anticipatory gap for each successive state.

Table [I] gives the expected value E¢ [O(so,&)] of the clairvoyant (CV) where all
the uncertainty is revealed immediately, the expected value of HCDP, and the expected
value of the one-step anticipatory algorithm (A) with 200 scenarios (the implemetation
and experimental setting is detailed in section [[T)). The results contain both good and
bad news. On the one hand, the one-step anticipatory algorithm performs better in gen-
eral and in average than the HCDP algorithm, showing the benefit of solving scenarios
optimally. This is a very satisfying results, since it means that one-step anticipatory al-
gorithms apply to applications with endogenous observations and outperforms the best
method proposed for the online S-RCPSP. On the other hand, the loss of the antici-
patory algorithm compared to the clairvoyant is quite substantial and may reach about
10,000 and 6,000 on instances C5 and C2 (These instances are described in detail later
in the paper).

The distance between the anticipatory algorithm and the clairvoyant can be explained
by the theoretical analysis in [4]]. Indeed, Figure Bldepicts the evolution of the local an-
ticipatory gap and the agreement degree over time. The circles in the figure give the
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Fig. 5. Local Anticipatory Gap and Agreement Degree as a Function of the Decision Time

mean, while the intervals show one standard deviation around each side of the mean.
The left part of Figure[3] shows a significant local anticipatory gap especially during the
middle part of the execution. In the early part of the execution, the gap is small, because
the algorithm has time to recover from a bad decision. The right part of Figure[Qldepicts
the agreement degree, i.e., the percentage of scenarios which admit the same optimal
decision. Although this agreement is well above 70% in average in applications in rout-
ing, packet scheduling, and reservation systems, it is only 20% early in the execution
and below 40% for a substantial part of the execution in the online S-RCPSP.

Why is the gap so large and the agreement so low in the online S-RCPSP? One of
the main reasons is the endogenous nature of the observations. Indeed, the clairvoyant
immediately sees which projects are valuable and does not spend time or incur costs
scheduling them. The online algorithm in contrast must execute the project to deter-
mine their outcomes. Obviously, the one-step anticipatory algorithms extract from the
scenarios which projects are promising, but they still have some significant probability
to fail. This explanation is confirmed by instance P4 in which projects have a low prob-
ability of failure and only fail early. On this instance, the global loss is small, which
directly means that the global anticipatory gap is small. Note also that this difficulty is
not only due to the fact that projects may fail: A similar behavior occurs if some project
takes an extremely long time. One may also wonder whether all online algorithms will
exhibit so large a gap, but this is not the case. For instance, on instance C5, the optimal
online policy (in the expected sense) consists of not scheduling any activity, since the
expected value of all projects is negative. Yet the one-step anticipatory algorithm has
an expected value of -6,197, showing that a significant portion of the gap is due to its
behavior. The rest of this paper addresses how to enhance the one-step anticipatory to
account for this gap.

7 Gap Reduction through Waiting

Waiting has been proposed for online stochastic vehicle routing (e.g., [2]) and was
shown to produce significant improvements in solution quality. Its main benefit is to
give the online algorithm more opportunity to observe the uncertainty, thus helping in
taking more informed decisions. It is easy to integrate waiting in the online S-RCPSP:
It suffices to schedule a dummy activity with no cost, no reward, and duration 1.

We can now show that waiting may be the optimal decision in some instances of the
online S-RCPSP. Figure[@shows a problem instance consisting of job 1 which succeeds
and fails fifty percent of the time with respective durations of 5 and 10, as well as two
other successful jobs. Job 2 has two activities of duration 2 and job 3 has one activity
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of duration 5. The deadlines are strict: either the job finishes before its deadline and
receives its reward, or it has no reward. The activities have no cost. Figure [7] shows the
optimal solutions for both scenarios. Job 1 is not scheduled if it fails and the two other
jobs yield their rewards for a total of 4. If job 1 succeeds, it yields its reward of 8 and
there is enough room for job 2 which receives a reward of 3, giving a total reward of
11. Overall the expected value of the clairvoyant is thus %' = 7.5.

Figure [§] depicts the best online policy which achieves an optimal expected value of
7.5 (the GAG is zero in this case). The policy consists in scheduling jobs 1 and 2 and
then waiting one time unit to observe the status of job 1. If the first activity of job 1 is
not finished at time 3, it will fail. The best decision then consists in scheduling job 3
then job 2. If the first activity of job 1 is completed at time 3, then the best decision is to
schedule its second activity and job 2. By waiting one time unit, the online agent is able
to observe the status of job 1 and to select the best schedule. Note that if the agent waits
until job 1 finishes to take the next decision and that job fails, it does not have time to
schedule job 3 and therefore is sub-optimal. Similarly, if the agent does not wait, it will
have to choose between scheduling jobs 2 and 3, which is suboptimal.

8 Gap Reduction through Gap Correction

The one-step anticipatory algorithm uses the offline solution O(s, d, £) as a prediction
of the optimal policy A* (s, d, &) to evaluate each decision d in state s as shown in line
7 of the algorithm of Figure @ Obviously, replacing O by A* would produce an opti-
mal decision. The basic idea in this section is to correct the evaluation O (s, d, £) by
estimating the anticipatory gap in a state s: gap(s, &) = O (s,£) — A*F (s, €) which
denotes the loss of the optimal online policy .A* compared to the clairvoyant on state
s and scenario &. Note that the expected value of perfect information (EVPI), a fun-
damental concept in stochastic programming, is simply EV PI(s) = E¢ [gap(s,§)].
Evaluating gap(s, £) is difficult however. On the one hand, .4* is not known: It is the
optimal policy that we are trying to approximate. On the other hand, there are a gigantic
number of states and scenarios in this problem. Our approach in this paper consists in
evaluating the anticipatory gap on a training set and computing the best parameters of
a model gap(s, §) approximating gap(s, £). This is very natural, since stochastic opti-
mization problems have a stochastic model of the uncertainty as part of their input.
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Approximating the Gap using the First Decision. The first difficulty in learning the
anticipatory gap can be addressed by learning the expected global loss, i.e., EGL =
E¢ [O(€) — A(&)], which provides an upper bound to the EVPI instead of the gap. The
second difficulty is addressed by using a set = of training scenarios and measuring

BGL = . 3 0(0) - A©)

ce=

Then the anticipatory gap at state s for scenario £ can be approximated by
Gap(s,€) = EGL x (1 - CR(s,£))

where CR(s,£) = #C;f R denotes the completion ratio of s in scenario £. The antici-
patory algorithm with gap correction Ag¢ is algorithm A in which line 7 becomes

score[d] « score[d] + O (s,d, &) — é;p(applyDecision(s, d),§).

More Complex Gap Learning models. We also have investigated several finer models
for gap learning. These models learn the gap in terms of the completion factors, the
offline value of the scenario, and the set of successful jobs. The results were a disap-
pointment as they produce no significant improvement over algorithm A-GC.

9 Gap Reduction through Time Scaling

Although gap correction significantly improves the solution quality of the one-step an-
ticipatory algorithm, if fails to address some of the consequences of the endogenous
nature of observations. Indeed, a comparison between offline and online solutions re-
veals that the clairvoyant is often able to schedule an additional project. This is possible
because the clairvoyant does not lose time scheduling failing projects. The online algo-
rithm however needs to schedule them to determine whether they will be successful.

Gap correction is successful in detecting when not to schedule projects whose ex-
pected value is negative but is not particularly effective in differentiating potential
scheduling decisions. This is due to the fact that the learning phase of gap correction
uses algorithm .4 which has a low local anticipatory gap early in the search as depicted
in Figure[8l This means that, whatever decision is taken at an early step, the clairvoyant
has enough time subsequently to reach a high-quality solution, since it does not lose
time scheduling unsuccessful projects.

Time scaling is another generic technique to reduce the anticipatory gap: It rec-
ognizes that algorithm A necessarily loses time scheduling activities of unsuccessful
projects and compensates by scaling the durations in the offline problems.

Systematic Time Scaling. The simplest time scaling increases the duration globally
by a common factor f~! (we use f < 1), which, conceptually speaking, amounts to
replacing the reward f; for project j by

i =r(

7
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A more dynamic approach consists in scaling the remaining time only, i.e., after the
decision time t4 of the current state s = (t4,C, R), i.e.,

N §2100) ift <tgq
fi ()= {fj(td + t—ftd) otherwise.

Time Scaling by Job Effectiveness. The above proposal scales durations uniformly.
It seems more appropriate however to apply scalings tailored to each of the jobs. To
obtain such a differentiated scaling, we use job effectiveness, that is, the time spent on
successful realizations of a job over the total time spent on the job. This measure can be
learned offline like in gap correction and it gives ratios by which the durations should
be scaled. Experimental results showed that this ratio was very low and led to drastic
deadlines. Averaging the resulting with 1.0 (or equivalently dividing its distance to 1 by
2) led to much better results.

10 Gap Reduction by Problem Reduction

When studying the results of an online algorithm on a training set, another statistic can
be gathered to boost the quality of the algorithm: the job performance. The performance
of job j in a schedule ¢ for scenario £ is simply f;(ct(j,0)) — Zai,j‘ge(, Cijeif jis
successfully scheduled in o and — Zai'j.s co Ci j.¢ Otherwise. Obviously removing a job
from consideration in the offline problem will decrease the quality of the offline sched-
ule and reduce the anticipatory gap. Moreover, if a job contributes a negative amount
in expectation, or a small amount compared to the total reward, the gap reduction will
not come at a high cost, since removing the job will not degrade the overall quality of
the online algorithm. This is the strategy we experimented with in order to reduce the
anticipatory gap: jobs yielding low performance (under a specific threshold like 1% or
5%) are discarded from the whole online policy.

11 Experimental Results

Table ] gives a summary of the experimental results.

The Instances. The experimental results are based on the reference instance proposed
in [3]] and a number of derived instances to explore the stochasticity and combinatorial
landscape on the online S-RCPSP. The derived instances are obtained by scaling multi-
ple parameters of the instance: the activity costs or durations, the deadlines, and the job
rewards. The structure of the instances was also changed by removing activity failures
by levels: this is the case of instances P1-P4 which have increasingly fewer failures
and whose failures occur earlier. One instance (P1) has no failures in the last activity in
the jobs, while other instances (P2-P4) have no failures in the last two, three, or four
levels (the latter has no failures at all since the longest jobs have four activities). Fi-
nally instance Agr averages the realizations to obtain only two realizations: one success
and one failure. This reduces the number of realizations while roughly preserving the
length, cost, and success distributions.
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Table 2. Experimental Results on Gap Reduction Techniques

Agr C2 C5 D.6 D15 Reg P1 P2 P3 P4 R.6 R15 Avg
(&% 14096 10806 4216 10062 13425 12418 17939 21242 28014 30051 7595 20394 15855

HCDP 12192 4218 0 6432 10333 7318 12638 16114 21657 24084 3571 13605 11013

A 12731 4342 -6197 5712 10441 8115 14347 18602 26587 28851 3906 15096 11878
A 12414 3544 -3042 5760 9097 7606 13674 18542 26808 28967 3430 13855 11721

Acce 12696 4804 0 5588 10448 8146 14442 18760 26794 28956 3840 15000 12456

Ars 12681 4355 -2066 7950 10059 8281 13861 17392 23330 26031 4451 14461 11732
Ay 12444 4261 0 6688 9702 8036 14518 18755 26787 28961 3903 14670 12394
Argp 12608 4495 -1659 5467 10435 8337 14563 18728 26787 28919 3937 15385 12334

Argpr 12612 5375 0 5737 10708 8432 14446 18474 26797 28918 4357 15586 12620

The Algorithms. The experimental results compare a variety of algorithms on the online
S-RCPSP. They include the anytime Heuristically-Confined Dynamic Programming al-
gorithm with 10,000 simulations per heuristic, the one-step anticipatory algorithm with-
out (A) and with (A,,) waiting, the anticipatory algorithm with gap correction (Agc,
the anticipatory algorithms with the three time-scaling approaches (Ars, Arr, ArEg),
and the hybrid algorithm combining time scaling by job effectiveness and job prun-
ing (Argsp). The systematic common scaling factor is 0.8 for Arg. All anticipatory
algorithms have been run with 200 scenarios per decision and all learning has been
performed on an independent set of scenarios. The results are the average over 1,000
scenarios. Note that using less scenarios decreases the quality of the solutions and intro-
duces much more variability. Using more than 200 scenarios does not lead to significant
improvements. The optimization solver used for the anticipatory algorithm is a dedi-
cated branch and bound algorithm whose upper bound relaxes the resource constraints
for the remaining tasks (implemented from scratch in C). Elastic relaxations were also
tried but provided no additional computational benefits. This branch and bound is very
fast and it takes on average less than 1ms for the reference instance.

Gap Reduction Through Waiting. The results about the waiting algorithm A, are some-
what mixed since, in average, A,, produces solutions of slightly lower quality than A.
A, improves instance C5 significantly, although the global loss on this instance is still
significant. It also produces the best solutions on P3 and P4 which are the least stochas-
tic problems. Why is waiting disappointing on the online S-RCPSP? The reason is once
again the endogenous nature of observations. When waiting, algorithm A,, also ob-
serves the realization of any activity that algorithm A would have scheduled and only
loses a single time unit for that observation. As a result, in the context of endogenous
observations, waiting actually increases the anticipatory gap; the algorithm also has a
strong tendency to wait, since the gap is larger for this decision. The wait decision gets
favored for many scenarios as depicted in figure [0l

Gap Reduction Through Gap Correction. Algorithm A returns better expected val-
ues than HCDP on all instances except D.6 and provides a 13% revenue improvement in
average, which is quite significant. Gap correction is also very robust as it improves the
solution quality of almost all instances. An examination of the traces of algorithm A ¢
reveals its main benefits: It terminates schedules early because the overall expected
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value of the projects is now negative thanks to the gap correction. It is highlighted on
instances C2 and C5: In fact, A g now returns the optimal policy on C5. However, as
mentioned earlier, gap correction is not effective in differentiating the decisions. This is
highlighted on instance D.6 for which its solution quality decreases.

Gap Reduction Through Time Scaling. The static time-scaling algorithm A7; whose
factors are computed for each instance from the expected loss of algorithm A on the
training scenarios is also an effective gap-reduction technique. It returns better expected
values than HCDP on all instances except D1.5 (an instance where the deadlines are
much looser) and provides a 12% revenue improvement in average, which is quite sig-
nificant. In contrast to A ¢, algorithms Ay and A g are able to improve the solution
quality of instance D.6 by removing sub-optimal jobs from consideration. Using job
effectiveness is almost similarly effective and it is likely that, with a second learning
phase, it would further improve. Scaling durations uniformly on all instances is not
sufficient for improving solution quality as highlighted by the overall performance of

Ars.

Combining Gap Reduction Techniques. The best algorithm in this experimental study
is Argpr, which combines time scaling by job effectiveness and problem reduction. It
returns better expected values than HCDP on all instances except D.6 and provides an
expected revenue improvement close to 15% over HCDP and of more than 6% over the
one-step anticipatory algorithm.

The Benefits of Gap-Reduction Techniques. The results on the instances P1-P4 con-
firm the obvious intuition: the bigger the gap, the more effective the gap reduction
techniques. In particular, on instances P3 and P4 which are the least stochastic, gap-
reduction techniques cause a slight decrease in expected value. Only a fine tightening
of the deadlines on P4 and a complex learning model for gap correction (i.e., learn a
linear regression of AT (s, d, &) with respect to O (s, d, &) at each depth of decision)
managed to improve algorithm A slightly on this instance. More generally, gap cor-
rection, dynamic time scaling, and the hybridization of time scaling and job pruning
are robust across all instances and provide significant benefits. None of them however
uniformly dominates the others on all instances.

Running-time Comparison. An additional advantage of these gap-reduction techniques
is that they do not increase the time of decision-making. Some require offline learning
which took 1000 runs of algorithm A. Figure [[0] compares two anticipatory algorithms
with HCDP in its online and the original version (OHCDP) whose quality is signifi-
cantly worse. The results gives the time taken to solve 1000 instances of instance Reg.
Algorithm OHCDP learns with 450,000 trajectories and the A7 ¢pr learns with 1,000
scenarios. These results show that algorithms A and A7¢pr outperform the HCDP
class of algorithms both in expected value and performance.

Comparison with AMSAA. A companion paper presented another approach to reduce
the anticipatory gap: the multi-step anticipatory algorithm AMSAA [5]. AMSAA is
guaranteed to converge to the optimal policy, although the convergence result is mostly
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25650 25650 25200 25650
13150, 13150 12750 13150
0 —500 —450 —550
0 —250 —650  —550
217500 21500 21500 21750
9050 8550 8650 9050
0 —300 —400  —550

17228 18428 20194 16628 AArepr HCDP OHCDP

16250 16250 15650 15700 Offine  —  303s - T12s
0 —500  —450  —600 Online 249s  273s 227h 1s
Avg: 10530 10289 10518 10369 Total 249s 576s 227h 773 s
Max
Fig. 9. Decision matrix in basic expectation, Fig.10. Comparison of Running Times for
the anticipativity benefits the waiting decision Solving 1000 scenarios

(first column)

Table 3. Comparison of Algorithm Argpr with AMSAA

Agr Cost2 Cost5 D.6 DI1.5 Reg PI P2 P3 P4 R.6 R1.5 Avg
Argpr 12612 5375 0 5737 10708 8432 14446 18474 26797 28918 4357 15586 12620
AMSAA-ms 12166 4335 -3229 6143 10378 7856 14218 17879 23066 19058 3671 14502 10837
AMSAA-s 12754 4888 0 6893 10754 8452 14736 19007 26951 29099 4134 15525 12766

of theoretical interest. The following table reports the relative gap in percentage be-
tween AMSAA and Arppr. We compare Argpr with AMSAA-31MS in which de-
cisions are given 31ms, for a total time of 611s for 1,000 scenarios and AMSAA-32s
which takes 91h to solve those instances.

Table 3] shows that Argpr is very competitive with AMSAA: it performs 14%
better than AMSAA-31MS in average and is within 1% of the score of AMSAA-32s
which cpu time is a factor 1000 greater than ours. On some instances, such as C'ost2
and R.6, Arppr even significantly outperforms AMSAA-32s. Note that, on some
instances such as D.6, Aprgpgr has a much larger gap than AMSAA but Apg in fact
performs 15% better than AMSAA-32s on that instance.

12 Conclusion

This paper studied the performance of one-step anticipatory algorithms on the online
S-RCPSP. This application is particularly challenging because of the endogenous
nature of the observations that produces a significant anticipatory gap. Despite this dif-
ficulty, the paper showed that one-step anticipatory algorithms significantly outperform
the state-of-art HCDP algorithm. The paper also studied a number of gap-reduction
techniques, including waiting, gap correction, time scaling, problem reduction, and
their hybridizations. It showed that waiting produces mixed results, typically increasing
the anticipatory gap, and often postponing decision too eagerly. The remaining
gap-reduction techniques produce significant improvements in solution quality over
HCDP, the best algorithm reaching about 15% in average. Gap-reduction techniques are
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particularly appropriate in settings in which decisions must be taken under severe time
constraints as the gap-reduction techniques do not introduce significant overhead during
execution.
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Abstract. The multiple knapsack problem (MKP) is a classical com-
binatorial optimization problem. A recent algorithm for some classes
of the MKP is bin-completion, a bin-oriented, branch-and-bound algo-
rithm. In this paper, we propose path-symmetry and path-dominance,
which are instances of the symmetry detection by dominance detection
approach for pruning symmetric nodes in the MKP branch-and-bound
search space. In addition, we integrate the “bound-and-bound” upper
bound validation technique used in MKP solvers from the OR literature.
We show experimentally that our new MKP solver, which integrates sym-
metry techniques from constraint programming and bound-and-bound
techniques from operations research, significantly outperforms previous
solvers on hard instances.

1 Introduction

Consider m containers (bins) with capacities ¢y, ..., ¢, and a set of n items,
where each item has a weight wy, ..., w, and profit p1, ..., p,. Packing the items
in the containers to maximize the total profit of the items, such that the sum
of the item weights in each container does not exceed the container’s capacity,
and each item is assigned to at most one container is the 0-1 Multiple Knapsack
Problem, or MKP.

For example, suppose we have two bins with capacities ¢; = 10,co = 7, and
four items with weights 9,7,6,1 and profits 3,3,7,5. The optimal solution to this
MKP instance is to assign items 1 and 4 to bin 1, and item 3 to bin 2, giving us
a total profit of 15. Thus, the MKP is a natural generalization of the classical
0-1 Knapsack Problem to multiple containers.

Let the binary decision variable x;; be 1 if item j is placed in container 4,
and 0 otherwise. Then the 0-1 MKP can be formulated as the integer program
below, where constraint Pl encodes the capacity constraint for each container,
and constraint [3] ensures that each item is assigned to at most one container.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 82 ]96] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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m n
maximize Z Z Dj%ij (1)

i=1 j=1
subject to:zn:wjxij <g, i=1,....m (2)
=1
ixij S 17 j:l,...,n (3)
i=1
Zij € {07 1} Vi, j. (4)

The MKP has numerous applications, including task allocation among au-
tonomous agents, continuous double-call auctions [7], multiprocessor scheduling
[9], vehicle/container loading [I], and the assignment of files to storage devices
in order to maximize the number of files stored in the fastest storage devices
[9]. A special case of the MKP where the profits of the items are equal to their
weights, i.e., p; = w; for all j is the Multiple Subset-Sum Problem (MSSP).

The MKP (including the special case of the MSSP) is strongly NP—completeEl
Thus, state-of-the-art algorithms for finding optimal solutions are based on
branch-and-bound. Previous work has shown that for problems where the ratio
of items to bins is relatively small (i.e., n/m < 4), the state-of-the-art algorithm
is bin-completion, a bin-oriented branch-and-bound algorithm [6].

The search space explored by bin-completion has many symmetric states. Pre-
vious work introduced some techniques for exploiting the symmetry and demon-
strated their utility. In this paper, we further investigate methods for exploiting
symmetries in the MKP bin-completion algorithm. We propose new techniques
that result in significant improvements over the previous state of the art. These
techniques are instances of the general symmetry breaking via dominance detec-
tion (SBDD) approach [Z; B3].

A technique which is responsible for much of the power of previous branch-
and-bound MKP solvers in the OR literature is “bound-and-bound” [I0}; [12],
which seeks to prune nodes by heuristically seeking to validate the (optimistic)
upper bound on the total profit at each search node. We integrated this technique
into our extended bin-completion based MKP solver.

The paper is organized as follows. We start by reviewing the bin completion
algorithm (Section (). Section B defines the basic framework we use for sym-
metry detection and breaking, and reviews previous algorithms for exploiting
symmetry in the MKP. We then introduce new, generalized symmetry detection
techniques which are more powerful than the previous techniques. We discuss
methods for combining various symmetry mechanisms, and compare these meth-
ods with related work on symmetry detection and breaking and in the constraint
programming literature. We describe the bound-and-bound technique and our
integration of bound-and-bound into bin-completion in Section Ml In Section [

! In contrast, the single-container 0-1 Knapsack problem is weakly NP-complete, and
can be solved in pseudopolynomial time using dynamic programming.
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1 search MKP (bins, items, sumProfit)

2 if bins==) or items ==

3 if sumProfit > bestProfit then bestProfit = sumProfit; return
4 ri = reduce(bins,items) /* Pisinger’s R2 reduction */

5 if ri # 0

6 search MKP (bins, items \ ri, sumProfit)

7 return

8 upperBound = compute upper bound (items,bins)

9 if (sumProfit + upperB < bestProfit

10 return /* upper-bound based pruning using SMKP bound */

11 if (validate upper bound (upperBound))

12 return /* bound-and-bound */

13 bin = choose bin(bins)

14 wundominatedAssignments = generate undominated (items,capacity(bin))
15 foreach A € sort assignments(undominatedAssignments)

16 if not(symmetric(A))

17 assign A to bin

18 search MKP (bins \ bin, items \ A, sumProfit+) . ,p;)

Fig.1. Bin-completion-based algorithm for the MKP. The top-level call is
search MKP(bins,items,0).

we experimentally evaluate various combinations of symmetry mechanisms, and
conclude with a discussion of results and directions for future work.

2 Bin-Completion Algorithm for the MKP

Bin-completion is a branch-and-bound algorithm for finding optimal solutions
to multi-container assignment problems including the MKP and bin packing
problems [6]. We briefly describe this algorithm. For simplicity of exposi-
tion, in the examples below, we assume (unless stated otherwise)
multiple-subsets sum problem (MSSP) instances, where Vj,p;, = w;.
Thus, whenever possible in the description below, we simply refer to
an item by its weight.

A bin assignment B; = (itemy, ..., itemy,) is a set of all of the items that are
assigned to a given bin 7, 1 < i < m. Thus, a valid solution to a MKP instance
consists of a set of bin assignments, where each item appears in exactly one bin
assignment. A bin assignment is feasible with respect to a given bin j if the
sum of its weights does not exceed the capacity of the bin, ¢;. Otherwise, the bin
assignment is infeasible. We say that a bin assignment S is maximal with respect
to bin ¢ if S is feasible, and adding any other remaining items would make it
infeasible.

The bin-completion algorithm searches a tree where each node at depth d,
1 < d < m, represents a maximal, feasible bin assignment. The bin-completion
algorithm for the MKP is shown in Figure [I where each call to search MKP
corresponds to a node in the branch-and-bound search tree (e.g., Figure [2]).
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Nodes are pruned according to an upper bound which is based on a relax-
ation of the problem by Martello and Toth [I1] (Line 8). Pisinger’s R2 reduction
procedure [I2] is applied at each node (Line 4) in order to try to reduce the prob-
lem by eliminating some items for consideration. The choose bin function (Line
13) selects the bin b with least remaining capacity. The generate undominated
function generates the set of all maximal, feasible assignments for b, with the
additional constraint that these assignments are not dominated by any other as-
signment according to a dominance criterion. Given two feasible bin assignments
Fy and Fs, Fy dominates Fy if the value of the optimal solution which can be ob-
tained by assigning F} to a bin is no worse than the value of the optimal solution
that can be obtained by assigning F5 to the same bin. Bin-completion prunes
feasible assignments which are dominated according to the following MKP dom-
inance criterion [6], which is based on the Martello-Toth dominance criterion for
bin packing [I1].

Proposition 1 (MKP Dominance Criterion). Let A and B be two assign-
ments that are feasible with respect to capacity c. A dominates B if B can be
partitioned into i subsets By, ..., B; such that each subset By is mapped one-to-
one to (but not necessarily onto) ay, an element of A, and for all k <1, (1) the
weight of ay is greater than or equal to the sum of the item weights of the items
in By, and (2) the profit of item ay, is greater than or equal to the sum of the
profits of the items in By.

The undominated bin assignments are sorted (Line 20) in order of non-decreasing
cardinality, and ties are broken in order of non-increasing profit. The symmetric
function (Line 21) applies one of the symmetry detection strategies described in
this paper, and validate upper bound implements the bound-and-bound strat-
egy described in Section @l For example, given a bin with capacity 10 and items
9,8,7,3,2, the undominated, feasible bin assignments are (9),(8,2), and (7,3).
It is possible for there to be a very large number of undominated bin assign-
ments generated by generate undominated, but this problem can be avoided
by processing these in smaller batches, and the only thing we lose is part of
the benefits of the value ordering (sort assignments). This is called hybrid in-
cremental branching, and details are in [6]. Figure @ shows part of an example
bin-completion search tree.

3 Exploiting Symmetry

To describe our symmetry breaking mechanisms, which are instances of the
general SBDD approach [2; 3], we first introduce some notation and define the
notion of a nogood, which is central to all of our symmetry exploitation methods.

Let B? denote a bin assignment which assigns the elements of set B to a bin
at depth d. Thus, (10,8,2)! and (10, 7,3)! denote two possible bin assignments
for a bin at depth 1.

Definition 1 (Nogood). Let X% be some node in the bin-completion search tree
at depth d. Let E', ..., B4~ be ancestors of X at depths 1,...,d— 1, respectively.
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(83,12,5) (83,11,5)

(42/41) (42,40) (42,11)
(40,11)

Fig. 2. Part of the bin-completion search tree for a MKP instance with capacity 100 and
items with weights {83,42,41,40,12,11,5} (Vi,p; = w;) Each node represents a maximal,
feasible bin assignment Bin assignments shown with a strikethrough, e.g., (83,11,5), are
pruned because they are dominated according to the criterion in Proposition [

For each such ancestor E;, we say that every sibling of E* to the left of E' in
the depth-first bin-completion search tree is a nogood with respect to X <.

In Figure 3 (8,2)! is a nogood with respect to the descendants of (7,4)!. Since
bin-completion is a depth-first branch-and-bound algorithm, a nogood denotes
a bin assignment (node) whose descendants have been exhaustively searched in
the current search tree. The union of all current nogoods is a concise description
of the entire portion of the search tree which has been searched so far. This is
similar to the use of the term “nogood” in [4].

3.1 Path-Symmetry

Consider the search tree shown in Figure Assume that the capacities for
bins 1-4 are 11,11,12, and 10, respectively. Assume that we have already ex-
haustively searched the subtree under (8,2)%, and we have generated the node
(7,4),(10)2, (8, 3)3, (6,2,2)*. By rearranging the items in bins 1-4, we can obtain
a new set of bin assignments: (8,2)!,(7,3)2, (10,2)3, (6,4)*. This is a symmetric
rearrangement, as the optimal solution under the first set of bin assignments is
the same as the optimal solution under the latter set of assignments. Thus, we
can prune the node at (6,2,2)%.

More generally: Given a bin-completion search tree where we are considering
a bin assignment for depth d, we define the current path from depth g to depth
d as the union of bins g,g + 1,...,d. The current path items are the union of all
items in the current path. For example, in Figure B if we are at node (6,2,2)%,
the current path from depth 1 to 4 is the set of bins 1, 2, 3, and 4, and the
current path items are 7,4, 10,8, 3,6, 2, 2.

Definition 2 (Path-Symmetry). Let N9 be a nogood with respect to a can-
didate bin assignment B, and let P be the current path items from depth g to
d. we say that there is a path-symmetry with respect to nogood N9 if two condi-
tions hold: (1) every item in N9 is a member of P, and (2) it is possible to (a)
assign the items from the current path items corresponding to the items of NY
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O
530 @y
(10)*
(8,3)°
(6,2,2)*

Fig. 3. The bin assignment (6,2,2)* can be pruned by Path-Symmetry. (¢; = 11, c2 =
11, ¢35 = 12, ¢4 = 10).

(Items(N9) C P) to bin g , and (b) assign the remaining items (P\ Items(NY))
to bins g+ 1,...,d such that all bins g, ...,d are feasible.

If there is a path-symmetry between B? and some nogood N9 as defined above,
B? can be pruned. The correctness follows directly from the definition of no-
goods.

Checking the first condition of Definition[2lis straightforward. However, check-
ing the second condition efficiently is not as straightforward, because it is essen-
tially the decision version of a bin packing problemE where we attempt to pack
the items in P \ Items(NY) into bins with capacities ¢g41, ..., cqa. We describe
several approaches:

In the first approach, we try to directly solve this bin packing problem using a
simple backtracking algorithm (BT). The bin packing problem, like the MKP, is
strongly NP-complete, and in the worst case, BT will take time which is O(n™),
where n is the number of items and m is the number of bins. It is possible to avoid
backtracking and use a standard bin packing heuristic such as first-fit decreasing
(FFD), which has a polynomial complexity. Thus our second approach uses FFD
to pack the items P\ Items(NY) into bins g+1, ..., d. The drawback of heuristics
such as FFD is that it is not guaranteed to find a packing of the items into the
bins even if one exists. However the symmetry check is still admissible — path-
symmetry using a FFD check to test condition (2) may sometimes fail to prune
a node that a BT check would have pruned, but will never prune a node that a
BT check will not prune.

Another way to approximate the full check for condition (2) for path-symmetry
is to limit the set of items that can be swapped among the bins. That is, instead
of repacking all of the items P\ Items(NY) into bins g + 1, ...,d, we can “lock”
some of the items into their current bins and only consider packing the unlocked
items. We consider a limited packing problem (as opposed to the full packing
problem without locked items) where we (a) assign the items from the current
path items corresponding to the items of N9(Items(N9) C P) to bin g, and (b)
pack the items P\ Items(NY) into bins g + 1, ...,d, but in contrast to the full

2 In the decision version of bin packing, we are given m bins and n items, and the
problem is to determine whether all n items can be packed into m bins such that
the capacity constraints on all of the bins are not violated.
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packing problem, we lock all of the items in P\ Items(NY) except for the items in
bin g. In Fig. Bl the unlocked items would be the 7 and 4 from bin 1. The limited
packing problem is to pack the 7 and 4 into three bins: bin #2 with remaining
capacity 1 (the 10 is locked), bin #3 with remaining capacity 9 (the 8 is moved
to bin #1, the original capacity is ¢ = 12, and there is a 3 which is locked,
so the remaining capacity is 12-3=9), and bin #4 with remaining capacity 2
(one of items with weight 2 has moved to bin 1, but the remaining 6 and 2 are
locked). In this case, the packing fails, so limited packing is insufficient, but a
full packing (where all current path items were unlocked) would have enabled
path symmetry detection. The choice of BT vs. FFD, and the choice of full vs.
limited packing are orthogonal choices. Thus, full packing using BT will give us
the full pruning power of path-symmetry (albeit at highest cost per node), while
limited packing using FFD gives us a weaker (but cheaper) pruning test.

A more restricted version of this test was previously considered in [6]: Given
a bin assignment B? for the bin at depth d, we can prune B? if there is a nogood
N9 with respect to B? such that (1) B? includes all the items in N9, and (2)
if we swap the items in N9 from B¢ with the items that are currently assigned
to the bin at depth g, both resulting bin assignments are feasible. We call this
strategy 2-swap-path-symmetry, because it only considers symmetries that can
be detected by swapping items between two particular bins.

3.2 Path-Dominance

Path-dominance is a generalization of path-symmetry. Consider the search tree
shown in Figure @l for an instance where the bin capacities for bins 1-3 are 11,
12, and 13, respectively. Assume that we have already exhaustively searched the
subtree under (8,2)!, and we have generated the current path in the search tree,
(7,4)L,(5,6)%,(9,2)3. By rearranging the items in bins 1-3, we can obtain a new
set of bin assignments: (7,2)%, (5,6)2, (9,4)3. This is a symmetric rearrangement,
since the optimal solution under the first sequence of bin assignments must be
the same as the optimal solution the latter sequence of assignments. Thus, we
can prune the node (9,2)?, since (8,2)! dominates (7,2)!. More generally:

Definition 3 (Path-Dominance). Let N9 be a nogood with respect to candi-
date bin assignment B, and let P be the current path items from depth g to
d. We say that there is a path-dominance symmetry with respect to nogood N9

O
TN

(8,2)" (7,4)"
)2

9.2)

D

(
(57
(

Fig. 4. The bin assignment (9,2)* can be pruned by Path-Dominance (¢c1 = 11,c2 =
12, Cc3 = 13)
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established at depth g if there exists some s C P such two conditions hold: (1)
s is dominated by N9 according to the MKP dominance criterion and (2) it is
possible to (a) assign s to bin g, and (b) assign the remaining items (P \ s) to
bins g+ 1, ...,d such that all bins g, ...,d are feasible.

If there is a path-dominance symmetry between B? and some nogood N9 as
defined above, B¢ can be pruned. This follows from the definition nogoods and
Proposition [

Our current implementation of path-dominance works as follows. We enumer-
ate subsets of the current path items such that each such subset s is dominated
by N9 and is maximal, i.e., there is no other item which can be packed into
the N9. For each such s, we test whether condition (2) of the path-dominance
symmetry definition (Definition 3] is satisfied. If so, then a path-dominance has
been detected, so the current node can be pruned. The test for condition (2) is
the same as the corresponding test for path-symmetry in the previous section.
Thus, the same four implementations of the check are possible: (a) full packing
with BT, (b) full packing with FFD, (c) limited packing with BT, and (d) lim-
ited packing with FFD. In the worst case, this check is executed for each subset
s that satisfies condition (1) of Definition Bl so checking for path-dominance can
be quite expensive.

The following, highly restricted form of Path-Dominance was proposed by
Fukunaga and Korf [6]. Given a bin assignment B¢ for depth d, we can prune
BY if there is a nogood N9 with respect to B? such that (1) N9 dominates B
according to the MKP dominance criterion (Proposition [Il), and (2) The items
in B? can be swapped with the current items in bin g, such that the resulting
bin assignments are both feasible. In other words, this is a restricted Path-
Dominance test where all bins are frozen except for the bin at depth d. We call
this strategy 2-swap-path-dominance.

3.3 Combining Symmetry Breaking Strategies

We have defined a spectrum of symmetry-breaking techniques above, ranging
from the weakest, 2-swap-path-symmetry, to the strongest, full path-dominance
with BT. Path-dominance, using the full packing with backtracking implemen-
tation, clearly subsumes all of the other criteria. For example, every node which
can be pruned by path symmetry will also be pruned by path-dominance (but
not vice versa). However, there is a trade-off between the amount of pruning
enabled by a symmetry relation and the amount of overhead incurred at each
node in order to detect the symmetry. To alleviate this trade-off, we combine the
strategies by chaining a set of tests so that the cheapest, least powerful symme-
try is applied first. If this prunes the node, then the cost of applying the more
powerful (but costly) symmetries is not incurred. However, if the node is not
pruned, then we apply another, more powerful symmetry, and so on.

A preliminary study presented at a workshop reported results on 11 different
configurations of symmetry-checking tests [5]. While we have found that path-
symmetry (including 2-swap-path-symmetry) and 2-swap-path-dominance are
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relatively efficient and often offer a favorable trade-off between search reduction
and increased cost per node, we have not yet found a way to reduce the cost of the
more powerful variants (full/limited path dominance using either backtracking
or FFD) sufficiently to justify their use. The specific configurations used this
paper are described in Section [

3.4 Relationship to Previous Work on Symmetry Detection

Our MKP symmetry breaking mechanisms are domain-specific instances of the
symmetry breaking via dominance detection (SBDD) approach [2; B]. A signifi-
cant difference is that in addition to detecting equivalences to previously explored
subtrees (2-swap-path-symmetry and path-symmetry), our 2-swap-path-
dominance and path-dominance algorithms also detect partial solutions which
are dominated by previously explored subtrees (according to Proposition [I).

Our work is also similar to the pruning technique proposed by Focacci and
Shaw [4] for constraint programming, which was applied to the TSP with time
windows. Both methods attempt to prune the search by proving that the cur-
rent node at depth j, which represents a partial j-variable (birﬁ% solution z, is
dominated by some previously explored i-variable (bin) partial solution (nogood
bin assignment) ¢, where i < j.

The main difference between our method and Focacci and Shaw’s method is
the approach used to test for dominance. Focacci and Shaw’s method extends ¢
to a j-variable partial solution ¢’ which dominates . They apply a local search
procedure to find the extension ¢’. In contrast, our methods start with a partial,
j-bin solution z and try to transform it to a partial solution z’ such that Z, the
subset of 2’ including the first ¢ bins, is dominated by the i-bin partial solution
q. We do this by transforming (via item swaps) the contents of bins 7,7+ 1, ..., J
in z to derive a feasible partial solution x’ such that z, is dominated by g¢.

4 Bound and Bound

A powerful technique for solving the MKP is bound-and-bound, which was origi-
nally implemented in Martello and Toth’s MTM solver for the MKP [I0]. In stan-
dard branch-and-bound, an upper bound U is computed at each node in the search
tree. If U < L, L, where L is a lower bound, e.g., the best (highest) objective func-
tion score found so far by branch-and-bound, then exploring the node further is
futile, so the node can be pruned. On the other hand, if U > L, then standard
branch-and-bound does not prune the node. Bound-and-bound extends this by
applying some heuristic technique to attempt to validate the upper bound: When
U > L, bound-and-bound attempts to prove that the upper bound U can be
achieved somehow in the current subtree — if so, then we have found the value
of the optimal subsolution under the current node and can backtrack.

The most powerful implementation of this idea is in Pisinger’s Mulknap solver
[12]. Mulknap is an item-oriented branch-and-bound algorithm. The items are

3 QOur analogues of CP variables and values are bins and bin assignments, respectively.
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ordered according to non-increasing efficiency (ratio of profit to weight), so that
the next item selected by the variable-ordering heuristic for the item-oriented
branch-and-bound is the item with highest efficiency that was assigned to at
least one container by a greedy bound-and-bound procedure (see below). The
branches assign the selected item to each of the containers, in order of non-
decreasing remaining capacity.

At each node, an upper bound is computed using a relaxation of the MKP
called the surrogate relaxed MKP (SMKP), which is obtained by combining all
of the remaining m containers in the MKP into a single container with aggregate
capacity C = Y"1 | ¢;, resulting in the single-container, 0-1 knapsack problem:
where the items are the remaining items and the knapsack has the capacity of
the aggregate container. The SMKP, which is currently the most effective upper
bound for the MKP [8], can be solved by applying any algorithm for optimally
solving the 0-1 Knapsack problem.

At each node, Mulknap attempts to validate the SMKP upper bound by
showing that there exists a partition of the SMKP 0-1 Knapsack solution into
the remaining empty spaces in the m bins of the original MKP instance. This
is done by solving a series of m subset-sum problems which allocate the items
from the SMKP solution to each bin, minimizing the unused capacity in each bin
(without exceeding capacity). If this partition is successful then the SMKP upper
bound can be achieved by partitioning the SMKP solution into the remaining
spaces in the bins, so we have validated the upper bound possible under the
current branch-and-bound node (and thus, we can backtrack).

Bound-and-bound can be extremely powerful for solving the MKP. In fact, for
many random benchmarks with a relatively large ratio of items to bins (n/m >
5), bound-and-bound can often validate the SMKP upper bound at the root
node of the search tree, which means that the instance is solved at the root node
without requiring any branch-and-bound search.

We implemented Pisinger’s bound-and-bound mechanism into our bin-
completion solver: at each node, we attempt to validate the SMKP upper bound
by partitioning the SMKP solution into the remaining bins (recall that in bin-
completion, at depth b, m —b bins are empty). Our implementation of the SMKP
bound is a straightforward, primal branch-and-bound. Our implementation of
the splitting procedure uses a standard branch-and-bound procedure using the
max-cardinality bound [§].

5 Experimental Results

We compared the following bin-completion based MKP solver configurations:

— PureBC: bin completion with no symmetry checking and no bound-and-
bound.

— 2-Dom: Apply 2-swap-path-symmetry first, and if the node is not pruned,
then try applying 2-swap-path-dominance. This corresponds to the “Bin-
completion with nogood dominance pruning” algorithm reported in [6].
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— PathSym: First, try 2-swap-path-symmetry, then try 2-swap-path-
dominance, and finally, apply path-symmetry, using the limited packing with
FFD implementation described above.

— 2-Dom-BB: Same as 2-Dom, with bound-and-bound.

— PathSym-BB: Same as PathSym, with bound-and-bound.

All of our algorithms were implemented in Common Lisp and compiled using
the CMUCL compiler version 19d. In addition, we also compared our algorithms
with Pisinger’s Mulknap algorithm (using Pisinger’s C implementation, compiled
using gcc version 4.12 with the -03 option.

We evaluated the various solver configurations using the following four stan-
dard classes of problems from the MKP literature.

— wuncorrelated instances, where the profits p; and weights w; are uniformly
distributed in [min, max].

— weakly correlated instances, where the w; are uniformly distributed in
[min,max| and the p; are randomly distributed in [w; — (maz—min)/10, w;+
(maz — min)/10] such that p; > 1,

— strongly correlated instances, where the w; are uniformly distributed in
[min,max| and p; = w; + (max — min)/10, and

— multiple subset-sum instances, where the w; are uniformly distributed in
[min, mazx] and p; = w,.

In our experiments, min = 1, max = 1000. The first m — 1 bin capacities ¢;
were uniformly distributed in [0.4 377, w;/m, 0.6 377, w;/m] for 1 < i < m.
The last capacity c,, is chosen as ¢, = 0.5 Z;;l wj — er:ll ¢; to ensure that
the sum of the capacities is half of the total weight sum. Degenerate instances
were discarded as in Pisinger’s experiments [12].

We used instances where the ratio of items to bins (n/m) ranged from 2
to 10. This is because for n/m > 10, Mulknap frequently finds a solution at
the root node by succeeding in validating the SMKP upper bound with the
subset-sum based bound-and-bound. For example, we generated 1000 instances
each of the uncorrelated, weakly-correlated, strongly-correlated, and multiple
subset-sum instances with 10 bins and 100 items, where [min, maz] = [1,1000].
Mulknap solved all 4000 instances at the root node (i.e., without search) in less
than 0.01 seconds per instance (see [I2] for related results). On the other hand,
for n/m <5, the bound-and-bound at the root node usually fails, and Mulknap
is forced to branch. It is therefore the instances with smaller n/m ratios that are
in some sense the most difficult random MKP instances that can be generated
using the model described above, so we focus on these problems.

The results are shown in Table 1. All experiments were run on a 2.4 GHz Intel
Core2 Duo. Each experiment was run on 20 instances per (# bins, # items) pair
(all configurations were run on the same instances), so a total of 480 instances
were used. The fail column indicates the number of instances (out of 20) that
were not solved within the time limit (300 seconds/instance). The time and nodes
show average time spent and nodes searched on the successful runs, excluding
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the failed runs. Thus, in the experiments where there were timeouts, the fail
column is the most significant result.

There are several clear trends in the results. First, symmetry-based pruning is
most effective for low n/m, and becomes less effective for high n/m. For n/m < 5,
the variants that use some form of symmetry (2-Dom, 2-Dom-BB,PathSym,
PathSym-BB) clearly search significantly less nodes than PureBC, and using
less runtime. The only exception was for uncorrelated 12-bin, 48-item instances.
For n/m > 5, the savings in nodes searched is insufficient to offset the cost of
symmetry-based pruning. The % of nodes pruned due to symmetry techniques is
highest for less correlated instances. This is because the dominance criterion is
most powerful when item weights and profits are highly correlated, which means
that most candidate bin assignments are pruned by the dominance criterion
during generate dominated (Fig[2 line 14), and are never considered.

Second, bound-and-bound becomes more effective as n/m increases, and the
overhead associated with bound-and-bound decreases as n/m increases. For
n/m = 2 (30-bin, 60-item instances), the overhead of bound-and-bound is suf-
ficiently large enough that there is a significant performance degradation in
2-Dom-BB and PathSym-BB compared to 2-Dom and PathSym, respectively.
However, for larger values of n/m, the relative overhead of bound-and-bound
becomes less significant, and for n/m > 5, bound-and-bound is significantly
enhancing the performance of the bin-completion variants.

The search behavior of Mulknap and bin-completion variants with bound and
bound (2-Dom-BB and PathSym-BB) are similar when n/m > 5. In principle,
when Mulknap can solve a problem at the root node without search, the bin-
completion variants should also solve the same problem at the root node. Below
the root node, the search behaviors of Mulknap and bin-completion with bound-
and-bound can diverge, because Mulknap branches on individual items, using
a variable ordering based on decreasing item efficiency (p/w ratio), while bin-
completion is branching on undominated bin assignments, where the variable
ordering is based on minimal cardinality, using profit as a tie-breaker.

The performance differences between Mulknap and our 2-Dom-BB/PathSym-
BB variants on the strongly-correlated and multiple subset-sum instances for 10
bins/60 items, and 10 bins/100 items can be explained by a differences in the
implementation of the 0-1 Knapsack solver used to compute the SMKP (lower
bound) solution. There are cases where there exist multiple optimal solutions to
the SMKP 0-1 Knapsack instance, all with the same total profit, but with dif-
fering total weight (such cases more common for multiple-subset sum instances
and strongly correlated instances). Mulknap implements a specialized 0-1 Knap-
sack solver which is biased to find solutions with the smallest weight sum (which
makes it more likely that the solution is splittable by the bound-and-bound sub-
set sum solver) Our current 0-1 Knapsack solver did not implement this bias, and
as a consequence, missed opportunities to successfully apply bound-and-bound.
Thus, Mulknap performed significantly better than 2-Dom-BB and PathSym-BB
for the strongly-correlated and multiple subset-sum instances for n/m > 5, even
though in principle (with a better implementation of the SMKP 0-1 Knapsack
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solver), the performances should have been identical, as both algorithms could
have solved all of these instances at the root node.

To highlight the performance differences between the various symmetry prun-
ing techniques, we describe some experiments with smaller problem instances,
where all bin-completion based configurations were more likely to find a solution
within the time limit. For uncorrelated instances with 10 bins, 30 items, PureBC
solves all instances in an average of 9.13 seconds and 1,662,504 nodes. In compar-
ison, 2-Dom solves all instances in 0.57 seconds and 47,193 nodes, and PathSym
solves all instances in 0.28 seconds and 9,432 nodes. Thus, 2-Dom and PathSym
are searching 2 and 3 orders of magnitudes fewer nodes than PureBC, respec-
tively. Finally, we consider another configuration, PathDom, which first applies
the same sequence of symmetry tests as PathSym, and finally applies the full
path-dominance test using backtracking — thus, PathDom applies our most pow-
erful pruning criterion and searches the fewest number of nodes. PathDom solves
all of these instances in 0.78 seconds and 5031 nodes. Thus, exploiting the most
powerful dominance criterion can yield almost another factor of 2 reduction in
nodes searched for these instances, but the additional cost per node results in an
overall 3x slowdown. We have not found any configuration using path dominance
(other than the highly restricted 2-Dom case) where the search reduction was
sufficient to offset the additional cost per node.

Overall, PathSym significantly reduced the size of the branch-and-bound tree
compared to 2-Dom, the previous state of the art algorithm for MKP prob-
lems with low n/m ratios. The results in Table 1 show that exploiting symmetry
is a very effective technique for hard MKP instances with low n/m ratio. Fur-
thermore, integrating bound-and-bound was shown to significantly improve per-
formance on instances with higher n/m ratios, while modestly penalizing perfor-
mance on instances with lower n/m ratios. Thus, the PathSym-BB configuration,
which successfully integrates bin-completion, symmetry-based pruning (a combi-
nation of 2-swap-path-symmetry, 2-swap-path-dominance and path-symmetry),
and Pisinger’s bound-and-bound technique, can be considered a new, state-of-
the-art algorithm for instances for low n/m ratios.

6 Conclusions

This paper presented an algorithm for the multiple knapsack problem which
integrates techniques from constraint programming (symmetry-based pruning),
operations research (bound-and-bound, as well as the SMKP upper bound and
other techniques borrowed from Mulknap and earlier MKP solvers from the
OR literature), and the AI literature (the bin-completion search space [6]). We
proposed two new, symmetry breaking mechanisms (path symmetry and path
dominance) which are generalizations of previously studied strategies (2-swap-
path-symmetry and 2-swap-path-dominance). We showed that integrating path-
symmetry resulted in a new solver which significantly outperformed the previous
state of the art, 2-swap dominance based bin-completion solver reported in [6].
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We further showed that integrating bound-and-bound could significantly im-
prove the performance on problems with higher n/m ratios.

There are several directions for future work. Although path-dominance is our
most powerful symmetry relation, the current implementation is not competitive
with path symmetry due to the large overhead incurred at each node. We are
currently investigating improved implementations and approximate detection
strategies to make path-dominance more viable. Likewise, our current imple-
mentation of bound-and-bound uses naive branch-and-bound algorithms for the
SMKP upper bound and subset sum computation for bound validation. As dis-
cussed in Section [{ integration with more sophisticated algorithms is likely to
result in significant performance improvements. Finally, the symmetry detection
techniques described in this paper are not limited to the MKP. For example, it
is straightforward to apply the symmetry techniques to improve the search effi-
ciency of any of the bin-completion based solvers for bin packing, bin covering,
and min-cost covering problems described in [6].
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Abstract. We investigate cost propagation for solving combinatorial
optimization problems with finite domain variables, expressed as an addi-
tive component model. Cost propagation combines ideas from both con-
straint programming and integer programming into a single approach,
where problems are iteratively solved by numerical propagation, with
updates for single constraint terms in the component model.

We outline a theory of propagation in terms of equivalent problems
with notions of consistency, local optimality, convergence and bounds.
We define several different updates and analyze their properties.

Finally, we outline computational experiments on the simple assign-
ment problem, the set partitioning problem, and a crossword puzzle. The
experiments illustrate that even without a top level search, cost prop-
agation can by itself solve non-trivial problems, and also be attractive
compared to standard methods.

1 Introduction

Combinatorial optimization problems are often modelled as integer linear pro-
gramming (ILP) problems and solved with standard ILP methods. This works
well for many problems, but the model cannot easily handle non-linear cost func-
tions and constraints that may require many variables and constraints. With
constraint programming (CP), many kinds of constraints can be modelled in a
constraint satisfaction problem (CSP), and the structure of the problem can be
exploited with efficient propagation algorithms. On the other hand, it is non-
trivial to model an objective function or costs in general.

Cost propagation can be described as a numerical optimization method with a
CP-like structure for the model and the computations. Building on the previous
work of Wedelin [T4UT5I7], the contribution of this paper consists of a formal-
ization and extension of the theory (in particular non-conflicting updates are
new), as well as some computational experiments. For more difficult problems,
cost propagation may be combined with search, or can be used heuristically to
ensure convergence and integer solutions (see [15]).

Our starting point is a component model (in [I] also called nonserial uncon-
strained problems )

_ k
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where 7 is an array of finite domain variables and where the terms gx(z*) € R
are distinct arbitrary functions over subsets z* of z. Let these terms be called the
components of the objective function and let them be expressed e.g. as tables. We
distiguish between wvariable-components with only one variable and constraint—
components with two or more variables. We can use binary variables to efficiently
represent discrete finite domain variables, so we can without loss of generality
restrict the theory to this case. An upper bound can be obtained for any compo-
nent model by simply adding the largest value of each component. We call this
the component bound.

A CSP can be described by modelling constraints as constraint-components
with the values 0 and —oo to express feasible and infeasible assignments, and
we can say that a solution is feasible if it has an objective value greater than
—00, and infeasible otherwise. A binary ILP can be translated into our model
by additionally introducing a variable-component for each variable and its cost.
For example, the problem

max { 221 + 3z2 + 223 | x1 + 22 =1, 29 + 23 = 1, z; binary} (2)
can be expressed as follows:

eﬂ{lgii}s g1(x1) + g2(z2) + g3(xs) + ga(x1, x2) + g5(x2, 23),

where the components have values as shown in figure [Il

91(x1) 94 (1, w2) g2(z2) 95 (v2, ©3) 93(x3)

olo] oo 0| o] o<l o o Jo 0| o

Fig. 1. (a) Component cost tables for the ILP example. (b) Alternative representation
of ga(z1,z2).

A possible problem with this representation is that explicit tables grow ex-
ponentially with the number of variables in a constraint. However, for many
common constraints the components can be represented implicitly, and as in CP
it is possible to design efficient specialized update algorithms.

Any component model can in principle be translated into a binary ILP by
introducing additional binary variables for each feasible entry in the component
tables and linear constraints for consistency between all the variables. The re-
sulting ILP is linear in the size of an explicit representation of the component
model. While mostly of theoretical interest, such a translation can be used to
link properties of this approach with well known results in optimization.
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To illustrate the relationship between cost propagation and propagation in
CP we will express the standard CP domain reduction operation (that we call
the CP-update) numerically. Let g1(x1), g2(22), g3(x3) be variable-components
representing the current domains for three finite domain variables, z1, z2, and
x3. Let g4(x1, 2, x3) be a constraint-component representing a constraint over
these variables. Now when T and F is represented by 0 and —oo, the logical
operator AND can be represented by addition and OR by maximization. The
CP-update can then be described as follows:

1. Input to the update are the current domains represented by the components
91(131),92(332)793(353)~

2. Combine the constraint and the current domains to form an intermediate
table

h(z1, 22, 23) = g1(x1) + g2(x2) + g3(x3) + ga(z1, 22, 3).

3. Calculate updated variable-components g} (1), g5(z2), g5(z3) by maximizing
the intermediate table over the other variables:

g1(w1) = max h(zy,za,73),
x2,T3

g5(22) = max h(zy,z2,13),
T1,T3

g5(z3) = max h(zy1,z2,23).
T1,T2

The updated variable-components will show which variable values are feasible
(component value 0) and infeasible (component value —oo), just as for the CP-
update.

So, from the perspective of CP, cost propagation can be seen as an explo-
ration of a richer set of models and methods by using arbitrary numbers rather
than just 0 and —oo. There are within CP a number of approaches to using
the objective function as a constraint, and different methods to use cost infor-
mation and optimization in filtering algorithms, see e.g. [TIBIT2I6IT]. It is our
understanding however, that the propagation between constraints through the
variable domains is still non-numerical and none of these approaches actually
try to find the optimal solution to the problem with the propagation mechanism
itself. Our approach is much closer to the kind of propagation used in Al for
inference in graphical models or belief networks, although there the goal is not
optimization but to calculate marginal probabilities, see e.g. [L0/I4]. Another
source of inspiration is relaxation labeling, see e.g. [0].

From the perspective of ILP, we can in principle translate the entire compo-
nent model into an ILP, where cost propagation can be seen as an iterative dual
decomposition method. However, depending on the kind of update used, it may
or may not be described in terms of maximization of the dual. Some characteris-
tic properties of our approach are that we start from the component model (),
adopting a CP-style approach in defining the problem and the subproblems, we
rely on constraint level update algorithms and propagation rather than on an
LP-solver, and we treat the variable values 0 and 1 symmetrically.
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Finally, the component model () is investigated by Bertelé and Brioschi [I]
using nonserial dynamic programming. This kind of model is also commonly
approached by dynamic programming algorithms such as the Viterbi algorithm
[13] for Markov chains.

For space reasons, proofs and some derivations have been omitted, and the
computational experiments are sketched. For a more complete account, we kindly
refer the reader to [4].

2 Cost Propagation

Propagation will proceed as an iterative sequence of updates, considering one
constraint-component at a time, with the aim to find an optimal solution, im-
prove the bound and reduce domains. This is done by iteratively changing the
values of the components, which are seen as variables in a computer program.
Any changes to the components must preserve equivalence, i.e. the sum of all
components in the problem must always be equal to the original objective func-
tion f(z).

At any time, we have a current solution determined from the variable-compo-
nents, defined as follows:

Definition 1. The current solution is the solution to the trivial problem
mijgj(xj). (3)
J

The normal case is that the current solution is unique, otherwise we consider it
as undefined.

Note that this is the same as maximizing each variable-component separately.
We also need to define subproblems consisting of a single constraint-compo-
nent and its associated variable-components:

Definition 2. Let the subproblem with respect to the constraint—component g;(x")
be the following maximization problem:

maxgi(a') + Y gi(a)). (4)

jeu(i)

Here, v(i) is the index set of variables involved in constraint—component g;(z%),

but it is a formal matter if the sum is extended to all variables. Figure [ (a)

shows an example of the components involved in a two-variable subproblem.
Components will be changed iteratively by cost updates defined as follows:

Definition 3. A cost update for a subproblem is a transformation into an equiv-
alent problem by changing only the components of the subproblem.

For example, figure[Z (a) illustrates a subproblem with two variables. In figure
(b) the variable-components have been moved in, i.e. added to the constraint-
component (the values of the variable-components are then 0 to preserve equiv-
alence). The solution to the subproblem is found by identifying the maximum
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Fig. 2. (a) Original subproblem, (b) Intermediate table with the sum of all subproblem
components, (¢) After DP-update, (d) A non-conflicting update

value of this table. In figure[2] (¢) and (d) new values for the variable-components
have been moved out, i.e. subtracted from (b). Thus all cases (a)-(d) preserve
equivalence.

Updates can be designed in different ways, e.g. to give the results in figurel(c)
or (d). To characterize two different desirable properties of updates we will use

the following definitions. The first is our versiorl] of generalized arc-consistency
in CP (see e.g. [2]):

Definition 4. A wvariable-component is consistent with a subproblem if its fea-
sible values can be extended to a feasible solution of the subproblem, i.e. with
an objective value greater than —oo. An update is consistent if it makes the
variable-components of the subproblem consistent.

Thus, a consistent update will place —oo in the variable-component if a value is
determined to be infeasible. For optimization the following property is important:

Definition 5. The current solution is locally optimal for a subproblem if it is an
optimal solution to the subproblem. An update is locally optimal if it makes the
current solution locally optimal. (If there are several solutions to the subproblem,
this should be reflected by ties in the affected variable domains.)

For example, in figure [ (a) the current solution is not locally optimal, but in 2
(c) and (d) it is.

2.1 Cost Updates

We will now describe two different updates. The first one is a generalization of
the CP-update which we call the DP-update because of its connection to dynamic
programming, see Section 2.2

Before giving a general definition we will illustrate the DP-update with the
simple example of figure 2] (a)-(c). The first step of the DP-update is to move
in the variable components into the constraint component, resulting in [ (b).
The new variable components are then computed as the maximum values of
the rows and columns of [ (b). Finally, the new variable components are moved

1 'We have changed the definition compared to [).



102 B. Grohe and D. Wedelin

out from the constraint component, resulting in 2 (¢). After the update, the
current solution will be both consistent and locally optimal with respect to this
subproblem.

In the following general definition, let g denote the current components, and
g’ the updated components. The table h(x?) can be seen as an intermediate table
holding the data after the variable components have been moved in.

Definition 6. For a subproblem, the following operations define the DP-update:

h(a') = gi(@) + Y g5(zy), (5)
Jev(i)

g5(x;) = maxh(z'), (6)

z\w;

gi@') = gia’) = Y (gj(x;) = 9(x;)). (7)

jeu(i)

The second update will be an example of an update for a component correspond-
ing to the single linear constraint ax = 1 (we will call this a set partitioning con-
straint), where the subproblem can be described as the optimization problem

max{cz | ax = 1,z binary}, (8)

and where the vector a is also binary. According to LP-theory, the vector ¢ can
be replaced by ¢ = ¢ — ya for any y without changing the optimal solution. If we
want to find an y so that the current solution is feasible, y can be chosen in the
interval [ <y < h where h and [ are the largest and the second largest entries of
the vector ¢. By choosing y = é(l + h), we receive the LP-update defined below.
We here identify ¢ with the cost differences G; = g;(1) — g;(0).

Definition 7. For a subproblem, the following operations define the LP-update:

95(1) = g;(1) = 3L+ 1), g;(0) = g;(0), 9)

gi(@") = g:(a") = Y (gj(w;) — g5 (), (10)
jev(i)
where the values h and | are the largest and the second largest among the values
g;(1) in the subproblem.

This update is consistent and locally optimal.

Efficient implementations of the DP- and LP-updates may perform actual cal-
culations quite differently from the descriptions above. First, explicit use of large
tables should be avoided, especially for constraints with many variables, where
these tables may become exponentially large. Secondly, it is always sufficient
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to use the cost differences G, although the full variable-components g;(x;) are
useful for the theory. To express the LP-update with the G; only, we write

@) as
1
Gy =Gy — 2(l+h), (11)

where h and [ are the largest and the second largest among the values Gj. The
values | and h can be obtained in linear time, and an explicit use of g;(x?)
is avoided. For a fully efficient update, the explicit change of the constraint-
component in ([I0) needs to be avoided. Instead, we can implicitly remember
the change of constraint-component ¢ by keeping the differences S} = G} -G
corresponding to the second part of equation (I0).

To see how also the DP-update for the set partitioning constraint can be
calulated using the cost differences, let m be the index of the variable with the
cost h. The DP-update, i.e. equations (@) and (@) can then be written as

G =Gn—1
e e . 12
G}sz—h for j # m. (12)
As in the case of the LP-update, explicit computation of (7l) can be avoided by

remembering the values S;
We conclude that for this particular constraint both the DP- and the LP-
update can be performed with a fast and simple linear time algorithm.

2.2 Propagation with Cost Updates

We now consider propagation to find solutions to an entire problem. Here, the
two updates presented in the previous section have very different properties. For
the example (@), we show in table [[l the first few steps of propagation with the
DP-update and the LP-update. First constraint 1 is updated, then constraint 2,
and this is repeated.

We can see that for the DP-update the variable-components g;(z;) converge
after only two iterations (as do the constraint-components which are not shown

Table 1. Example of propagation using the DP-update and the LP-update

DP  gi(z1) g2(w2) gs(ws) Lp 91(%1) 92(w2) g3(w3)

01 01 01 0 1 0 1 0 1

02 03 0 2 0 2 0 3 0 2
constrl 3 2 2 3 0 2 constr 1 0 —-0.5 0 05 0 2
constr2 3 2 4 3 3 4 constr2 0 —05 0 -0.75 0 0.75
constrl 3 4 4 3 3 4 constr1 O 0.125 O —0.125 0 0.75
constr2 3 4 4 3 3 4 constr2 0 0.125 0 —0.4375 0 0.4375
constrl 3 4 4 3 3 4 constr 1 00.28125 0 —0.28125 0 0.4375
constr2 3 4 4 3 3 4 constr 2 00.28125 0 —0.359375 0 0.359375
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in the table). In the LP-update the numbers are different and do not converge
in the same way. However, after a few iterations, there are no more sign changes
of the values g¢;(1), and consequently of the G;, so the current solution has
converged, and it is also optimal. We note that it is possible to consider the cost
differences G; instead of both values in the variable-components g;(z;).

Depending on the kind of update used, the analysis of the iterative propaga-
tion process varies significantly. Note that while any locally optimal update gives
the same current solution from the same numerical input, propagation with dif-
ferent updates will typically give different current solutions along the way (the
example is an exception because it is so simple). We here restrict ourselves to
some observations.

For locally optimal updates, the following theorem can be used to detect
feasibility:

Theorem 1. The current solution is feasible if it is unique, i.e. if all G; # 0,
and if every subproblem has been updated with a locally optimal update at least
once without changing the current solution.

With respect to convergence, it is common for locally optimal updates that if the
situation in Theorem [[has occurred, the current solution has converged and will
not change during subsequent updates, although the numbers in the components
continue to change. For more difficult problems a common situation is however
that the current solution oscillates for some variables where numerically the
differences G; tend towards 0. For the LP-update, Theorem 1 in [I5] provides a
partial explanation for this kind of convergence problems:

Theorem 2. A dual vector y such that the Lagrangian relaxation of the corre-
sponding ILP problem gives a unique solution to the LP-relaxation exists if and
only if the LP-relaxzation has a unique integer solution.

In other words, the existence of a unique integer solution is a necessary condition
for finding a solution with the LP-update. An oscillating behavior may also be
caused by infeasibility of the problem.

Turning to the question of optimality, one cannot generally expect that a
solution that is locally optimal for every subproblem is also globally optimal.
However, there are cases where optimality can be guaranteed. For example, the
LP-update is designed to never give a suboptimal feasible solution, a fact that
follows from LP-theory, see also section

We finally discuss propagation with the DP-update, which can be interpreted
as a dynamic programming algorithm if the constraint graph (hypergraph rep-
resenting the sets z*) of the problem is acyclic. From [I5] we have the following
result (in an adapted version):

Theorem 3. If the constraint graph is acyclic, propagation with the DP-update
converges to the optimal solution in d steps, where d is the diameter of the graph.

All components have then converged numerically. For more details see [15].
If the constraint graph contains cycles, then the DP-update does not generally
give the optimal solution, and convergence cannot be guaranteed. The reason is
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that the numerical values of a variable-component may then influence themselves
through a cycle. However, the behavior is dependent on the numerical values of
the components and in some cases, feasible, good or even optimal results can
be achieved despite of cycles, see [I7] for a discussion. We note that the CP-
update, as a special case of the DP-update, works independently of cycles in the
constraint graph, since once a variable-component entry becomes —oo, it will
never change again.

3 Non-conflicting Updates

We will now investigate a particular kind of update that under certain conditions
can guarantee globally optimal solutions.

Definition 8. The current solution is non-conflicting if it corresponds to a
largest entry in the constraint—component table. An update is non-conflicting
if it makes the current solution non-conflicting. (If there are several solutions to
the subproblem, this should be reflected by ties in the affected variable domains.)

The definition is illustrated in figure 2 (d). For both the DP-update of 2] (¢) and
the non-conflicting update of @] (d), the current solution is locally optimal for
the subproblem. But additionally, also the constraint-component has the largest
value for the optimal combination, which is not the case for the DP-update in
(c).

A non-conflicting solution is clearly always locally optimal, since the current
solution will maximize the value of each term in ().

The following theorem describes the relation between a non-conflicting solu-
tion and global optimality:

Theorem 4. If the current solution is unique and non-conflicting with all sub-
problems, then the current solution is globally optimal.

Global optimality can be detected during propagation using the theorem below.

Theorem 5. The current solution is optimal if it is unique, and if each sub-
problem has been updated with a non-conflicting update at least once without
changing the current solution.

Theorems [ and Bl do not imply that propagation with non-conflicting updates
will find a solution, just that a solution, if found, will have certain properties.

3.1 Analysis of Non-conflicting Updates

We begin with the relationship between a non-conflicting update and the com-
ponent bound:

Theorem 6. A non-conflicting update minimizes the component bound for the
subproblem, so that the bound becomes equal to the solution to the subproblem.
In propagation, the component bound is therefore non-increasing in every step.
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For example, in figurel (a) the component bound for the subproblem is 13, in (¢)
it is 11, and in (d) it is 8, i.e. the same as the optimal solution to the subproblem.
We note that this aspect of non-conflicting updates is easily explained in a LP
interpretation, where the bound, i.e. the dual objective, is locally minimized.
From the definition and the examples of figure @ (c) and (d) one can see
that the non-conflicting property limits how much may be moved out from each
constraint. A full analysis of this is complicated and we restrict ourselves to a few
observations. It is here relevant to analyze differences directly, so let D; = g}(1)—
g} (0) be the differences given by the DP-update in equation (). For example, in
figure @ (b), D1 = 6 and Dy = 3. Assume without loss of generality that the D;
are all non-negative and in decreasing order, which can be achieved by permuting
variables and their values appropriately. Further let 7} be the corresponding
differences in g’ (z;) for a non-conflicting update. Our first observation is that

T; <Dy, (13)

i.e. that each D; is an upper bound for the respective T} of the non-conflicting
update, since moving out a difference greater than D; would destroy the non-
conflicting property. Thus, we can in a non-conflicting update always move out
Dj to one of the the variables, but depending on h(z?%) all other T; may then
have to be 0 to keep the update non-conflicting. For example in figure 2 setting
Ty = Dy = 6 would force T = 0. By reasoning along these lines, one can draw
the conclusion that the following inequalities ensure that the non-conflicting
property is satisfied (see [4] for details):

> T < Dj,
k>j (14)
T; >0
These inequalites are weak, in the sense that for a particular constraint it may
very well be possible to move out more, but it is the best that can be accom-
plished by using the D; as the only source of information about h(z").

3.2 The Fractional DP-Update

We are still left with a number of design decisions, since there are many ways to
choose the 7} in a non-conflicting update. We wish to achieve T} > 0, to ensure
a unique current solution. Also, it is intuitively desirable to move out as much as
possible from the constraint—components to the variable-components. Finally,
the update should be easy to compute. One way of doing this is by letting T be
proportional to D;:

Definition 9. The fractional DP-update is given by
Tj = ()(l)j7 a > 0. (15)

This fractional DP-update is not much more difficult to compute than the DP-
update, and all 7; > 0 if all D; > 0. The fractional DP-update will be non-
conflicting for sufficiently low values of «, but not for higher. Based on (I4]) we
can derive the following theorem:
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Theorem 7. A fractional DP-update with o according to

D.
o <min{l, . 7} (16)

J Zij Dk
18 a non-conflicting update. Also, a = rlw where n is the number of variables in
the constraint, is always a non-conflicting update.

We note that the fractional DP-update does not move out as 'much as possible’.
However, it appears to be non-trivial to formulate such a notion in a useful way.
We also note that it can be possible to move out more by iteratively applying
the fractional DP-update to the same subproblem.

We end this section by mentioning that a stronger analysis can be carried
out for special constraints. For example for the set partitioning constraint, it is
possible to show that oo = 1/2 always gives a non-conflicting update. Finally, the
LP-update, while not a fractional DP-update, is non-conflicting. This can be seen
by noting that after this update, all feasible entries in the constraint-component
have the same value.

4 Propagation Experiments

4.1 The Simple Assignment and Set Partitioning Problems

The formulation of the assignment problem in the component model is straight-
forward from the traditional binary ILP formulation. For our experiments we
have used randomly generated assignment problems, and some from Beasley’s
OR-library [9]. For the propagation we used a linear-time implementation of the
fractional DP-update (o = 0.5). In summary, the result was that all tested prob-
lems with unique solutions coverged to optimality. The random problems were
tight with sizes up to n=300, and were done within one minute on a Sun SunFire
280R with 900Mhz UltraSparc ITI+. When using CPLEX, which surely uses some
specialized method, the instances can be solved in a few seconds each. Neverthe-
less, we were able to solve a number of instances of substantial size in reasonable
time with propagation only. Finally, we note that CP’s constraint propagation
(domain reduction) would be unable even to approach a problem like this with-
out a top level search. It should be noted that also from an LP-perspective this
is not an entirely trivial result, since it is the symmetrical treatment of the val-
ues of 0 and 1 (rather than seeking complementary slackness), that avoids that
the propagation gets stuck. We can therefore find a solution without any global
control such as that required in the otherwise similar Hungarian algorithm.

The set partitioning problem is NP-hard and we therefore do not expect it
to be solved by cost propagation only, and this was confirmed by running a
couple of problems from Beasley’s OR-library. In this case therefore, propagation
needs to be combined with search. Alternatively, as done in Wedelin [I5JI6], the
propagation can be augmented with a heuristic, for solving the set partitioning
problem suboptimally.
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4.2 A Crossword Puzzle

We now consider a crossword puzzle in a rectangle consisting of coded letters
and black areas. The problem is to substitute the coded letters with uncoded
letters in a one-to-one mapping so that English words are formed horizontally
and vertically. To formally define the problem we let the set A be the letters in
the alphabet and a special symbol B, used to indicate the beginning and end of
words, in total 27 symbols.

We now state our mathematical model for the crossword puzzle. We employ a
Markov chain based language model where P; denotes the probability of letter j
and Pj; the probability of letter j followed by letter [, i.e. monogram and bigram
statistics for ordinary text. Further let f; be the frequency of the coded letter i
in the crossword and let f;; be the frequency of the coded bigram ik in the text.
The problem can then be stated as finding a permutation ¢ of the letters and
symbols in A, maximizing the probability

Po)=T12G TI (00 ) (17)

€A (i,k)EAX A Py Py (k)

The first product of () reflects the probability of a permutation based only
on monogram statistics. If the crossword was just a linear sequence, the entire
model ([I7) would be a Markov chain.

Translation to the component model is straightforward, and we outline the
approach. We represent the permutation with a square of binary variables x;;,
i,j € A where

- { 1 if the coded letter i represents the uncoded letter j, (18)
* 0 otherwise.

The components are:

— Components ensuring a feasible assignment. A coded letter must rep-
resent exactly one uncoded letter and vice versa, this is in the square of
variables expressed by horizontal and vertical set partitioning constraints
just as in the simple assignment problem.

— Components for single letters. For every variable we introduce a variable-
component g(z;; = 1) = f; - log(P;), g(x;; = 0) = 0. Together these compo-
nents correspond to the first product in (IT).

— Components for adjacent letters. For each pair of neighboring coded
letters i, k in the crossword, we have a constraint-component corresponding
to a factor in the second product in ([I7)). The involved variables are those in
rows ¢ and k in the square of variables, ie in total 54 binary variables. Since
only one variable in each row can be equal to 1, there can be no more than
27 % 27 = 729 feasible solutions to the component, out of 2°4 possible. When
these variables are z;; and w;, the value of the component is log PIZ]};,' All
other values are —oo. The frequency f;x is handled implicitly since we have
one component for every bigram in the crossword, so if the same bigram
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occurs several times, there will be several constraint-components. We chose
to use a simplified constraint for the special case that i = k.

Note that this problem is easy to formulate as a component model but not
as convenient to model directly in a CP or ILP framework. The example also
illustrates how we can easily represent finite domain variables variables such as
letters, with binary variables.

We have tested on four small (15 x 15), two medium size (15 x 30) and three
large crossword problems (15 x 45). We have analyzed the problems, and the
used Markov chain based model is sufficient for finding the correct solution for
the large and medium size problems but not for all the small ones.

Table 2. Solution of crossword with cost propagation

name Correct CostP UB t
cwl5.1 -340.38 -340.42 (17) -282.2 140
cwlb.2 -320.2 -319.2 (21) -273.6 143
cwlb5.3 -334.2 -331.6 (19) -274.5 141
cwlb54 -328.5 -350.4 (19) -283.0 143
cw30.1 -674.5 -668.2 (23) -601.7 392
cw3d0.2 -731.7 -731.7(26) -663.0 441
cw45.1 -1013.9 -1020.9 (24) -918.5 582
cw45.2 -1018.5 -1030.2 (24) -912.1 588
cw45.3 -1165.3 -1202.5 (24) -1040.5 655

Table ] reports the results for cost propagation, using the fractional DP-
update with o = 0.5 for all constraints. The column CostP shows the value of
the best objective function value that the numerical propagation achieved within
a fixed number of iterations. Since none of the crossword instances had unique
integer solutions, propagation did not fully converge and was aborted after a
maximum of 550 iterations reporting the best solution found. The number in
parenthesis next to the value in column CostP is the number of correct letters
in the solution. Column U B shows the value of the component bound, after a
fixed number of iterations. Column ¢ shows the time in seconds.

In summary, the results show that the propagation finds correct or almost
correct solutions to the large and medium size problem. To compare, we have
also modelled the problem as an ILP in the straightforward way mentioned in
Section [I] and used CPLEX to solve it. For the LP-relaxation, with highly frac-
tional solutions, running times are at least 100 times longer, and ILP times are
considerably longer than that. This is because the component model in a natu-
ral way captures the structure of the problem. In the components for adjacent
letters the binary ILP model has to introduce a variable for every feasible entry,
which we in contrast easily handle with a standard implementation of the DP-
update. The difference would be even more significant if trigram statistics had
been used.
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5 Conclusions

Starting from the component model, we have formalized the use of cost propa-
gation, and characterized several different updates and their properties. In sum-
mary, we think that cost propagation in a single approach captures some signif-
icant properties of both CP and ILP. We also hope that cost propagation can
be useful in combination with search, providing in one mechanism both domain
reduction, as well as direct optimization and bounds.

Our experiments illustrate that it is to a certain extent possible for propaga-
tion on its own to solve non-trivial problems, e.g. the simple assignment problem
and the crossword puzzle. The simple assignment problem cannot be solved by
constraint propagation only; a potentially costly top level search has to be em-
ployed. This is also the case for the crossword puzzle. On the other hand, word
puzzles usually cannot be modelled efficiently by LP/ILP models because of the
restriction to linear constraints, and the explosion of the number of variables in
the models. In this case, cost propagation can be considered to give solutions of
acceptable quality much faster.

It is natural that an investigation like this generates many new questions, of
which we list some here:

— Properties of different updates can be analyzed further, in order to better un-
derstand their relation to special problem classes, convergence during propa-
gation, and optimality. We also want to design as good updates as possible.
We here note that while updates such as the DP-update do not in general give
globally optimal solutions, they can on the other hand speed up convergence
and also solve large integer problems by propagation only, see [THI16].

— Algorithm libraries with fast updates for different kinds of special constraints
including so called global constraints can be developed as in CP.

— By combining cost propagation with search, one would have a complete
method applicable to a much wider range of problems. It would also be easier
to compare with corresponding approaches in ILP and CP. One obvious
possibility is to use non-conflicting updates and a branch & bound search,
another possibility is to explore branching in order to break cycles when
using e.g. a DP-update.
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Abstract. Solution-Guided Multi-Point Constructive Search (SGMPCS) is a
complete, constructive search technique that has been shown to out-perform stan-
dard constructive search techniques on a number of constraint optimization and
constraint satisfaction problems. In this paper, we perform a case study of the ap-
plication of SGMPCS to a constraint satisfaction model of the multi-dimensional
knapsack problem. We show that SGMPCS performs poorly. We then develop a
descriptive model of its performance using fitness-distance analysis. It is demon-
strated that SGMPCS search performance is partially dependent upon the corre-
lation between the heuristic evaluation of the guiding solutions and their distance
to the nearest satisfying solution. This is the first work to develop a descriptive
model of SGMPCS search behavior. The descriptive model points to a clear di-
rection in improving the performance of constructive search for constraint satis-
faction problems: the development of heuristic evaluations for partial solutions.

1 Introduction

An important line of research over the past 15 years in combinatorial optimization has
been the empirical study of average algorithm behavior: there has been significant study
of phase transition phenomena [[7I18]], work on heavy-tailed distributions [8I13]], and
detailed models developed for tabu search for job shop scheduling [20]. In this paper,
we build on this work to begin to develop an understanding of the search behavior of
a recently proposed constructive search technique, Solution-Guided Multi-Point Con-
structive Search (SGMPCS) [2]].

We examine the performance of SGMPCS on a set of benchmark instances of a con-
straint satisfaction version of the multi-dimensional knapsack problem. We show that
both randomized restart and SGMPCS perform poorly on these instances. The core of
the paper is the investigation of the conjecture that SGMPCS performance is partially
affected by the quality of the heuristic that is used to select the guiding partial solu-
tions. When we artificially control the quality of the heuristic evaluation, we observe
substantial performance differences. We then investigate two new heuristics. The better
heuristic results in significant gain in search performance and, more importantly, the
observed performance differences among the three heuristics are consistent with the
descriptive model. Approximately 44% of the variation in search performance can be
accounted for by the quality of the heuristic.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 112 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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This is the first work which demonstrates that SGMPCS exploits the heuristic eval-
uation of its guiding solutions. Given that standard constructive search techniques do
not directly exploit this information, we believe that SGMPCS embodies a promising
direction for improving constructive search performance.

In the next section, we present SGMPCS, briefly discuss the literature on empirical
models of search behavior, and introduce the multi-dimensional knapsack problem. In
Section 3] we present and discuss the initial empirical studies, demonstrating the poor
performance of SGMPCS. Section [l develops our descriptive model of SGMPCS per-
formance. Section 4] proposes two new heuristic evaluation functions and empirically
evaluates them. We discuss the implications and limitations of our study in Section[3l

2 Background

In this section, we present the Solution-Guided Multi-Point Constructive Search al-
gorithm, previous work on building descriptive models for search performance, and
introduce the multi-dimensional knapsack problem.

2.1 Solution-Guided Multi-point Constructive Search

Solution-Guided Multi-Point Constructive Search (SGMPCS) [2/[1]] is a constructive
search technique originally proposed for optimization problems. For clarity, we present
the basic approach in the optimization context before discussing the changes necessary
for constraint satisfaction problems.

SGMPCS for Optimization. The primary novelty of SGMPCS is that it is guided
by sub-optimal solutions that it has found earlier in the search. As with randomized
restart techniques [8]], the overall search consists of a series of tree searches limited by
a computational resource bound. When the resource bound is reached, search restarts
and may be guided by an elite solution. An elite solution is a high-quality, sub-optimal
solution found earlier in the search.

Pseudocode for SGMPCS is shown in Algorithm [Tl The algorithm initializes a set,
e, of elite solutions and then enters a while-loop. In each iteration, with probability
p, search is started from an empty solution (line [3) or from a randomly selected elite
solution (line [T0). In the former case, if the best solution found during the search, s, is
better than the worst elite solution, s replaces the worst elite solution. In the latter case,
s replaces the starting elite solution, 7, if s is better than 7. Each individual search is
limited by a fail bound: a maximum number of fails that can be incurred. The entire
process ends when the problem is solved, proved insoluble within one of the iterations,
or when some overall bound on the computational resources (e.g., CPU time, number
of fails) is reached.

Elite Solution Initialization The elite solutions can be initialized by any search tech-
nique. For each problem in our experiments, we use independent runs of standard
chronological backtracking with a random variable and value ordering. The search ef-
fort is limited by a maximum number of fails for each run.
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Algorithm 1. SGMPCS: Solution-Guided Multi-Point Constructive Search
SGMPCS():
1 initialize elite solution set e

2 while not solved and termination criteria unmet do
3 if rand[0,1) < p then

4 set fail bound, b
5 s := search((), b)
6 if s is better than worst(e) then
7 replace worst(e) with s
else
r :=randomly chosen element of e
9 set fail bound, b
10 s :=search(r, b)
1 if s is better than r then
12 replace r with s

Bounding the Search Each individual search is bounded by an evolving fail bound: a
single search (lines 3] and [IQ) will terminate, returning the best solution encountered,
after it has failed the corresponding number of times.

Searching from an Empty Solution With some probability, p, search is started from
an empty solution (line[3). Searching from an empty solution simply means using any
standard constructive search with a randomized heuristic and a bound on the number
of fails. In our experiments, the search from an empty solution uses the same search
techniques used to initialize elite solutions.

Searching from an Elite Solution To search from an elite solution, we create a search
tree using any variable ordering heuristic and specifying that the value assigned to a
variable is the one in the elite solution, provided it is still in the domain of the variable.
Otherwise, any other value ordering heuristic can be used to choose a value. Formally,
given a constraint satisfaction problem (CSP) with n variables, a solution, s, is a set
of variable assignments, {(V1 = z1), (V2 = z2),..., (Vi = zm)},m < n. When
m = n, the solution is complete, but possibly infeasible; when m < n, s is a partial
solution. A search tree is created by asserting a series of choice points of the form:
(Vi = x) V (V; # x) where V; is a variable and z the value that is assigned to V;.
The variable ordering heuristic has complete freedom to choose a variable, V;, to be
assigned. If (V; = z;) € s and x; € dom(V};), the choice point is made with © = x;.
Otherwise any value ordering heuristic can be used to choose = € dom(V;). The only
difference between starting search from an empty solution and from an elite solution is
that the latter uses the assignments of the elite solution as a value ordering heuristic.

Adapting SGMPCS for CSPs. To apply SGMPCS to constraint satisfaction problems,
it is necessary to define what an elite solution is and how one is evaluated. The elite so-
lutions are used as value ordering heuristics and the evaluation of a solution determines
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whether it will be used to guide subsequent search. Therefore, the evaluation of a po-
tential elite solution is a heuristic evaluation. Since the only purpose of an elite solution
is to provide value-ordering guidance, we want our evaluation function to choose elite
solutions likely to guide the search to a satisfying assignment We experiment with
three different heuristic evaluation functions as described in Sections 3.1l and [£.4l

We define elite solutions as dead-ends: either an assignment to a proper subset of
the variables that results in a domain wipe-out or a complete assignment for which one
or more constraints is broken. The solver may visit a complete assignment of variables
that is not a solution to the problem. Consider a situation where n — 2 variables have
been assigned in lexicographical order and v,,_; and v,, both have non-empty, non-
singleton domains. The assignment of v,,_; may trigger the reduction of the domain of
vy, to a singleton, followed by its immediate assignment, while there are still constraints
in the propagation queue. If one of these other constraints is not satisfied by the now-
complete assignment, we have a complete assignment that fails to satisfy all constraints.
The rating of a dead-end is done, as noted above, with a heuristic evaluation function.

We identify the dead-ends that are candidates for the elite set by modifying the be-
havior of the solver to keep track of the highest rated dead-end found during a single
search (i.e., during the calls at lines 3 and [T of Algorithm[I]). At the end of a single
search that has not found a satisfying solution, the best dead-end is returned and is
considered for insertion into the elite set.

An alternative approach is to adopt a soft constraint framework where each potential
elite solution is a complete assignment that breaks one or more constraints and the
evaluation is an aggregation of the cost of the broken constraints. This is an interesting
area for future work, but we do not consider it here for a number of reasons.

— We are motivated by simplicity and the desire to modify the behavior of standard
(crisp) constraint solvers as little as possible.

— A soft constraint approach cannot fully exploit the strong constraint propagation
techniques that are one of the core reasons for the success of CP.

— It is unclear a priori which cost models for various global constraints [4I19] is
appropriate for the purposes of providing a heuristic evaluation.

We return to the question of a soft constraint model in Section[3

2.2 Descriptive Models of Algorithm Behavior

A descriptive model of algorithm behavior is a tool used to understand why an algo-
rithm performs as it does on a particular class or instance of a problem. There has been
considerable work over the past 15 years in developing models of problem hardness
[7/18] as well as work that has focused more directly on modeling the behavior of
specific algorithms or algorithm styles. The work on heavy-tailed phenomenon [8I13]]
models the dynamic behavior of constructive search algorithms while local search has
been addressed in a number of models—see [[11] for a detailed overview.

! This is true for optimization contexts as well. However, the existence of a cost function ob-
scures the fact that guiding the search with sub-optimal solutions is only helpful for finding
the optimal solution if such guidance is likely to lead the search to lower cost solutions.
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In this paper, we develop a static cost model with the goal of correlating problem
instance features to algorithm performance. Our primary interest is to understand why
SGMPCS outperforms or, as we will see below, fails to outperform, other construc-
tive search techniques. The approach we adopt is fitness-distance analysis [11]], an a
posteriori approach traditionally applied to local search algorithms. Local search algo-
rithms move through the search space based on an evaluation of the quality of (subopti-
mal) “solutions” in the neighborhood of the current solution. Neighboring solutions are
evaluated and, typically, the lowest cost solution is selected to be the next solution. In
fitness-distance analysis, the quality of a solution (i.e., its fitness) is compared against its
distance to the nearest optimal solution. Distance is measured as the minimum number
of steps it would take to move from the solution in question to the nearest optimal solu-
tion. In problem instances where the search space and neighborhood function induce a
high fitness-distance correlation (FDC), the standard behavior of moving to a solution
with higher fitness will also tend to move the search closer to an optimal solution.

Standard constructive search techniques such as chronological backtracking, limited
discrepancy search, and randomized restart do not exploit the fitness of sub-optimal
solutions that are found during search. Even when there is a notion of sub-optimal
solution, as in optimization problems, these techniques do not attempt to search in the
“neighborhood” of high quality solutions. There are, however, some algorithms that are
based on constructive search such as ant colony optimization [3] and adaptive probing
that have been shown to be sensitive to FDC on optimization problems [J3].

We test the hypothesis that SGMPCS is sensitive to fitness-distance correlation and
that, therefore, its search performance can be partially understood by the FDC of a
problem instance. Note that the FDC is a function of both the heuristic used to evaluate
states and a measure of distance in the search space.

2.3 The Multi-dimensional Knapsack Problem

Given n objects and a knapsack with m dimensions such that each dimension has ca-

pacity, ci1, ..., Cn, a multi-dimensional knapsack problem requires the selection of a
subset of the n objects such that the profit, P = Y " | x;p;, is maximized and the m di-
mension constraints, Zzl:l x;ri; < ¢j for j = 1,...,m, are respected. Each object, ¢,

has a individual profit, p;, a size for each dimension, 7;;, and a binary decision variable,
x;, specifying whether the object is included in the knapsack (z; = 1) or not (x; = 0).

There has been significant work on such problems in the operations research and
artificial intelligence literature [14l6]. Our purpose is not to compete with these ap-
proaches but to develop an understanding of the behavior of SGMPCS. We selected the
multi-dimensional knapsack problem because previous work has indicated that SGM-
PCS performs particularly poorly on such problems and we want to understand why

.

Because we are solving a constraint satisfaction problem, we adopt the approach of
[16] and pose the problem as a satisfaction problem by constraining P to be equal to
the known optimal value, P*. In addition to the constraints defined above, we therefore
add P = P*.
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3 Initial Experiment

In this section, we present the details and results of our initial experiments.

3.1 Experimental Details

We compare three search techniques: chronological backtracking (chron), randomized
restart (restart) [8], and SGMPCS. In all algorithms, the variable ordering is random.
The value ordering for each algorithm, when not being guided by an elite solution, is
also random. Any restart-based technique needs some randomization. The use of purely
random variable and value ordering serves to simplify the experimental set-up.

Restart follows the same fail sequence as SGMPCS (see below) and initializes and
maintains a set of elite solutions. However, it always searches from an empty solution
(i.e., it is equivalent of SGMPCS with p = 1). Therefore, it has a small run time over-
head to maintain the elite set as compared with standard randomized restart.

All algorithms were implemented in ILOG Solver 6.3 and run on a 2GHz Dual Core
AMD Opteron 270 with 2GB RAM running Red Hat Enterprise Linux 4.

Parameter Values for SGMPCS Previous work has examined the impact of different
parameter settings [2/1]]. Here, we are interested in SGMPCS performance in general,
and, therefore, adopt the following parameters for all experiments.

Probability of searching from an empty solution: p = 0.5.

Elite set size: |e| = 8.

— Backtrack method: chronological. For a single search, we have a choice as to how
the tree search should be performed at lines[3 and [I0}

— Fail sequence: Luby [15]]. The fail sequence sets the number of fails allowed for
each tree search. The Luby sequence corresponds to the optimal sequence when
there is no knowledge about the solution distribution: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,
.... Following [[12], we multiply each limit by a constant, in our case 32.

— Number of initial solutions: 20. At line[I} we generate 20 partial solutions and then
choose the |e] best to form the initial elite set.

— Initialization fail bound: 1. The effort spent in finding a good initial solution is

controlled by the fail bound on the search for each initial solution. We simply stop

at the first dead-end found.

These parameters were chosen based on previous work and some preliminary exper-
iments that showed little performance variation for SGMPCS for different settings on
multi-dimensional knapsack problems [10].

Problem Instances Two sets of six problems from the operations research libraryH are
used. The instances range from 15 to 50 variables and 2 to 30 dimensions.

For each problem instance, results are averaged over 1000 independent runs with
different random seeds and a limit of 10,000,000 fails per run. For each run of each
problem instance, we search for a satisfying solution.

2 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html



118 I. Heckman and J.C. Beck

Heuristic Evaluation for SGMPCS Following the idea of trying simple approaches
before more complex ones, our initial heuristic evaluation is the number of unassigned
variables. Recall that our elite solution candidates are dead-ends (Section 2) that either
have one or more variables with an empty domain or break a constraint. When the
solver encounters a dead-end, we simply count the number of unassigned variables and
use that as the heuristic evaluation: the fewer unassigned variables, the better the dead-
end. We make no attempt at a dead-end to assign any of the unassigned variables that
have non-empty domains. We refer to this heuristic evaluation as H;. This heuristic has
shown strong performance on quasigroup-with-holes completion problems [[]].

3.2 Results

Table [ compares the performance of chronological backtracking, randomized restart,
and SGMPCS as defined above. Both SGMPCS and randomized restart perform poorly
when compared to chronological backtracking. There does not seem to be a large dif-
ference between the performance of SGMPCS and randomized restart.

Table 1. Comparison of multi-dimensional knapsack results for chronological backtracking
(chrom), randomized restart (restart) and SGMPCS using the H; heuristic evaluation function

chron restart SGMPCS-H,
00l fails time %sol fails time %sol fails time
mknapl-0 100 1 00 100 2 0.0 100 3 00
mknapl-2 100 26 0.0 100 42 0.0 100 41 0.0

mknap1-3 100 523 0.0 100 1062 0.0 100 924 0.0
mknapl-4 100 15123 0.4 100 54635 1.5 100 44260 1.2
mknapl-5 100 3271555 67.2 54.5 6885489 167.2 70.8 5573573 137.0
mknapl-6 0.2 9990291 279.9 0.0 10000000 337.2 0.8 9958245 340.9
mknap2-PB1 100 15223 03 100 42651 0.8 100 28770 0.6
mknap2-PB2 100 3088092 54.1 80.3 4970049 102.0 88.1 3741187 77.8
mknap2-PB4 100 10167 0.1 100 38474 0.5 100 28406 0.4
mknap2-PB5 100 7011 0.1 100 16178 0.4 100 15077 0.3
mknap2-PB6 100 16050 1.9 100 28964 3.8 100 25954 3.4
mknap2-PB7 100 1472499 138.7 76.0 5374900 551.4 85.9 4113704 423.6

Previous results showed SGMPCS out-performing randomized restart and chrono-
logical backtracking on optimization problems [2]] and quasigroup-with-holes con-
straint satisfaction problems [[I.

4 Building a Descriptive Model

Beck speculates that three, non-mutually exclusive, factors may have an impact on
the performance of SGMPCS: the exploitation of heavy-tails, the impact of revisiting
elite solutions, and the use of multiple elite solutions to diversify the search. Here we
focus on developing a descriptive model based on the second factor. The intuition be-
hind this factor is that each time a good solution is revisited with a different variable
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ordering, a different set of potential solutions (i.e., a different “neighborhood”) will be
visited upon backtracking. If good solutions tend to be near other good solutions in the
search space, revisiting a solution is likely to result in finding another good solution.

In this section, we develop a descriptive model of SGMPCS performance based on
the fitness-distance correlation. We first define the measure of distance used and then
present a deeper analysis of the SGMPCS results in the above table. We then build on
the methodology of Beck & Watson [3]], to create an artificial heuristic evaluation func-
tion that allows us to completely control the fitness-distance correlation of the problem
instances. Experiments with this artificial heuristic demonstrate a strong interaction be-
tween FDC and search performance. Finally, we develop two new heuristic evaluation
functions and examine their performance.

4.1 A Measure of Distance

A complete solution to a multi-dimensional knapsack problem can be represented by
a binary vector (x1, ..., x,) of the decision variables. The representation lends itself
to using the Hamming distance as a measure of the distance between two (complete)
assignments. This is the standard definition in fitness-distance analysis

Our elite solutions are dead-ends and so may not be complete assignments. There-
fore, we must adapt the Hamming distance to account for unassigned variables. A given
dead-end with m assigned variables, m < n, represents a set of 2"~" points in the
search space with varying distances from the nearest satisfying solution. If we assume a
single satisfying solution to a problem instance (see below), then the distribution of dis-
tances for the sub-vector of unassigned variables follows a binomial distribution with a
minimum sub-distance of 0 and maximum sub-distance of n —m. The mean of this dis-
tribution is "7, We therefore calculate the distance from a dead-end to the satisfying
solution as the mean distance of the points represented by the dead-end: the Hamming
distance for the assigned variables plus one-half the number of unassigned variables.
More formally, for a given elite solution candidate S = (z1, ..., Z,,) and a satisfying
solution S* = (x7, ..., 2% ), m < n, the distance is calculated as follows:

D(S.8) = > |wi—ail+" )" (1)
1<i<m
The normalized distance is ND(S, §*) = P57

n

4.2 Analysis of the Initial Experiments

Traces of SGMPCS-H; runs show that early in the search all the elite solutions have
a heuristic evaluation of 0: all the variables are assigned but the solution does not sat-
isfy all constraints. The uniformity of the heuristic evaluation suggests that our simple
heuristic evaluation is too coarse to provide useful guidance.

3 SGMPCS does not move in the search space with the freedom of local search as it is con-
strained by a search tree. A different definition of distance that takes into account the search
tree may be more appropriate. We leave the investigation of such a distance function for future
work.
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Fig. 1. Plots of the heuristic evaluation (fitness) of each elite solution vs. its normalized distance
from the unique satisfying solution for two of the multi-dimensional knapsack problem instances:
Left: mknap1-5; Right: mknap2-PB7. A small noise component is added to the fitness and dis-
tance for purposes of visibility in the plot—this noise is not present in the data.

To quantify this observation, we calculate the heuristic evaluation and distance of
each elite solution encountered during the search. In order to do this, we must first find
all satisfying solution to each instance. We did this using a small modification to the
chronological backtracking algorithm. Each instance has a single satisfying solution,
justifying our definition of D above.

Figure[Dlpresents plots of the distance vs. the fitness for two of the problem instances.
The plots for the other problem instances are almost identical. It is clear, that the heuris-
tic evaluation provides almost no real heuristic information. These data were gathered
by instrumenting the SGMPCS solver to record the fitness and distance from the known
satisfying solution of each new entry to the elite set.

4.3 Manipulating the Fitness-Distance Correlation

Figure [Tl is consistent with our conjecture that fitness-distance correlation may have
a role in a descriptive model of SGMPCS performance. It provides, however, rather
weak support: the absence of an FDC accompanies poor performance. A stronger test
of the conjecture is to directly manipulate the FDC and observe the performance of
SGMPCS. To do this, we adopt the technique introduced in [3] to artificially set the
heuristic evaluation based on knowledge of the distance to the satisfying solution.

Let D(S, S*) be defined as in Equation (I). We define the heuristic evaluation of the
satisfying solution, S*, to be h(S*) = 0. We set the heuristic evaluation, hppc4(.5),
of an elite solution S under perfect FDC equal to D(.S,S*). Similarly, we set the
heuristic evaluation hrppc—(S) of an elite solution with perfect negative FDC to be
(n — D(S, S*)). To generate instances with intermediate FDC, we interpolate between
these two extremes as follows:

0if § = 5
h(S) = { [a x hppei(S)+ (1 —a) x RAND(S)|if S# S*AB=0 (2
[a x hppo—(S)+ (1 —a) x RAND(S)]if S # S* A B =1
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where a € [0,1], 8 € {0,1}, and RAND(S) € [0,n]; the latter value is uniformly
generated from the interval, using the bit vector S as the random seed. The random
component is added to achieve more realism in our model, while still manipulating
the FDC. Clearly, when a = 0, the heuristic evaluation is purely random. While «
determines the strength of the FDC, 3 is a two-valued parameter governing its direction:
(= 0and 8 = 1 induce positive and negative FDC, respectively.

The only difference with our initial experiments is that the heuristic evaluation is
changed to Equation ). For a single instance and each pair of values for o and (3,
we solve the instance 1000 times with different random seeds. Following Watson
we compare FDC against the log of search cost, in our case, the log of the number of
dead-ends to find a satisfying solution. Since our problems are of various sizes, the log
of the mean number of fails of instance p with a« = a, 5 = b, prayb, is normalized with
the log of the search cost of chron on the same problem (C),) as follows:

log( 7p,a,b) —log(Cp)
lOQ(Cp)

For each problem and setting of « and (3, FDC values are measured by collecting
every unique elite solution over the 1000 iterations and taking the correlation between
the evaluation function for each entry and its distance to the one known satisfying so-
lution as defined in Equation [Il Even though we are artificially defining the heuristic
based on knowledge of the optimal solution, we are sampling the FDC as we would in
a non-artificial setting.

Figure [2| shows that the manipulation of the FDC has a significant impact on the
search performance of SGMPCS. The graph does not contain results for mknap1-0 and
mknap1-2. As shown in Table[I] these are easily solved during the initialization phase
of SGMPCS and so display no correlation with FDC. There is considerable noise for
high negative values of FDC due to the fact that SGMPCS could not find a solution on
a number of problem instances with high negative FDC, within the fail limit.

Npap =

4.4 Toward Better Heuristic Evaluations

Figures [I] and 2] show that one possible explanation for the poor performance of SG-
MPCS-H, is the low fitness-distance correlation. The results of the experiment that
manipulated the FDC demonstrated that the performance of SGMPCS is sensitive to
the FDC, at least in an artificial setting. In this section, we develop two new heuristic
evaluation functions. Our primary goal is to demonstrate that in a less artificial set-
ting the FDC induced by the heuristic evaluation function has an impact on the search
performance of SGMPCS.

The intuition behind both of the new heuristic evaluation functions is to include
additional knowledge about the quality of the solution. In particular, we wish to create
a finer heuristic evaluation that is able to better distinguish among the elite solutions
(i.e., we would like fewer of the elite solutions to have a heuristic evaluation of zero
than with the H; function). Our main goal in proposing these heuristics is to evaluate
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Fig. 2. A scatter-plot of the measured fitness-distance correlation versus the normalized log of
search cost for the artificial heuristic evaluation in Equation (). The low positive values of search
cost for high negative FDC stem from problem instances (and settings of « and ) for which
SGMPCS could not find a solution. The graph does not contain the results for problem instances
mknap1-0 and mknap1-2 as they are trivially solved.

the relationship between FDC and search performance. We expect that these heuristics
will have a different FDC and wish to test if this leads to a difference in performanceE

Hs. Recall (Section 23) that our CSP model of the multi-dimensional knapsack as-
sumed that the value of the most profitable knapsack, P*, is known. This knowledge
is used in the constraint, P = P*, but not otherwise exploited above. Here, we define
Hy; = |P*— P|.

H3. Some preliminary experiments showed that even with H», the elite pool often
stagnated on a set of elite solutions with a zero heuristic evaluation that break one
or more constraints. Therefore, in order to further refine the heuristic evaluation, we
choose to use the number of broken constraints as a tie-breaker: Hs = Hs + |V/| where
|V| is the number of constraints violated by the (partial) assignment.

It should be noted that the only difference among the Hy, H», and H3 models is the
heuristic evaluation function. In particular, the constraint model is identical in for all
three heuristics. We now solve each of the problem instances 1000 times (with different
random seeds) with each heuristic evaluation function. The other experimental details
are the same as in Section[£.3]

* It does not seem likely that either of these heuristics will be useful, in general, for solving
multi-dimensional knapsack problems because both make use of knowledge of the value of
the most profitable knapsack.
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Fig. 3. A scatter-plot of the measured fitness-distance correlation versus the normalized log of
search cost for three heuristic evaluation functions: H1, Ho, H3. The graph does not contain the
results for problem instances mknap1-0 and mknap1-2 as they are trivially solved.

Results. Figure 3] displays the scatter plot of the normalized search performance ver-
sus FDC for all of our heuristic evaluation functions together with the minimum mean
squared error line. As above, we do not include mknap1-0 and mknap1-2. Although
limited by our small number of instances, the plot shows a trend of better search cost
with higher FDC values. The 72 value is 0.438 (r = —0.662).

Table 2l displays the performance of each SGMPCS variation. For completeness we
repeat the results for chronological backtracking and SGMPCS-H; from Table[Il While
not clearly superior, SGMPCS-Hj3 is competitive with chron overall. For the harder
instances (i.e., mknapl-5, mknap2-PB2, mknap2-PB6,and mknap2-PB7 where chron
has a high number of fails) SGMPCS-Hs3 is 1.5 to 8 times better than chron in terms of
the number of fails.

Table 2. Comparison of multi-dimensional knapsack results for chronological backtracking
(chron), and SGMPCS using the three heuristic evaluation functions H1, Ha, H3

chron SGMPCS-H, SGMPCS-H> SGMPCS-H3

9osol fails time %sol fails time %sol fails time %sol fails time

mknapl-4 100 15123 0.4 100 44260 1.2 100 29895 09 100 11349 0.5
mknapl-5 100 3271555 67.2 71 5573573 137.0 77 4839688 126.2 98 1824457 71.6
mknap2-PB1 100 15223 0.3 100 28770 0.6 100 28405 0.6 100 23445 0.7
mknap2-PB2 100 3088092 54.1 88 3741187 77.8 923191853 71.2 98 1933160 60.9
mknap2-PB4 100 10167 0.1 100 28406 0.4 100 24112 0.4 100 24370 0.5
mknap2-PB5 100 7011 0.1 100 15077 0.3 100 13747 0.3 100 11650 0.4
mknap2-PB6 100 16050 1.9 100 25954 34 100 26082 3.4 100 8554 1.8
mknap2-PB7 100 1472499 138.7 86 4113704 423.6 86 4287571 447.7 100 184443 32.8
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5 Discussion

In this paper, we addressed the question of developing an understanding of the per-
formance of SGMPCS on constraint satisfaction problems. We demonstrated that the
correlation between the heuristic evaluation of an elite solution and its distance to the
satisfying solution, is, itself, correlated with the search performance. Standard construc-
tive search approaches such as chronological backtracking, randomized restart, and lim-
ited discrepancy search make no explicit use of such heuristic information.

There are a number of limitations to the study in this paper. First, it is a case study of
12 problem instances of one type of problem. While we believe these results are likely
to be observed for other problems instances and types, a larger study is needed. Sec-
ond, the poor performance of randomized restart on the multi-dimensional knapsack
problems suggests that they do not exhibit heavy-tails. As a restart-based algorithm,
SGMPCS does exploit heavy-tails in the same way as randomized restart [9]. There-
fore, a full descriptive model of SGMPCS must address the impact of heavy-tailed
distributions. In fact, one of the reasons that the multi-dimensional knapsack problem
was chosen for this case study was precisely because we did not have to address the
impact of heavy-tailed distributions. Third, multi-dimensional knapsack problems are
strange CSPs since the underlying problem is an optimization problem and we exploit
this in formulating the new heuristic evaluation functions in Section {4l Our origi-
nal motivation for choosing to apply SGMPCS to a CSP version of multi-dimensional
knapsack was simply because Refalo [16] did so and showed poor performance for ran-
domized restart. Given the relationship between randomized restart and SGMPCS, this
appeared to be a fertile choice. There remains some uncertainty regarding the applica-
tion of the FDC-based descriptive model of SGMPCS performance on more “natural”
CSPs. Nonetheless, our model makes clear, testable hypotheses that can be evaluated
in future work. Finally, as a descriptive model, the work in this paper does not, on its
own, produce a clear benefit for constraint solvers. We have not demonstrated any im-
provement on the state-of-the-art for any problem classes. That was not our aim in this
paper. What we have done is provided a deeper understanding of the performance of
SGMPCS and a potential new source of search guidance for CP search.

It was noted in Section 2.1] that an alternative way to apply SGMPCS to constraint
satisfaction problems is to adopt a soft constraint framework. The work in this paper
makes the prediction that the success of such an approach depends, at least partially,
on achieving a high correlation between the “cost” of a solution that breaks some con-
straints and the distance of that solution from a satisfying (or optimal in the case of
MAX-CSP) solution. Such work is an important test of the generality of the results
presented here.

Another approach to the incorporation of soft constraints is to define the heuristic
evaluation function to be based on a soft constraint model while the primary search is
done within a crisp constraint model as above. That is, when the constructive search
finds a potential elite solution, the evaluation of that solution could be done using a
soft constraint model. The assignments of the elite solution could be extended to find
a complete assignment that minimizes the cost of the broken constraints. That cost is
then used as the heuristic evaluation of the corresponding elite solution. The results
above suggest that the success of such an approach will be at least partially dependent
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upon the correlation between the heuristic provided by the soft constraint model and
the distance to the nearest satisfying solution.

6 Conclusion

In this paper, the first steps were taken in understanding the search behaviour of
Solution-Guided Multi-Point Constructive Search (SGMPCS). Using a constraint sat-
isfaction model of the multi-dimensional knapsack problem, a descriptive model of
SGMPCS search behaviour was developed using fitness-distance analysis, a technique
common in the metaheuristic literature [11]]. Empirical results, both in an artificial con-
text and using three different heuristic evaluation functions, demonstrated that the cor-
relation between the heuristic evaluation of a state and its proximity to the satisfying
solution has a strong impact on search performance of SGMPCS. This (partial) descrip-
tive model is important for three main reasons:

1. It makes testable predictions about the behaviour of SGMPCS on other constraint
satisfaction and optimization problems.

2. It provides a clear direction for improving SGMPCS search performance: the
creation of, perhaps domain-dependent, heuristic evaluation functions for partial
search states that are well-correlated with the distance to the nearest solution.

3. It re-introduces a heuristic search guidance concept to the constraint programming
literature. Though guidance by heuristic evaluation of search states is common in
metaheuristics, general Al search (e.g., A* and game playing), and best-first search
approaches, it does not appear to have been exploited in constructive, CP search.
We believe this is an important direction for further investigation.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research
Council of Canada, the Canadian Foundation for Innovation, the Ontario Research
Fund, Microway, Inc., and ILOG, S.A..

References

1. Beck, J.C.: Multi-point constructive search. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
pp. 737-741. Springer, Heidelberg (2005)

2. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling. Journal
of Artificial Intelligence Research 29, 49-77 (2007)

3. Beck, J.C., Watson, J.-P.: Adaptive search algorithms and fitness-distance correlation. In:
Proceedings of the Fifth Metaheuristics International Conference (2003)

4. Beldiceanu, N., Petit, T.: Cost evaluation of soft global constraints. In: Régin, J.-C., Rueher,
M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 80-95. Springer, Heidelberg (2004)

5. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Arti-
ficial Life 5(2), 137-172 (1999)

6. Fekete, S.P., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-dimensional
orthogonal packing. Operations Research 55(3), 569-587 (2007)



126

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

I. Heckman and J.C. Beck

Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), vol. 1,
pp. 246-252 (1996)

Gomes, C.P., Ferndndez, C., Selman, B., Bessiere, C.: Statistical regimes across constrained-
ness regions. Constraints 10(4), 317-337 (2005)

Heckman, I.: Empirical Analysis of Solution Guided Multi-Point Constructive Search. PhD
thesis, Department of Mechanical & Industrial Engineering, University of Toronto (2007)
Heckman, 1., Beck, J.C.: An empirical study of multi-point constructive search for constraint
satisfaction. In: Proceedings of the Third International Workshop on Local Search Tech-
niques in Constraint Satisfaction (2006)

Hoos, H.H., Stiizle, T.: Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann, San Francisco (2005)

Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IICAI 2007), pp. 2318—
2323 (2007)

Hulubei, T., O’Sullivan, B.: The impact of search heuristics on heavy-tailed behaviour. Con-
straints 11(2-3), 159-178 (2006)

Korf, R.: Optimal rectangle packing: New results. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS 2004), pp. 142-149 (2004)

Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Informa-
tion Processing Letters 47, 173-180 (1993)

Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 557-571. Springer, Heidelberg (2004)

Ruml, W.: Adaptive tree search. PhD thesis, Dept. of Computer Science, Harvard University
(2002)

Smith, B.M., Dyer, M.E.: Locating the phase transition in constraint satisfaction problems.
Artificial Intelligence 81, 155-181 (1996)

van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On global warming: Flow-based soft global
constraints. Journal of Heuristics 12(4-5), 347-373 (2006)

Watson, J.-P.: Empirical Modeling and Analysis of Local Search Algorithms for the Job-
Shop Scheduling Problem. PhD thesis, Dept. of Computer Science, Colorado State Univer-
sity (2003)



Leveraging Belief Propagation, Backtrack
Search, and Statistics for Model Counting*

Lukas Kroc, Ashish Sabharwal, and Bart Selman

Department of Computer Science
Cornell University, Ithaca NY 14853-7501, U.S.A.
{kroc,sabhar,selman}@cs.cornell.edu

Abstract. We consider the problem of estimating the model count
(number of solutions) of Boolean formulas, and present two techniques
that compute estimates of these counts, as well as either lower or upper
bounds with different trade-offs between efficiency, bound quality, and
correctness guarantee. For lower bounds, we use a recent framework for
probabilistic correctness guarantees, and exploit message passing tech-
niques for marginal probability estimation, namely, variations of Belief
Propagation (BP). Our results suggest that BP provides useful informa-
tion even on structured loopy formulas. For upper bounds, we perform
multiple runs of the MiniSat SAT solver with a minor modification, and
obtain statistical bounds on the model count based on the observation
that the distribution of a certain quantity of interest is often very close
to the normal distribution. Our experiments demonstrate that our model
counters based on these two ideas, BPCount and MiniCount, can provide
very good bounds in time significantly less than alternative approaches.

1 Introduction

The model counting problem for Boolean satisfiability or SAT is the problem of
computing the number of solutions or satisfying assignments for a given Boolean
formula. Often written as #SAT, this problem is #P-complete ] and is widely
believed to be significantly harder than the NP-complete SAT problem, which
seeks an answer to whether or not the formula in satisfiable. With the amazing
advances in the effectiveness of SAT solvers since the early 90’s, these solvers
have come to be commonly used in combinatorial application areas like hardware
and software verification, planning, and design automation. Efficient algorithms
for #SAT will further open the doors to a whole new range of applications, most
notably those involving probabilistic inference @, @, , @, , }

A number of different techniques for model counting have been proposed over
the last few years. For example, Relsat E] extends systematic SAT solvers for
model counting and uses component analysis for efficiency, Cachet [@] adds
caching schemes to this approach, c2d B] converts formulas to the d-DNNF form

* Research supported by IISI, Cornell University (AFOSR grant FA9550-04-1-0151),
DARPA (REAL Grant FA8750-04-2-0216), and NSF (Grant 0514429).
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which yields the model count as a by-product, ApproxCount } and SampleCount
MQ] exploit sampling techniques for estimating the count, MBound @] relies on the
properties of random parity or XOR constraints to produce estimates with correct-
ness guarantees, and the recently introduced SampleMinisat ﬂg] uses sampling of
the backtrack-free search space of systematic SAT solvers. While all of these ap-
proaches have their own advantages and strengths, there is still much room for
improvement in the overall scalability and effectiveness of model counters.

We propose two new techniques for model counting that leverage the strength
of message passing and systematic algorithms for SAT. The first of these yields
probabilistic lower bounds on the model count, and for the second we introduce
a statistical framework for obtaining upper bounds.

The first method, which we call BPCount, builds upon a successful approach for
model counting using local search, called ApproxCount. The idea is to efficiently
obtain a rough estimate of the “marginals” of each variable: what fraction of
solutions have variable z set to TRUE and what fraction have = set to FALSE?
If this information is computed accurately enough, it is sufficient to recursively
count the number of solutions of only one of F|, and F|_,, and scale the count
up appropriately. This technique is extended in SampleCount, which adds ran-
domization to this process and provides lower bounds on the model count with
high probability correctness guarantees. For both ApproxCount and SampleCount,
true variable marginals are estimated by obtaining several solution samples using
local search techniques such as SampleSat [@] and computing marginals from the
samples. In many cases, however, obtaining many near-uniform solution samples
can be costly, and one naturally asks whether there are more efficient ways of
estimating variable marginals.

Interestingly, the problem of computing variable marginals can be formulated
as a key question in Bayesian inference, and the Belief Propagation or BP al-
gorithm ], at least in principle, provides us with exactly the tool we need.
The BP method for SAT involves representing the problem as a factor graph
and passing “messages” back-and-forth between variable and factor nodes until
a fixed point is reached. This process is cast as a set of mutually recursive equa-
tions which are solved iteratively. From the fixed point, one can easily compute,
in particular, variable marginals.

While this sounds encouraging, there are two immediate challenges in ap-
plying the BP framework to model counting: (1) quite often the iterative pro-
cess for solving the BP equations does not converge to a fixed point, and (2)
while BP provably computes exact variable marginals on formulas whose con-
straint graph has a tree-like structure (formally defined later), its marginals
can sometimes be substantially off on formulas with a richer interaction struc-
ture. To address the first issue, we use a “message damping” form of BP which
has better convergence properties (inspired by a damped version of BP due to
HE]) For the second issue, we add “safety checks” to prevent the algorithm
from running into a contradiction by accidentally eliminating all assignmentsﬂ

L A tangential approach for handling such fatal mistakes is incorporating BP as a
heuristic within backtrack search, which our results suggest has clear potential.
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Somewhat surprisingly, avoiding these rare but fatal mistakes turns out to be
sufficient for obtaining very close estimates and lower bounds for solution counts,
suggesting that BP does provide useful information even on highly structured
loopy formulas. To exploit this information even further, we extend the frame-
work borrowed from SampleCount with the use of biased coins during randomized
value selection.

The model count can, in fact, also be estimated directly from just one fixed
point run of the BP equations, by computing the value of so-called partition
function M] In particular, this approach computes the exact model count on
tree-like formulas, and appeared to work fairly well on random formulas. How-
ever, the count estimated this way is often highly inaccurate on structured loopy
formulas. BPCount, as we will see, makes a much more robust use of the informa-
tion provided by BP.

The second method, which we call MiniCount, exploits the power of mod-
ern DPLL ﬂa, ] based SAT solvers, which are extremely good at finding sin-
gle solutions to Boolean formulas through backtrack searchd The problem of
computing upper bounds on the model count has so far eluded solution be-
cause of an asymmetry which manifests itself in at least two inter-related forms:
the set of solutions of interesting N variable formulas typically forms a mi-
nuscule fraction of the full space of 2%V variable assignments, and the applica-
tion of Markov’s inequality as in SampleCount does not yield interesting upper
bounds. Note that systematic model counters like Relsat and Cachet can also
be easily extended to provide an upper bound when they time out (2 minus
the number of non-solutions encountered), but these bounds are uninteresting
because of the above asymmetry. To address this issue, we develop a statis-
tical framework which lets us compute upper bounds under certain statistical
assumptions, which are independently validated. To the best of our knowledge,
this is the first effective and scalable method for obtaining good upper bo-
unds on the model counts of formulas that are beyond the reach of exact model
counters.

More specifically, we describe how the DPLL-based solver MiniSat ﬂ}, with
two minor modifications, can be used to estimate the total number of solutions.
The number d of branching decisions (not counting unit propagations and failed
branches) made by MiniSat before reaching a solution, is the main quantity
of interest: when the choice between setting a variable to TRUE or to FALSE
is randomizedE the number d is provably not any lower, in expectation, than
log,(model count). This provides a strategy for obtaining upper bounds on the
model count, only if one could efficiently estimate the expected value, E [d], of
the number of such branching decisions. A natural way to estimate E[d] is to
perform multiple runs of the randomized solver, and compute the average of d
over these runs. However, if the formula has many “easy” solutions (found with
a low value of d) and many “hard” solutions, the limited number of runs one can
perform in a reasonable amount of time may be insufficient to hit many of the

2 ﬂE] have recently independently proposed the use of DPLL solvers for model counting.
3 MiniSat by default always sets variables to FALSE.
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“hard” solutions, yielding too low of an estimate for E [d] and thus an incorrect
upper bound on the model count.

Interestingly, we show that for many families of formulas, d has a distribution
that is very close to the normal distribution. Under the assumption that d is
normally distributed, when sampling various values of d through multiple runs
of the solver, we need not necessarily encounter high values of d in order to
correctly estimate E [d] for an upper bound. Instead, we can rely on statistical
tests and conservative computations @, ] to obtain a statistical upper bound
on E [d] within any specified confidence interval.

We evaluated our two approaches on challenging formulas from several do-
mains. Our experiments with BPCount demonstrate a clear gain in efficiency,
while providing much higher lower bound counts than exact counters (which of-
ten run out of time or memory) and competitive lower bound quality compared
to SampleCount. For example, the runtime on several difficult instances from the
FPGA routing family with over 10'%° solutions is reduced from hours for both
exact counters and SampleCount to just a few minutes with BPCount. Similarly, for
random 3CNF instances with around 102° solutions, we see a reduction in com-
putation time from hours and minutes to seconds. With MiniCount, we are able
to provide good upper bounds on the solution counts, often within seconds and
fairly close to the true counts (if known) or lower bounds. These experimental
results attest to the effectiveness of the two proposed approaches in significantly
extending the reach of solution counters for hard combinatorial problems.

2 Notation

A Boolean variable z; is one that assumes a value of either 1 or 0 (TRUE or
FALSE, respectively). A truth assignment for a set of Boolean variables is a map
that assigns each variable a value. A Boolean formula F' over a set of n such
variables is a logical expression over these variables, which represents a function
f:{0,1}" — {0,1} determined by whether or not F evaluates to TRUE under
a truth assignment for the n variables. A special class of such formulas consists
of those in the Conjunctive Normal Form or CNF: F' = (I37 V... Vi ) A A
(lm1 V... Vlnk,, ), where each literal {j; is one of the variables x; or its negation
—x;. Each conjunct of such a formula is called a clause. We will be working with
CNF formulas throughout this paper.

The constraint graph of a CNF formula F' has variables of F' as vertices
and an edge between two vertices if both of the corresponding variables appear
together in some clause of F'. When this constraint graph has no cycles (i.e., it
is a collection of disjoint trees), F' is called a tree-like or poly-tree formula.

The problem of finding a truth assignment for which F' evaluates to TRUE is
known as the propositional satisfiability problem, or SAT, and is the canonical
NP-complete problem. Such an assignment is called a satisfying assignment or a
solution for F'. In this paper we are concerned with the problem of counting the
number of satisfying assignments for a given formula, known as the propositional
model counting problem. This problem is #P-complete ﬂ2_1|]
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3 Lower Bounds Using BP Marginal Estimates

In this section, we develop a method for obtaining a lower bound on the solu-
tion count of a given formula, using the framework recently used in the SAT
model counter SampleCount E] The key difference between our approach and
SampleCount is that instead of relying on solution samples, we use a variant of
belief propagation to obtain estimates of the fraction of solutions in which a vari-
able appears positively. We call this algorithm BPCount. After describing the basic
method, we will discuss two techniques that improve the tightness of BPCount
bounds in practice, namely, biased variable assignments and safety checks.

3.1 Counting Using BP: BPCount

We begin by recapitulating the framework of SampleCount for obtaining lower
bound model counts with probabilistic correctness guarantees. A variable u will
be called balanced if it occurs equally often positively and negatively in all solu-
tions of the given formula. In general, the marginal probability of u being TRUE in
the set of satisfying assignments of a formula is the fraction of such assignments
where © = TRUE. Note that computing the marginals of each variable, and in
particular identifying balanced or near-balanced variables, is quite non-trivial.
The model counting approaches we describe attempt to estimate such marginals
using indirect techniques such as solution sampling or iterative message passing.
Given a formula F' and parameters ¢,z € Z*,a > 0, SampleCount performs ¢
iterations, keeping track of the minimum count obtained over these iterations. In
each iteration, it samples z solutions of (potentially simplified) F', identifies the
most balanced variable u, uniformly randomly sets u to TRUE or FALSE, simplifies
F' by performing any possible unit propagations, and repeats the process. The
repetition ends when F' is reduced to a size small enough to be feasible for exact
model counters like Cachet. At this point, let s denote the number of variables
randomly set in this iteration before handing the formula to Cachet, and let M’
be the model count of the residual formula returned by Cachet. The count for
this iteration is computed to be 257 x M’ (where a is a “slack” factor pertaining
to our probabilistic confidence in the bound). Here 2° can be seen as scaling up
the residual count by a factor of 2 for every uniform random decision we made
when fixing variables. After the ¢ iterations are over, the minimum of the counts
over all iterations is reported as the lower bound for the model count of F, and
the correctness confidence attached to this lower bound is 1 —27%¢. This means
that the reported count is a correct lower bound with probability 1 — 2%,
The performance of SampleCount is enhanced by also considering balanced
variable pairs (v,w), where the balance is measured as the difference in the
fractions of all solutions in which v and w appear with the same sign vs. with
different signs. When a pair is more balanced than any single literal, the pair
is used instead for simplifying the formula. In this case, we replace w with v
or —w uniformly at random. For ease of illustration, we will focus here only on
identifying and randomly setting balanced or near-balanced variables.
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The key observation in SampleCount is that when the formula is simplified by
repeatedly assigning a positive or negative polarity to variables, the expected
value of the count in each iteration, 2° x M’ (ignoring the slack factor ), is
exactly the true model count of F', from which lower bound guarantees follow.
We refer the reader to Gomes et al. E] for details. Informally, we can think of
what happens when the first such balanced variable, say u, is set uniformly at
random. Let p € [0, 1]. Suppose F' has M solutions, F'|,, has pM solutions, and
F|-, has (1 — p)M solutions. Of course, when setting u uniformly at random,
we don’t know the actual value of p. Nonetheless, with probability a half, we
will recursively count the search space with pM solutions and scale it up by a
factor of 2, giving a net count of pM.2. Similarly, with probability a half, we
will recursively get a net count of (1 — p)M.2 solutions. On average, this gives
Yo.pM.2 +1/5.(1 — p)M.2 = M solutions.

Interestingly, the correctness guarantee of this process holds irrespective of
how good or bad the samples are. However, when balanced variables are correctly
identified, we have p ~ Y in the informal analysis above, so that for both
coin flip outcomes we recursively search a space with roughly M /2 solutions.
This reduces the variance tremendously, which is crucial to making the process
effective in practice. Note that with high variance, the minimum count over ¢
iterations is likely to be much smaller than the true count; thus high variance
leads to poor quality lower bounds.

The idea of BPCount is to “plug-in” belief propagation methods in place of
solution sampling in the SampleCount framework, in order to estimate “p” in the
intuitive analysis above and, in particular, to help identify balanced variables.
As it turns out, a solution to the BP equations ﬂﬁ] provides exactly what we
need: an estimate of the marginals of each variable. This is an alternative to
using sampling for this purpose, and is often orders of magnitude faster. One
bottleneck, however, is that the basic belief propagation process is iterative and
does not even converge on most formulas of interest. We therefore use a “message
damping” variant of standard BP, very similar to the one introduced by ﬂﬁ] This
variant is parameterized by x € [0, 1], and has the property that as x decreases,
the dynamics of the equations go from standard BP (for k = 1) to a damped
variant with assured convergence (for k = 0). The equations are analogous to
standard BP for SAT (see e.g. ] Figure 4 with p = 0 for a full description),
differing only in the added k exponent in the iterative update equation as shown
in Figure [[I We use its output as an estimate of the marginals of the variables
in BPCount. Note that there are several variants of BP that assure convergence,
such as by M] and ﬂﬂ], we chose the “k” variant because of its good scaling
behavior.

Given this process of obtaining marginal estimates from BP, BPCount works
almost exactly like SampleCount and provides the same lower bound guarantees.
Using Biased Coins. We can improve the performance of BPCount (and also
of SampleCount) by using biased variable assignments. The idea here is that
when fixing variables repeatedly in each iteration, the values need not be chosen
uniformly. The correctness guarantees still hold even if we use a biased coin
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H <Hbecg(i)(1 - mw))

77a—>i = K I3

JEV (a)\i <Hbecg(i)(1 - 7717%)) + (Hbecg(z‘)(l - nbai))
Notation. V (a): all variables in clause a. Cy (i),7 € V(a): clauses where i appears

with the opposite sign than it has in a. C5(i),i € V(a): clauses where i appears
with the same sign as it has in a (except for a).

Fig. 1. BP(k) update equation

and set the chosen variable v to TRUE with probability ¢ and to FALSE with
probability 1 — ¢, for any ¢ € (0,1). Using earlier notation, this leads us to
a solution space of size pM with probability ¢ and to a solution space of size
(1 — p)M with probability 1 — g. Now, instead of scaling up with a factor of
2 in both cases, we scale up based on the bias of the coin used. Specifically,
with probability g, we go to one part of the solution space and scale it up by
1/q, and similarly for 1 — g. The net result is that in expectation, we still get
gpM/q+ (1 —q).(1 — p)M/(1 — q) = M solutions. Further, the variance is
minimized when ¢ is set to equal p; in BPCount, ¢ is set to equal the estimate of p
obtained using the BP equations. To see that the resulting variance is minimized
this way, note that with probability ¢, we get a net count of pM/q, and with
probability (1 — ¢), we get a net count of (1 — p)M/(1 — q); these balance out
to exactly M in either case when ¢ = p. Hence, when we have confidence in
the correctness of the estimates of variable marginals (i.e., p here), it provably
reduces variance to use a biased coin that matches the marginal estimates of the
variable to be fixed.

Safety Checks. One issue that arises when using BP techniques to estimate
marginals is that the estimates, in some case, may be far off from the true
marginals. In the worst case, a variable u identified by BP as the most balanced
may in fact be a backbone variable for F, i.e., may only occur, say, positively in
all solutions to F. Setting u to FALSE based on the outcome of the corresponding
coin flip thus leads one to a part of the search space with no solutions at all, so
that the count for this iteration is zero, making the minimum over ¢ iterations
zero as well. To remedy this situation, we use safety checks using an off-the-shelf
SAT solver (Minisat or Walksat in our implementation) before fixing the value
of any variable. The idea is to simply check that u can be set both ways before
flipping the random coin and fixing u to TRUE or FALSE. If Minisat finds, e.g., that
forcing u to be TRUE makes the formula unsatisfiable, we can immediately deduce
u = FALSE, simplify the formula, and look for a different balanced variable. This
safety check prevents BPCount from reaching the undesirable state where there
are no remaining solutions at all.

In fact, with the addition of safety checks, we found that the lower bounds
on model counts obtained for some formulas were surprisingly good even when
the marginal estimates were generated purely at random, i.e., without actually
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running BP. This can perhaps be explained by the errors introduced at each
step somehow canceling out when several variables are fixed. With the use of
BP, the quality of the lower bounds was significantly improved, showing that BP
does provide useful information about marginals even for loopy formulas. Lastly,
we note that with SampleCount, the external safety check can be conservatively
replaced by simply avoiding those variables that appear to be backbone variables
from the obtained samples.

4 Upper Bound Estimation

We now describe an approach for estimating an upper bound on the solution
count. We use the reasoning discussed for BPCount, and apply it to a DPLL style
search procedure. There is an important distinction between the nature of the
bound guarantees presented here and earlier: here we will derive statistical (as
opposed to probabilistic) guarantees, and their quality may depend on the par-
ticular family of formulas in question. The applicability of the method will also
be determined by a statistical test, which succeeded in most of our experiments.

4.1 Counting Using Backtrack Search: MiniCount

For BPCount, we used a backtrack-less branching search process with a random
outcome that, in expectation, gives the exact number of solutions. The ability to
randomly assign values to selected variables was crucial in this process. Here we
extend the same line of reasoning to a search process with backtracking, and ar-
gue that the expected value of the outcome is an upper bound on the true count.
We extend the MiniSat SAT solver ﬂﬂ] to compute the information needed for
upper bound estimation. MiniSat is a very efficient SAT solver employing con-
flict clause learning and other state-of-the-art techniques, and has one important
feature helpful for our purposes: whenever it chooses a variable to branch on, it
is left unspecified which value should the variable assume first. One possibility is
to assign values TRUE or FALSE randomly with equal probability. Since MiniSat
does not use any information about the variable to determine the most promising
polarity, this random assignment in principle does not lower MiniSat’s power.

Algorithm MiniCount: Given a formula F', run MiniSat with no restarts, choos-
ing a value for a variable uniformly at random at each choice point (option
-polarity-mode=rnd). When a solution is found, output 2% where d is the num-
ber of choice points on the path to the solution (the final decision level), not
counting those choice points where the other branch failed to find a solution.
The restriction that MiniCount cannot use restarts is the only change to the
solver. This limits somewhat the range of problems MiniCount can be applied to
compared to the original MiniSat, but is a crucial restriction for the guarantee of
an upper bound (as explained below). We found that MiniCount is still efficient
on a wide range of formulas. Since MiniCount is a probabilistic algorithm, its
output, 29, on a given formula F is a random variable. We denote this random
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variable by # Fi:inicount, and use #F to denote the true number of solutions of
F'. The following proposition forms the basis of our upper bound estimation.

Proposition 1. E [#F\inicount] > #F.

Proof. The proof follows a similar line of reasoning as for BPCount, and we give
a sketch of it. Note that if no backtracking is allowed (i.e., the solver reports 0
solutions if it finds a contradiction), the result follows, with strict equality, from
the proof that BPCount (or SampleCount) provides accurate counts in expectation.
We will show that the addition of backtracking can only increase the value of
E [# FMiniCount), by looking at its effect on any choice point. Let u be any choice
point variable with at least one satisfiable branch in its subtree, and let M
be the number of solutions in the subtree, with pM in the left branch (when
u =FALSE) and (1 —p)M in the right branch (when « =TRUE). If both branches
under u are satisfiable, then the expected number of solutions computed at u
is Yo.pM.2 +1/5.(1 — p)M.2 = M, which is the correct value. However, if either
branch is unsatisfiable, then two things might happen: with probability half
the search process will discover this fact by exploring the contradictory branch
first and u will not be counted as a choice point in the final solution (i.e., its
multiplier will be 1), and with probability half this fact will go unnoticed and u
will retain its multiplier of 2. Thus the expected number of reported solutions at
wis Yo.M.2 +15. M = gM, which is no smaller than M. This finishes the proof.

The reason restarts are not allowed in MiniCount is exactly Proposition Il With
restarts, only solutions reachable within the current setting of the restart thresh-
old can be found. This biases the search towards “easier” solutions, since they
are given more opportunities to be found. For formulas where easier solutions
lie on paths with fewer choice points, MiniCount with restarts could undercount
and thus not provide an upper bound in expectation.

With enough random sample outputs, # FiiniCount, Obtained from MiniCount,
their average value will eventually converge to E [#FMinicount] by the Law of
Large Numbers, thereby providing an upper bound on #F because of Proposi-
tion [l Unfortunately, providing a useful correctness guarantee on such an upper
bound in a manner similar to the lower bounds seen earlier turns out to be
impractical, because the resulting guarantees, obtained using a reverse variant
of the standard Markov’s inequality, are too weak. Further, relying on the sim-
ple average of the obtained output samples might also be misleading, since the
distribution of # FiiniCount 1S often heavy tailed, and it might take very many
samples for the sample mean to become as large as the true solution count.

4.2 Estimating the Upper Bound

In this section, we develop an approach based on statistical analysis of the sample
outputs that allows one to estimate the expected value of # F\finicount, and thus
an upper bound with statistical guarantees, using relatively few samples.
Assuming the distribution of # F\inicount 18 known, the samples can be used
to provide an unbiased estimate of the mean, along with confidence intervals
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on this estimate. This distribution is of course not known and will vary from
formula to formula, but it can again be inferred from the samples. We observed
that for many formulas, the distribution of # Fifinicount 18 well approximated by
a log-normal distribution. Thus we develop the method under the assumption
of log-normality, and include techniques to independently test this assumption.
The method has three steps:

1. Generate n independent samples from # F\iniCount Py running MiniCount n
times on the same formula.

2. Test whether the samples come from a log-normal distribution (or a distri-
bution sufficiently similar).

3. Estimate the true expected value of # Fiinicount from the samples, and cal-
culate the (1 — )% confidence interval for it, using the assumption that the
underlying distribution is log-normal. We set the confidence level « to 0.01,
and denote the upper bound of the resulting confidence interval by cpax.

This process, some of whose details will be discussed shortly, yields an upper
bound c¢pax along with a statistical guarantee that ¢max > E [# FMiniCount] and
thus cmax > #F:

Pricmax > #F| > 1 -«

The caveat in this statement (and, in fact, the main difference from the similar
statement for the lower bounds for BPCount given earlier) is that it is true only
if our assumption of log-normality holds.

Testing for Log-Normality. By definition, a random variable X has a log-
normal distribution if the random variable Y = log X has a normal distribution.
Thus a test whether Y is normally distributed can be used, and we use the
Shapiro-Wilk test [cf. ] for this purpose. In our case, Y = log(# FMiniCount)
and if the computed p-value of the test is below the confidence level a = 0.05, we
conclude that our samples do not come from a log-normal distribution; otherwise
we assume that they do. If the test fails, then there is sufficient evidence that the
underlying distribution is not log-normal, and the confidence interval analysis
to be described shortly will not provide any statistical guarantees. Note that
non-failure of the test does not mean that the samples are actually log-normally
distributed, but inspecting the Quantile-Quantile plots (QQ-plots) often sup-
ports the hypothesis that they are. QQ-plots compare sampled quantiles with
theoretical quantiles of the desired distribution: the more the sample points align
on a line, the more likely it is that the data comes from the distribution.

We found that a surprising number of formulas had logs(# FMiniCount) Very
close to being normally distributed. Figure [2 shows normalized QQ-plots for
AMiniCount = 108 (# FMinicount) obtained from 100 to 1000 runs of MiniCount on
various families of formulas (discussed in the experimental section). The top-left
QQ-plot shows the best fit of normalized dpinicount (Obtained by subtracting
the average and dividing by the standard deviation) to the normal distribution:

1

. _g2
(normalized dninicount = d) ~ 0 € 4°/2 The ‘supernormal’ and ‘subnormal’

lines show that the fit is much worse when the exponent of d is, for example,
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Fig. 2. Sampled and theoretical quantiles for formulas described in the experimental
section (top: alu2 gr rcs w8, langl9; bottom: 2bitmax 6, wff-3-150-525, 1s11-norm)

1.5 or 2.5. The top-right plot shows that the corresponding domain (Langford
problems) is somewhat on the border of being log-normally distributed, which
is reflected in our experimental results to be described later.

Note that the nature of statistical tests is such that if the distribution of
E [# FMiniCount] 18 not ezactly log-normal, obtaining more and more samples will
eventually lead to rejecting the log-normality hypothesis. For most practical
purposes, being “close” to log-normally distributed suffices.

Confidence Interval Bound. Assuming the output samples from MiniCount
{01,...,0,} come from a log-normal distribution, we use them to compute the
upper bound cpax of the confidence interval for the mean of #F\iniCount. 1The
exact method for computing c¢pax for a log-normal distribution is complicated,
and seldom used in practice. We use a conservative bound computation HE] let
y; =log(0;), ¥ = | >, y; denote the sample mean, and s* = 1 S (y;—7)?
the sample variance. Then the conservative upper bound is constructed as

. 82 n—1 1 52 52
=7+ + (o 1)y 2 (12)
where 2 (n—1) is the a-percentile of the chi-square distribution with n—1 degrees
of freedom. Since ¢max > Cmax we still have Pr[¢pax > E [#FMiniCount]] > 1 — a.
The main assumption of the method described in this section is that the dis-
tribution of # Fiinicount can be well approximated by a log-normal. This, of
course, depends on the nature of the search space of MiniCount on a particular
formula. As noted before, the assumption may sometimes be incorrect. In par-

ticular, one can construct a pathological search space where the reported upper



138 L. Kroc, A. Sabharwal, and B. Selman

bound will be lower than the actual number of solutions. Consider a problem P
that consists of two non-interacting subproblems P; and P», where it is sufficient
to solve either one of them to solve P. Suppose P; is very easy to solve (e.g.,
requires few choice points that are easy to find) compared to P», and P; has
very few solutions compared to P». In such a case, MiniCount will almost always
solve P; (and thus estimate the number of solutions of P;), which would leave
an arbitrarily large number of solutions of P, unaccounted for. This situation vi-
olates the assumption that # Fiinicount 1S log-normally distributed, but it may
be left unnoticed. This possibility of a false upper bound is a consequence of
the inability to prove from samples that a random variable is log-normally dis-
tributed (one may only disprove this assertion). Fortunately, as our experiments
suggest, this situation is rare and does not arise in many real-world problems.

5 Experimental Results

We conducted experiments with BPCount as well as MiniCount, with the primary
focus on comparing the results to exact counters and the recent SampleCount
algorithm providing probabilistically guaranteed lower bounds. We used a cluster
of 3.8 GHz Intel Xeon computers running Linux 2.6.9-22.ELsmp. The time limit
was set to 12 hours and the memory limit to 2 GB.

We consider problems from five different domains, many of which have previ-
ously been used as benchmarks for evaluating model counting techniques: circuit
synthesis, random k-CNF, Latin square construction, Langford problems, and
FPGA routing instances from the SAT 2002 competition. The results are summa-
rized in Table 1. The columns show the performance of BPCount and MiniCount,
compared against the exact solution counters Relsat, Cachet, and c2d (we report
the best of the three for each instance; for all but the first instance, c2d exceeded
the memory limit) and SampleCount. The table shows the reported bounds on
the model counts and the corresponding runtime in seconds.

For BPCount, the damping parameter setting (i.e., the x value) we use for
the damped BP marginal estimator is 0.8, 0.9, 0.9, 0.5, and either 0.1 or 0.2
for the five domains, respectively. This parameter is chosen (with a quick man-
ual search) as high as possible so that BP converges in a few seconds or less.
The exact counter Cachet is called when the formula is sufficiently simplified,
which is when 50 to 500 variables remain, depending on the domain. The lower
bounds on the model count are reported with 99% confidence. We see that a
significant improvement in efficiency is achieved when the BP marginal estima-
tion is used through BPCount, compared to solution sampling as in SampleCount
(also run with 99% correctness confidence). For the smaller formulas considered,
the lower bounds reported by BPCount border the true model counts. For the
larger ones that could only be counted partially by exact counters in 12 hours,
BPCount gave lower bound counts that are very competitive with those reported
by SampleCount, while the running time of BPCount is, in general, an order of
magnitude lower than that of SampleCount, often just a few seconds.

For MiniCount, we obtain n = 100 samples of the estimated count for each for-
mula, and use these to estimate the upper bound statistically using the steps
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described earlier. The test for log-normality of the sample counts is done with a
rejection level 0.05, that is, if the Shapiro-Wilk test reports p-value below 0.05, we
conclude the samples do not come from a log-normal distribution, in which case no
upper bound guarantees are provided (MiniCount is “unsuccessful” ). When the test
passed, the upper bound itself was computed with a confidence level of 99% using
the computation of Nﬁ] The results are summarized in the last set of columns in
Table 1. We report whether the log-normality test passed, the average of the counts
obtained over the 100 runs, the value of the statistical upper bound cp.x, and the
total time for the 100 runs. We see that the upper bounds are often obtained within
seconds or minutes, and are correct for all instances where the estimation method
was successful (i.e., the log-normality test passed) and true counts or lower bounds
are known. In fact, the upper bounds for these formulas (except 1ang-2-23) are cor-
rect w.r.t. the best known lower bounds and true counts even for those instances
where the log-normality test failed and a statistical guarantee cannot be provided.
The Langford problem family seems to be at the boundary of applicability of the
MiniCount approach, as indicated by the alternating successes and failures of the
test in this case. The approach is particularly successful on industrial problems
(circuit synthesis, FPGA routing), where upper bounds are computed within sec-
onds. Our results also demonstrate that a simple average of the 100 runs provides
a very good approximation to the number of solutions. However, simple averaging
can sometimes lead to an incorrect upper bound, as seen in wff-3-1.5, 1s13-norm,
alu2 gr rcs w8, and vda gr rcs w9, where the simple average is below the true count
or a lower bound obtained independently. This justifies our statistical framework,
which as we see provides more robust upper bounds.

6 Conclusion

This work brings together techniques from message passing, DPLIL-based SAT
solvers, and statistical estimation in an attempt to solve the challenging model
counting problem. We show how (a damped form of) BP can help significantly
boost solution counters that produce lower bounds with probabilistic correct-
ness guarantees. BPCount is able to provide good quality bounds in a fraction
of the time compared to previous, sample-based methods. We also describe the
first effective approach for obtaining good upper bounds on the solution count.
Our framework is general and enables one to turn any state-of-the-art complete
SAT/CSP solver into an upper bound counter, with very minimal modifications
to the code. Our MiniCount algorithm provably converges to an upper bound,
and is remarkably fast at providing good results in practice.
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Abstract. Theoretical models for the evaluation of quickly improving search
strategies, like limited discrepancy search, are based on specific assumptions re-
garding the probability that a value selection heuristic makes a correct prediction.
We provide an extensive empirical evaluation of value selection heuristics for
knapsack problems. We investigate how the accuracy of search heuristics varies
as a function of depth in the search-tree, and how the accuracies of heuristic pre-
dictions are affected by the relative strength of inference methods like pruning
and constraint propagation.

1 Motivation

The modern understanding [[13] of systematic solvers for combinatorial satisfaction and
optimization problems distinguishes between two fundamentally different principles.
The first regards the intelligent reasoning about a given problem or one of its subprob-
lems. In an effort to reduce the combinatorial complexity, solvers try to assess whether
a part of the solution space can contain a feasible or improving solution at all. More-
over, when there is no conclusive evidence with respect to the global problem, solvers
try to eliminate specific variable assignments that can be shown quickly will not lead
to improving or feasible solutions. The principle of reasoning about a problem is called
inference and is comprised of techniques like relaxation and pruning, variable fixing,
bound strengthening, and, of course, constraint filtering and propagation. To strengthen
inference, state-of-the-art solvers also incorporate methods like the computation of valid
inequalities and, more generally, no-good learning and redundant constraint generation,
as well as automatic model reformulation.

While inference can be strengthened to a point where it is capable of solving combi-
natorial problems all by itself (consider for instance Gomory’s cutting plane algorithm
for general integer problems or the concept of k-consistency in binary constraint
programming [8I3]]), today’s most competitive systematic solvers complement the rea-
soning about (sub-)problems with an active search for solutions. The search principle
is in some sense the opposite of inference (see [13]]): When reasoning about a problem
we consider the solution space as a whole or even a relaxation thereof (for example
by considering only one constraint at a time or by dropping integrality constraints). In
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search, on the other hand, we actually zoom into different parts of the space of potential
solutions. Systematic solvers derive their name from the fashion in which this search
is conducted. Namely, the space of potential solutions is partitioned and the different
parts are searched systematically. This is in contrast to non-systematic solvers that are
based on, for example, local search techniques. The main aspects of systematic solvers
are how the solution space is partitioned, and in what order the different parts are to be
considered. Both choices have an enormous impact on solution efficiency.

From an intellectual standpoint, we have every right to distinguish between search
and inference in the way we described before. They are two different principles and
constitute orthogonal concepts that each can be applied alone or in combination with
the other. However, it has long been observed that (when applied in combination as
practically all successful systematic solvers in constraint programming, satisfiability,
and mathematical programming do) inference and search need to be harmonized to
work together well (see, e.g. [2]]).

Information provided by inference techniques can also be used to organize and guide
the search process. For example, in integer linear programming fractional solution val-
ues are often used to determine whether a variable should be rounded up or down first.
Such heuristics are commonly compared with each other based on some specific effi-
ciency measure that is global to the specific approach, such as total time for finding
and proving an optimal solution, or the best solution quality achieved after some hard
time-limit.

However, to our knowledge very little research has been conducted which investi-
gates how accurate information taken from inference algorithms actually is, or how
this accuracy evolves during search. This is quite surprising given that many theoret-
ical studies need to make certain assumptions about the relative correctness of search
heuristics or the dependency of heuristic accuracy and, for instance, the depth in the
search tree. The theoretical model that is considered in [20] to explain and study heavy-
tailed runtime distributions, for example, is based on the assumption that the heuristic
determining how the solution space is to be partitioned has a fixed probability of choos-
ing a good branching variable. Moreover, Harvey and Ginsberg’s limited discrepancy
search (LDS) is based on the assumption that the probability that the value selection
heuristic returns a good value is constant (whereby, at the same time, they also assume
that heuristics are marginally more likely to fail higher up in the tree than further below).
Walsh’s depth-bounded discrepancy search (DDS) [19]], on the other hand, is implicitly
based on the assumption that value selection heuristics are relatively uninformed at the
top of the tree while the error probability (as a function of depth) converges very quickly
to zero. Moreover, theoretical models for both LDS and DDS assume that there is a con-
stant probability throughout search that the heuristic choice matters at all (which it does
not when all subtrees contain (best) solutions that are equally good).

1.1 A Disturbing Case Study

Commonly, heuristics are evaluated on their overall performance in the context of a
specific algorithm. In the following example, we show what can happen when heuristic
accuracy is inferred from global efficiency.

Assume that we need to quickly compute high-quality solutions to knapsack prob-
lems. We have several heuristics and compare their performance when employed within
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Fig. 1. Average optimality gap over number of search nodes when running PA with different
heuristics on 500 almost strongly correlated instances with 50 items each. The curves are split
into two graphs for better readability.

a depth-first search (DFS). Figure [[l shows how the average optimality gap, that is, the
gap between current best solution and the optimal solution value, evolves when exe-
cuting the algorithm with different heuristics on almost strongly correlated knapsack
instances. (We will explain the heuristics and what strongly correlated knapsack in-
stances are later - for now their exact definition is not important.) We see a clear sep-
aration: Heuristics inclusion, rounding, and best-first make very rapid improvements,
while exclusion and momentum offer no significant gains over a random choice, or
perform even worse.

In order to find a high-quality solution quickly, we clearly cannot afford a complete
search. Therefore, we need to decide which parts of the search space we want to con-
sider. LDS was developed exactly for this purpose. The strategy tries to guide the search
to those parts of the search space that are most likely to contain feasible (in case of con-
straint satisfaction) or very good (in case of constraint optimization) solutions. Based
on our findings in Figure [[l our recommendation would be to combine LDS with the
inclusion heuristic.

The depressing result of this recommendation is shown in Figure 2} The choice of
using the inclusion heuristic, whose predictions we so trusted, is the worst we could
have made!
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Fig. 2. Average optimality gap over number of search nodes when running PA with limited dis-
crepancy search and different heuristics on 500 almost strongly correlated instances with 50 items
each
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1.2 A Case for the Direct Assessment of Heuristic Accuracy

Clearly, we lack some fundamental understanding of heuristic decision making. Obvi-
ously, it is not enough to design a heuristic that makes intuitive sense and to evaluate it
within one specific algorithm. In this paper, we argue that direct measurement is needed
on how accurate heuristic predictions are, how their accuracy differs with respect to the
state of the search, and how it is affected by inference. One of the few examples of such
research was presented in [[10]: On the maximum satisfiability problem, Gomes et al.
compare the accuracy of value selection heuristics based on a linear relaxation on one
hand or a semi-definite relaxation on the other in correlation to the level of constrained-
ness of the given instances. Another example is given in [[16] where the accuracy of
relaxation-based search heuristics is found to depend on the sparsity of the linear pro-
gram. We firmly believe that the first step towards the development of superior search
algorithms must be a thorough empirical study how the accuracy of search heuristics
depends on the current state of the search and how they interact with the inference
mechanisms that are being used. With this paper, we wish to make a first step in that
direction.

In the following section, we review the knapsack problem and describe a complete
algorithm to tackle it. Before we present the results of our extensive experimentation
that amounts to roughly 12,000 CPU hours on a dual-core 64-bit 2.8GHz Intel-Xeon
processor, in Section 3] we introduce two performance measures for value selection
heuristics. In Sectiond] we investigate how the accuracies of different value selection
heuristics behave as a function of depth in the search tree. Finally, we study how infer-
ence mechanisms like cutting plane generation and constraint propagation can influence
the accuracy of those heuristics in Section[3

2 Knapsack Problems

We begin our presentation by introducing the knapsack problem that will serve as the
basis of our experimentation.

Definition 1 (Knapsack Problem). Given a natural number n € IN, we denote by
D1, .., P the profits, and by wy, . . . ,w, the weights of n items. Furthermore, given a
knapsack capacity C' € IN, the knapsack problem consists in finding a subset of items
S C{1,...,n} such that the total weight of the selection does not exceed the knapsack
capacity, i.e. ) ;. s w; < C, and the total profit of the selection ), ¢ p; is maximized.

We chose the knapsack problem as our target of investigation as it has some very desir-
able properties.

— First, the problem has a simple structure and is yet NP-hard [9].

— The knapsack problem is of great practical relevance as it can be viewed as a re-
laxation of very many real-world problems. Whenever we maximize some additive
profit while a limited resource is exhausted linearly, knapsacks are somewhere hid-
den in the problem.

— Moreover, there exist many value selection heuristics for the problem so that we
are in a position to base our study on more than just one special heuristic.
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— Finally, for our experiments we need a large set of problem instances so that we can
gather meaningful statistics. There exist knapsack generators that create instances
in different classes that are well-documented and well-studied in the literature.

With respect to our last reason for considering knapsacks, we will exploit the following
four benchmark classes of knapsack instances that are widely used in the knapsack
literature [13]]. In all cases, profits and weights are limited to the interval [1, 10°]. When
the procedure below results in an assignment of a value outside of this interval, we set
the corresponding weight or profit to the closest interval bound.

— In uncorrelated instances, profits and weights of all items are drawn uniformly in
[1,10°] and independently from one another.

— Weakly correlated instances are generated by choosing profits uniformly in a lim-
ited interval around the corresponding weights. More precisely, after choosing a
random weight for each item, we select the profit p; uniformly from the interval
[w; — 10, w; + 10°].

— Instances are strongly correlated when all profits equal their item’s weight plus
some constant. In our algorithm, we set p; = w; + 10°.

— In almost strongly correlated instances, profits are chosen uniformly from a very
small interval around the strongly correlated profit. Precisely, we choose p; uni-
formly in [w; + 10° — 10, w; + 10° + 103].

2.1 Branch and Bound for Knapsacks

Knapsacks with moderately large weights or profits are most successfully solved by dy-
namic programming approaches [14]]. Once both profits and weights become too large,
however, excessive memory requirements make it impossible to employ a dynamic pro-
gram efficiently. Then, it becomes necessary to solve the problem by standard branch-
and-bound techniques. As is common in integer linear programming, the bound that
is used most often is the linear continuous relaxation of the problem. According to
Dantzig, for knapsacks it can be computed very quickly [5]: First, we arrange the items
in non-increasing order of efficiency, i.e., p1 /w1 > -+ > p,/w,. Then, we greedily
select the most efficient item, until doing so would exceed the capacity of the knapsack,
i.e., until we have reached the item s such that 37" w; < C'and 327, w; > C. We
say that s is the critical item for our knapsack instance. We then select the maximum
fraction of item s that can fit into the knapsack, i.e., C' — Z 1 w; welght units of item

5. The total profit of this relaxed solution is then P := Z . p7 (0 - Z - w,)

Pruning the Search

Based on the relaxation, we can terminate the search early whenever we find that one of
the following conditions holds [17]]: Optimality: If no fractional part of the critical item
can be added, then the optimal relaxed solution is already integral and therefore solves
the given (sub-)problem optimally. Insolubility: If the capacity C' of the (remaining)
knapsack instance is negative, then the relaxation has no solution. Dominance: If the
profit of the relaxed solution is not bigger than the value of any lower bound on the best
integer solution, then the (sub-)tree under investigation cannot contain any improving
solution. In all three cases, we may backtrack right away and thereby prune the search
tree of branches that do not need explicit investigation.
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For the sake of dominance detection, we need a lower bound, and the better (i.e.
larger) that bound, the stronger our ability to prune the search. Obviously, every time
we find an improving knapsack solution, we will update that lower bound. To speed up
the search, however, we can do a little more: At the root-node, we compute an initial
lower bound by taking all the profit of all non-fractional items of the initial relaxed
solution. To strengthen this bound, we fill the remaining capacity with the remaining
items (the ones after the critical item in the efficiency ordering), skipping subsequent
items that fit only fractionally, until we either run out of capacity or items.

Organization of Search

We have outlined our approach in regard to inference. Now, with respect to search: At
every search node, we choose to either include or exclude the critical item. This choice
of the branching variable ensures that the upper bound that we compute has a chance of
tightening in both children that are generated simultaneously. Note that this would not
be the case if we would branch over any other item. Then, for at least one of the two
child-nodes the upper bound would stay exactly the same as before. The value selection
heuristics that we will study empirically are the following:

— Random Selection Heuristic: Choose at random the subtree that is investigated
first. The reason why we may believe in this strategy may be that we feel that there
are no good indicators for preferring one child over the other.

— Inclusion Heuristic: Always choose to insert the critical item first. A justification
to consider this heuristic is that solutions with high total profits must include items.

— Exclusion Heuristic: Always choose to exclude the critical item first. This heuris-
tics makes sense as it assures that no item with greater efficiency needs to be ex-
cluded to make room for the critical item.

— Rounding Heuristic: Consider the fractional value of the critical item: If it is at
least 0.5, then include the critical item, otherwise try excluding it first. This heuristic
makes intuitive sense when we trust the linear continuous relaxation as our guide.

— Momentum Heuristic: See whether the fractional value of the critical item is larger
or lower than what its value was at the root-node. If the value has decreased, then
exclude the item first, otherwise include it first. This heuristic is motivated by ob-
serving that the history of fractional values builds up a kind of momentum with
respect to the “correct” value of the branching variable.

— Anti-Momentum Heuristic: The exact opposite of the momentum heuristic.

— Best-First Heuristic: Compute the relaxation value of both children and then con-
sider the one with the higher value first. The intuition behind it is that, in a complete
method, we will need to consider the better child anyway as there is no chance for
the worse child to provide a lower bound that allows us to prune the better child.

2.2 Stronger Inference: Knapsack Cuts and Knapsack Constraints

The previous paragraphs sketch the baseline branch-and-bound algorithm that we will
employ to study the different value selection heuristics. One question that we are inter-
ested in answering with this paper is how inference influences search heuristics. To this
end, we consider two ways of strengthening inference for knapsacks.

The first is to compute a stronger upper bound. By adding valid inequalities known
as “knapsack cuts,” we can strengthen the linear continuous relaxation and thereby
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obtain a tighter bound for pruning [4]]. The redundant constraints are based on the
following observation: When computing the upper bound, we find a subset of items
S :={1,..., s} outof which it is infeasible to include more than s — 1 in the knapsack,
because this would exceed the limited capacity. As a matter of fact, out of the set of
items S’ ;== SU{i > s | w; > w;, V j € S}, we can select at most s — 1 items.
Therefore, it is legitimate to add the inequality Zie g X; < s —1, where Xj is a bi-
nary variable which is 1 iff item 7 is included in the knapsack. We can add more such
redundant constraints by adding one of them for each item skipped during the lower
bound computation, because for each of these items we find a new set of items that,
when added as a whole, would overload the knapsack.

The second way to strengthen inference for knapsacks is to add filtering to our base-
line approach. That is, on top of the pruning based on upper and lower bound, we can
also try to determine that certain items must be included in (or excluded from) any im-
proving solution. For a given lower bound B, the corresponding constraint is true if and
onlyif ), w; X; < C while simultaneously ) . p; X; > B. Achieving generalized arc-
consistency for this global constraint is naturally NP-hard. However, we can achieve
relaxed consistency with respect to Dantzig’s bound in amortized linear time [6]].

Now, adding solely the knapsack constraint that directly corresponds to the given
knapsack instance is only of limited interest as constraint filtering draws its real strength
from constraint propagation, i.e. the exchange of information between constraints that
reflect different views of the problem. By exploiting the knapsack inequalities that we
just discussed, we can add a couple of other knapsack constraints. At the root node, we
compute the linear relaxation of the knapsack instance augmented by knapsack cuts.
For the constraint ), w; X; < C we obtain a dual multiplier 7p. The same holds for
the redundant constraints: For each cutting plane >, ., X; < s, 1 <7 < R, we
obtain a dual multiplier .. As suggested in [[7]], we use those multipliers to coalesce
the different constraints into one new knapsack constraint

Zpi > B and Z(ﬂ'o’wi + Z )X < meC + str.

% Tl’iEIr T

Finally, as was suggested in [[18]], we generate more redundant constraints by choos-
ing a multiplier A € IN and combining the different constraints: We multiply each
constraint with a new multiplier that is a factor A larger than the previous one (i.e., the
first constraint is multiplied with 1, the next multiplier is ), the next A2, and so on) and
then we sum them all up. As this would quickly lead to knapsacks with extremely large
item weights, we restrict ourselves to random selections of at most m out of the R + 1
inequalities, whereby an inequality is added to the selection with a probability that is
proportional to the optimal dual multiplier at the root-node. For our experiments, we
chose A = 5 and m = 5, and we generate ten constraints in this way.

So with the original knapsack constraint and the knapsack based on the optimal dual
multipliers, we have a total of twelve constraints that we filter and propagate at every
choice point until none of the constraints can exclude or include items anymore.

In summary, to evaluate how different inference techniques can influence the perfor-
mance of search heuristics, we consider four different approaches in our experiments:

— Pure Approach (PA): Our baseline approach conducts branch and bound based on
the simple linear continuous upper bound of the knapsack problem computed by
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Dantzig’s efficiency sorting procedure. The critical item determines the branching
variable, the value selection heuristic is given as a parameter.

— Valid Inequality Approach (VIA): A variant of PA where we use the linear con-
tinuous relaxation augmented by knapsack cuts to determine upper bounds which
is computed by the simplex algorithm. The branching variable is determined as
the fractional variable that corresponds to the item with greatest efficiency (that is,
profit over weight).

— Constraint Programming Approach (CPA): A variant of PA where, on top of
pruning the search tree by means of the simple linear relaxation, we also perform
knapsack constraint filtering and propagation at every search node.

— Full Inference Approach (FIA): The combination of VIA and CPA.

3 Two Performance Measures for Value Selection Heuristics

When evaluating value selection heuristics, the question arises how we should measure
their quality. As mentioned in the introduction, for satisfiability problems theoretical
models have been considered where assumptions were made regarding the probability
with which a heuristic would guide us to a feasible solution. For optimization problems
like knapsack, the mere existence of a feasible solution is not interesting. What actu-
ally matters is the quality of the best solution that can be found in the subtree that the
heuristic tells us should be considered first.

This leads us directly to the first performance measure that we will study empirically
in our experiments. The probability measure assesses the probability that the heuristic
steers us in the direction of the subtree which contains the better solution, whenever that
choice matters. That is to say that we consider only those cases where making a correct
heuristic decision makes a difference. This is the case when at least one subtree contains
an improving solution, and when the quality of the best solutions in both subtrees is
different. To see how this relevance probability evolves in practice, in our experiments
we keep track of how many search nodes are being considered at every depth level, and
for how many of those choice points the heuristic decision to favor one child over the
other makes a difference.

The second measure that we consider is the accuracy measure which takes a quan-
titative view of the heuristic choices by comparing the actual solution quality of the
best solutions in both subtrees. Rather than measuring the actual difference in objective
value (which would artificially increase the impact of instances with larger optimal so-
Iutions), we measure the difference relative to the current gap between upper and lower
bound. Therefore, when we find that the average accuracy of a value selection heuristic
at some depth is 40%, then this means that, by following the heuristic, we are guided to
a subtree whose best solution closes on average 40% more of the current gap than the
best solution in the subtree whose investigation was postponed.

4 Heuristic Accuracy as a Function of Depth

We specified the approaches that we use to solve different benchmark classes of knap-
sack instances, we introduced several value selection heuristics for the problem, and we
described two different performance measures for these heuristics. In this section, we
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Fig. 3. Top: Average development of the probability and accuracy measure over depth for the
rounding heuristic on 500 uncorrelated knapsack instances with 50 items (left) or 100 items
(right). The solid line (‘Probability’) goes with the left vertical axis and depicts the probability
that the heuristic makes the correct choice. The dashed line (‘Accuracy’) goes with the right verti-
cal axis and depicts the average gap-closing percentile by which the heuristic choices outperform
their opposites. Bottom: On the same benchmark sets, we show the percentage of instances that
reach a certain depth (solid line, right vertical axis, ‘Reached’). The dashed and dotted lines go
with the left vertical axis (log-scale) and measure the average number of search nodes (‘Total’)
on each depth level and the average number of nodes for which the heuristic choice is relevant
(‘Relevant’), respectively.

now investigate how the different heuristics perform in comparison. We implemented
the algorithms presented earlier in Java 5, and we used Ilog Cplex 10.1 to compute lin-
ear continuous relaxations in algorithms VIA and FIA. Moreover, we implemented our
own constraint propagation engine for algorithms CPA and FIA.

Note that our code is not tuned for speed as it has to gather and maintain all kinds
of statistical information during search anyway. Fortunately, computational efficiency
does not influence our performance measures for search heuristics or how that perfor-
mance depends on the current state of the search or the inference mechanisms that are
employed. Furthermore, within the branch-and-bound framework that we consider, the
different knapsack heuristics all cause comparable overhead which is why a count of
the number of search nodes gives us a very good estimate of the total time needed as
well. However, note that this argument does not hold for the different inference methods
that we will employ in Section[3

To get a first insight into typical heuristic behavior, in Figure Bl we assess accuracy
and probability of the rounding heuristic (that performs well with DFS and LDS, see
Figures [Tl and 2)) when we run our baseline algorithm PA on uncorrelated instances.
We see that the heuristic performs really well: Although it is rather uninformed at the
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Fig.4. The average probability and accuracy of the best-first heuristic on 500 weakly correlated
knapsack instances with 50 (left) and 100 items (right)

beginning, it quickly becomes better and better. At depth 10, it already favors branches
that close, on average, about 40% more of the current gap between upper and lower
bound, and it steers us in the right direction in about 87% of the relevant cases.

Moreover, we observe a very distinct behavior with respect to the probability that
the rounding heuristic makes the right choice when we ignore the extent to which the
choice is better: The probability of favoring the subtree that contains the better solution
is almost random (close to one half) at the very beginning of the search. Then, the
probability of moving to the better subtree grows very quickly until it levels out at
about 89% roughly at depth level 15. From then on, the probability stays pretty much
constant. (We observe another brief increase to almost perfect prediction when we are
very close to the maximum depth in the tree, but given the few runs that reach this
depth and the few search-nodes on this depth this is not statistically significant.) This
description holds for both the 50 and the 100 items benchmark, whereby for the latter
the probability levels out only slightly later. Although we cannot show all our data here,
we observe this same basic curve on the other classes of knapsack instances (including
the one considered in Figures[[land2)) and also for other “good” heuristics like best-first
or exclusion. To give two more examples, in Figures ] and [71 we depict the best-first
and the exclusion heuristics, this time on weakly correlated knapsack instances.

To draw a first conclusion, our data suggests that a good value selection heuristic for
knapsack has a much larger probability of misleading us higher up in the tree. Moreover,
good heuristics become more accurate quickly and then keep their performance pretty
much constant. Note that this behavior is addressed by neither LDS nor DDS: LDS
has only a slight tendency to reconsider discrepancies higher up a little bit earlier than
further down below, but only as far as leaves with the same number of discrepancies are
concerned. Consequently, it wastes a lot of time reconsidering heuristic choices that are
made deep down in the tree which are probably quite accurate, instead of putting more
effort into the investigation of the more questionable decisions. DDS, on the other hand,
does very well by quickly reconsidering choices that were made early in the search.
However, it is not justified to assume that perfect predictions are already achieved at
some rather shallow search-depth. From a certain depth-level on, simply minimizing
the total number of discrepancies appears to be much better.

In the bottom part of Figure 3l we can see the number of choice points where the
heuristic choice makes a difference is an order of magnitude lower than the total number
of search nodes. This is caused by the fact that a good part of our search consists in a



152 D.H. Leventhal and M. Sellmann

0.5 20 05 20

g 0.45 Probability ——— 3 E 0.45 Probability —— 2
5 o Accuracy 0 13 -4 ) Accuracy 0 é
2 04 S 3 04 |t )
2 035 & S \ g
8 3 8 20 3
£ 03 5 s 5
8 0.25 < 8 -40 ®
°© 0.2 2 o Z
z 015 % z 60
= 3 = 2
$ o 5 A
g 005 2 g <
&~ 0 -100 &~ 0 -100

0 5 10 1520 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 90100
Depth Depth

Fig. 5. The average probability and accuracy of the momentum heuristic on 500 strongly corre-
lated knapsack instances with 50 (left) and 100 items (right)

proof of optimality. In this part of the search, the value selection heuristic is immaterial,
just as it would be when considering an unsatisfiable instance.

It is interesting to note that, once the search has reached a sufficient depth, the
probability that good value selection is relevant at some choice point is more or less
independent of the depth level. We observe that the distance between the line depicting
the average total number of choice points per level and the number of relevant choice
points is almost constant. As we use a logarithmic scale, this indicates that the ratio of
the number of relevant nodes over the total number of nodes does not change very much
from some depth level on. In [[12], the assumption is made that the relevance of value
selection was constant. As with the accuracy of good heuristic value selection, this as-
sumption appears only valid after we reached some critical depth in the tree. On very
high levels, making good choices is much more of a gamble and at the same time much
more likely to be important. Both are indications that a good search strategy ought to
reconsider very early search decisions much more quickly than LDS does.

Thus far we have only studied heuristics that perform well. In Figure 3 we depict
the performance of the momentum heuristic on strongly correlated instances. We see
clearly that the heuristic performs poorly. On second thought, this is hardly surprising as
it has a strong tendency to exclude high efficiency items and to include lower efficiency
items. What our graph shows, however, is that making the general assumption that all
heuristics ought to perform better as we dive deeper into the tree is quite wrong. As a
matter of fact, for bad heuristics, performance may even decay.
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related knapsack instances with 50 items each
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Fig.7. The average probability and accuracy of the best-first (top) and the exclusion heuristic
(bottom) on 1000 weakly correlated knapsack instances with 50 (left) and 100 items (right)

Now, what about the inclusion heuristic? We plot its performance in Figure[@l We see
that the inclusion heuristic makes increasingly worse predictions where better solutions
can be found as we dive deeper into the tree. This explains, of course, why inclusion is
bound to perform poorly in combination with LDS as we saw in Figure 2l But why did
it do so well in combination with DFS (see Figure[I))? The answer to this riddle is found
in the right plot in Figure [&} Here, we assess the quality of inclusion while performing
DFS by comparing the workload (that is, the total number of nodes) when exploring the
subtree the heuristic chooses first. Again, we show the quantitative dependency of depth
as the average number of nodes that the heuristic needs to investigate less (see the curve
denoted “workload”), and a qualitative comparison which shows how often the heuristic
investigates the subtrees in the right order (see the curve denoted “probability”). We see
that, by including items first, the inclusion heuristic guides the search to more shallow
subtrees first as the inclusion of items obviously has to be paid for by a reduction in
remaining capacity. In those shallow subtrees, we quickly find a no-good (a new lower
bound) which can be exploited when searching the second branch where better solutions
can be found more quickly. When combining inclusion with LDS, however, we never get
to searching those other branches, and while no-goods are helpful, we cannot afford to
pay for them by excluding from our search the most interesting parts of the search space.

This example shows impressively that the accuracy of heuristic predictions can be
abysmal even when a heuristic works well when combined with one specific search
strategy (compare with Figure [T). In particular, even when a heuristic performs well
with one search strategy, this is no indication that it is also suited fo guide an incom-
plete search that is terminated early under hard time constraints. If one is to avoid that
a heuristic like inclusion is combined with LDS to form an algorithm that is expected
to provide good solutions quickly, then there is but one alternative: The performance
of heuristics must be studied much more carefully than by a simple evaluation based
on a global performance measure like best quality after some time-limit within a spe-
cific approach. Instead, a direct assessment of the accuracy of heuristic decisions as we
provide it here is necessary. Otherwise, when designing algorithms, we are bound to a
trial-and-error methodology that is far from the standards of scientific engineering.

Our direct assessment of the accuracy of heuristic decision making has allowed us
to identify that there exists an interplay of heuristic decisions and no-goods that are
learned during search — a matter which we have never seen discussed when heuristics
for a problem are designed. What is more, we have shown that the belief that heuristics
would generally become more accurate with increasing depth is wrong. This raises the
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question why good heuristics are actually getting more accurate! An important insight
here is that a heuristic like exclusion, which plainly sets the critical item to zero first,
is of course not getting any “smarter” deeper down in the tree. Compare the accuracy
at depth level 50 of the 100 item benchmark and the accuracy at level O in the 50 item
benchmark in Figure[7l Actually, one should expect the accuracies to be the same. The
reason why they differ is of course not that exclusion got more “experienced” while
branching to depth-level 50 in the 100 item instances. The reason why the accuracy
is higher than at the root-node level in the 50 item case can only lie in the different
distribution of instances where the heuristic choices matter at depth-level 50 in the 100
item case. That is, exclusion (and the other heuristics for that matter) is getting more and
more accurate because it is in some way self-enforcing: the decisions made higher up
in the search tree result in problems for which the heuristic is more accurate. Inclusion,
on the other hand, is not a good guide where good solutions will be found because
it is self-weakening (which becomes clear when considering the repeated use of the
inclusion heuristic which always trades the higher efficiency of an item to the left of the
critical item for the efficiency of the latter).

We are not aware that self-enforcement has been noted before as an important aspect
when designing value-selection heuristics. There exists, however, some work that tries
to integrate different heuristics rather than sticking slavishly to the same one. For exam-
ple, in [1]], Balas et al. found that randomly combining different heuristics at each step
of a greedy algorithm for set-covering actually produces better solutions than sticking
to the single best heuristic for each instance throughout the algorithm.

5 How Inference Affects the Robustness of Search Heuristics

The final aspect that we are interested in is to what extent inference methods can influ-
ence the accuracy and the relevance of search heuristics. In this section, we therefore
show how search heuristics perform when used with our different algorithm variants
PA, VIA, CPA, and FIA (see Section ).

Consider Figure 8] where we compare the accuracy of the rounding heuristic when
used in combination with inference mechanisms of different strengths. On the left we
consider algorithms PA and CPA that do not use knapsack cuts. The latter are used
for the plots on the right that show the performance of rounding in combination with
VIA and FIA. Analogously, at the top we show algorithms PA and VIA that do not use
constraint filtering, whereas at the bottom we consider algorithms CPA and FIA that
both propagate knapsack constraints. The results look very counter-intuitive: The more
inference we perform, the worse the heuristic predictions become!

However, a look at the corresponding relevance data in Figure O reveals that, in re-
ality, inference makes heuristic predictions far more robust: By adding just knapsack
cuts, we already prevent searches from exploring deeper nodes. It is very impressive
how constraint propagation (both in combination with knapsack cuts or alone) boosts
this trend dramatically: Without constraint filtering, 50% of all searches reach a depth
of 85, while with knapsack constraints, they only reach a depth of 20. On top of that,
the maximum average number of relevant nodes per depth level is reduced to only 2.7

! Note that this drastic reduction is also the reason why the curves in Figure §] make such a
ragged impression. There are simply far fewer sample points to average over.
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average over all runs that reach that depth.

Note that stronger inequalities like Mixed-Integer Gomory Cuts may have a similarly
strong effect. However, while our statistics recording code does not allow us to pro-
vide a quantitative comparison, we would like to note that we found that constraint
propagation could be conducted much faster than the computation of the strengthened
linear relaxation bounds.

We conclude that stronger inference techniques can reduce the importance of good
heuristic predictions. As a consequence, value selection heuristics are left with less
room to make a dramatic difference and therefore appear less accurate on average.



156 D.H. Leventhal and M. Sellmann
6 Conclusions

We conducted an empirical study regarding the accuracy of value selection heuristics
within incomplete systematic search. We found that global performance measures do
not enable us to deduce how adequate heuristic predictions are. By measuring heuristic
accuracy as a function of depth, we found that good value selection functions are most
error prone when only few branching decisions have been made while the expected
relevance of these decisions is greater. However, while bad heuristics may even decay
with depth, good knapsack heuristics quickly improve their performance, which then
stays practically constant for the remainder of the search.

To devise better value heuristics, we found two aspects to be essential: First, heuris-
tics that quickly generate high-quality no-goods can actually work faster than more
accurate heuristics, depending on the search strategy within which they are employed
(recall the good performance of the inclusion heuristic within DFS). Second, improved
heuristic accuracy is the result of self-enforcement: decisions higher-up in the tree drive
the distribution of nodes where the heuristic choice matters in such a way that for these
nodes the heuristic works better. In order to devise superior search heuristics, we believe
that both aspects deserve to be studied in much more detail.

Finally, we found that inference methods render heuristic decisions far less relevant
and thereby improve the robustness of search. Of course, whether invoking expensive
inference techniques pays off or not depends largely on the accuracy of the heuristics
that are available: After all, a good and robust value selection heuristic has the potential
to guide us to feasible or optimal solutions, even when we choose branching variables
poorly, or when inference is limited.

With respect to future work, we need to investigate whether the characteristic curve
that describes the accuracy of many good heuristics for knapsack instances of vari-
ous benchmark classes also applies to good heuristics of other combinatorial problems.
Based on our findings, we then intend to devise new search strategies that actively in-
corporate the characteristic evolution of heuristic accuracy during search.
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Abstract. While several powerful methods exist for automatically de-
tecting symmetries in instances of constraint satisfaction problems
(CSPs), current methods for detecting symmetries in CSP models are
limited to the kind of symmetries that can be inferred from the global
constraints present in the model. Herein, a new approach for detecting
symmetries in CSP models is presented. The approach is based on first
applying powerful methods to a sequence of problem instances, and then
reasoning on the resulting instance symmetries to infer symmetries of the
model. Our results show that this approach deserves further exploration.

1 Introduction

A constraint satisfaction problem (CSP) consists of a set of variables, a set
of domains (one per variable), and a set of constraints on the variables. CSPs
can often be separated into two parts: the model and the data. The model
is a parameterised version of the CSP that, while formally defining the type of
variables, domains, and constraints, does not completely determine their number
or their values. The data part provides concrete values to the parameters and, as
a result, completely determines the number of variables, their domains and the
constraints. Thus, while the model represents a class of CSPs, the model plus
the data specifies an instance of that class (i.e., a particular CSP).

For example, the Latin square problem of size 3 involves a 3 x 3 square, where
each of the 9 cells in the square takes a value from [1..3], in such a way that each
value occurs exactly once in each row and once in each column. The associated
CSP can be defined using 9 variables, each with finite domain 1..3, and 18
disequality constraints. Alternatively, it can be separated into a model that is
parameterised on the board size N (NN x N variables, each with domain 1..N,
and appropriate constraints), and the data part which simply indicates N = 3.
Different instances (i.e., CSPs) of the class can be obtained with the same model
simply by modifying the value of N in the data.

Solving a CSP can be made more efficient by exploiting the symmetries of the
problem. This is because, during search, one can omit parts of the search space
that are symmetric to others already explored. If these already explored parts
led to a solution, the symmetric search space is known to contain only symmetric
solutions (which can be automatically generated without search). If they led to
failure, the symmetric search space is known not to contain solutions.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 158 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Considerable progress has been made in the automatic detection of symmetries
of CSPs and their exploitation in speeding up the search (e.g., [91L[1T 1712,
(15,8, 3L BL 5L T0,[6L[7]. Unfortunately, the most powerful methods ( [IIL1]) can
only be applied to a CSP, rather than to its model. Therefore, the symmetries
detected can only be used to accelerate the solving process for that CSP, and
the cost of detecting these symmetries cannot be amortised over all CSPs in the
class. Furthermore, the computation cost of these methods grows with the size
of the CSP in such a way as to render them impractical for real-size CSPs.

While there are automatic symmetry detection methods for CSP models [14]
[16], to our knowledge, they can only detect a relatively small set of “simple”
symmetries (i.e., piecewise value and piecewise variable interchangeability), and
only from the global constraints in the model. We propose a radically new ap-
proach that (1) uses symmetry detection on a series of small CSPs to elicit can-
didate symmetries, (2) parameterises these candidate symmetries to be defined
over the model rather than over a particular CSP, and (3) determines whether
these candidates are indeed symmetries of the model — herein referred to as the
parameterised CSP. Our results show the approach has considerable potential.
Furthermore, we believe the approach can be used to infer from the model many
other kinds of information useful for optimisation.

2 Background and Definitions

A CSP is a tuple (X, D, C, dom) where X represents a set of variables, D a set
of domains, C a set of constraints, and where dom is a function from X to D,
so that dom(z) € D denotes the domain of variable z € X. By an abuse of
notation, when all variables have the same domain, D will simply denote this
domain and dom will be omitted.

For a given CSP, a literal lit is of the form x = d where x € X and d € dom/(x).
We will use var(lit) to denote its variable z. We denote the set of all literals of
a CSP P by lit(P). An assignment A is a set of literals. An assignment over a
set of variables V' C X has exactly one literal x = d for each variable x € V. An
assignment over X is called a complete assignment.

A constraint ¢ is defined over a set of variables, denoted by wvars(c), and
specifies a set of allowed assignments over vars(c). An assignment over vars(c)
that is not allowed by c¢ is disallowed by c. An assignment A over V. C X
satisfies constraint c if vars(c) C V and the projection of A over vars(c) (i.e.,
{lit € Alvar(lit) € vars(c)}) is allowed by c. A solution is a complete assignment
that satisfies every constraint in C'.

Ezample 1. The CSP for the Latin square problem of size 3 introduced before
can be defined as follows:

= 3311,3312,3313,$21,3322,3323,$31,3332,3333}

D= {1,2,3}

C = {x11 # z12, 211 # T13,T12 # T13, T21 F T22, T2l F T23,T22 7 T23,
T31 # X32,T31 F T33,T32 7# T33,T11 F# T21,T11 # 31, T21 F 31,

T12 # T22,T12 # T32, T2z # T32,T13 # T23,T13 7 XT33,T23 7 L33}
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where variable x;; represents the cell in row ¢, column j. The set A = {zo1 =
1,200 = 2,293 = 2} is an assignment containing 3 literals. While A satisfies
constraint xo; # 2o (since {x2; = 1,290 = 2} is allowed by it), A does not
satisfy x99 # xog (since {22 = 2, 293 = 2} is disallowed by it).

A solution symmetry f of a CSP P is a permutation of lit(P) that preserves the
set of solutions [I], i.e., a bijection from literals to literals that maps solutions to
solutions. Two important kinds of solution symmetries are induced by permuting
either variables or values.

A permutation f of the set of variables X induces a permutation py of literals
by defining py(x = d) as f(x) = d. A variable symmetry is a permutation of the
variables whose induced literal permutation is a solution symmetry [10]. Since the
inverse of any such permutation is also a symmetry, we will use (z1,...,z,) <
(x17y... &y ), where x1,..., 2y, x1/,..., 2y € X to denote the symmetry that
maps each x; to z; leaving the remaining variables in X unchanged.

A set of domain permutations fgj,m(»), one for each x € X, induces a per-
mutation py of literals by defining py(z = v) as @ = faom(a)(v). A value sym-
metry is a set of domain permutations whose induced literal permutation is
a solution symmetry [10]. We will use (d;1,...,din) < (di/,...,din ), where
{di1,...,din} = dom(z;) = {ds1s,...,din'}, to denote a value symmetry for
x; € X. A variable-value symmetry is any solution symmetry that is not a vari-
able or a value symmetry. Note that it is not necessarily a composition of those
variable and value symmetries that exist in the CSP.

Several methods [T2,[T1L[1] have been proposed to automatically detect the
symmetries of a CSP by constructing its (hyper-)graph representation, and us-
ing graph automorphism techniques on it. Our approach uses the technique of
Mears et al. [9] since it is more powerful than that of Puget [11] without being
as computationally demanding as that of Cohen et al. [I]. However, any such
method can be used. The general idea is to (a) represent every literal as a node,
(b) represent every assignment disallowed by a constraint as a hyper-edge, and
(¢) add an edge between every two literals x = d; and x = dy where d; # ds.

Ezample 2. The Latin square CSP of Example[llhas (a) variable symmetries that
swap any columns: (11, T21,Z31) < (T12,T22,T32), (T11,T21,T31) < (T13, T23,
x33), and (12, Tag, T32) < (T13,T23,T33), (b) similar variable symmetries that
swap any rows, and (c) variable-value symmetries that transpose the rows, col-
umn and value dimensions, and correspond to flipping the 3 x 3 square using a
diagonal. The associated graph (left hand side of Figure [[) has 9x3=27 nodes
(labelled 1) representing the 27 literals x; ; = k where 4,7,k € [1..3], and
(18*3) + (9*3) edges representing the 3 assignments disallowed by each of the 18
constraints, and the 3 extra edges needed to disallow each pair of values of the 9
variables.

Given a hyper-graph (V, E), where V is a set of nodes, and E a set of unweighted
and undirected hyper-edges, an automorphism [ of graph (V, E) is a permu-
tation of the nodes (i.e., a bijection among nodes) such that ¥{n;,---,n;} €
E : {f(n;),---, f(n;)} € E. Since, for a given CSP P, the graph has a node
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Fig. 1. Graphs and generators for LatinSquare[3] and LatinSquare[4]

for each literal in lit(P), each graph automorphism has a direct interpretation
as a permutation of the literals in lit(P) and corresponds to a symmetry of P.
Thus, in an abuse of terminology, we will sometimes use symmetry of a graph
as a shorthand for automorphism of the graph associated with a CSP. Standard
tools, such as Saucy [2], can compute the automorphisms of a graph and return
its symmetry group (i.e., all possible symmetries) by means of a set of generators
(a possibly minimal set of symmetries that can be used to generate all others).

Ezample 3. For the Latin square graph of size 3 given in Example 2l Saucy re-
turns the following set of generators (illustrated in the left hand side of Figure[I]):

ni21, 122, N123, N221, N222, N223, 321, N322, 1N323) <
ni131,N132, 133, N231, N232, N233, 331, 1332, 333
n211, N212, N213, N221, N222, N223, N231, 1232, 1N233) <
n311,M312,MN313, N321, N322, 1N323, 1331, 1332, 1333
ni21,N122, N123, 0131, 132, N133, N231, 1232, 1233

( )
( )
( )
( )
( )<
(na11,n212,M213, M311, M312, N313, N321, N322, N323 )
( )
( )
( )
( )
( )
( )

g o w »

niii, 121, N131, N211, 1221, 1231, 1311, 1321, 1331) <
niiz, 122, N132, N212, N222, N232, 1312, 1322, 1332

E niiz,Ni122,N132, N212, N222, 1232, 1312, 1322, 1333

«—
ni113, N123,N133, N213, 1223, 1233, 1313, 1323, 11333
ni12,Mn113, N123, N212, 213, N223, N312, 1313, 1323
ni21,M131,N132, N221, N231, N232, 1321, 1331, 11332

F

>

where node n;;, represents literal z; ; = k. A states that columns 2 and 3 can
be swapped, B that rows 2 and 3 can be swapped, C that the square can be
reflected across the top-left /bottom-right diagonal, D that values 1 and 2 can be
swapped, E that values 2 and 3 can be swapped, and F that the second dimension
of the square can be swapped with the value dimension. Their combination
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results in the symmetries given for Example [ (e.g., to swap columns 1 and 2
({11, 21, T31) < (T12, 22, x32)) apply first F, then D, and then F).

3 From CSPs to Parameterised CSPs

There is no standard notation to distinguish between a CSP and its parameterised
version. Herein, we denote a parameterised CSP as CSP[Data|, where Data repre-
sents the parameters, and a particular CSP in that class as CSP[d], where d is the
value given to Data to yield that CSP. While we will use mathematical notation
to specify parameterised CSPs, any high-level modelling language can be used as
long as it separates the model from the data, has multi-dimensional arrays of finite
domain variables, and supports iteration over them.

Ezample J. The parameterised LatinSquare[N] for the CSP of Example [T}

X[N] = {square;j|i,j € [1..N]}

D[N] = [1..N]

C[N] = {square;; # square;;li,j € |
{squarej; # squareg;|i,j € |

1..N],k € [j + 1..N]}u

1.N],k € [j + 1.N]}

defines N x N integer decision variables (square;;) with values in [1..N], and
conjoins the inequality constraints for every row (i) and column (j).

Our aim is to determine the symmetries of every CSP in the class represented by
CSP|Datal, i.e., the symmetries of CSPId], for every d possibly given to Data.
To do so we define the parameterised graph G[Data] of CSP[Data] in such as
way that, when instantiated by giving a value d to Data, G[d] yields the graph
of CSP[d]. Formally, G[Data] is obtained from CSP[Data] = (X|[Datal, D[Datal,
C[Datal, dom[Datal) as follows:

G[Data] = (V[Data|, E,[Data] U E.[Data])

V[Data] = {x; = d;|z; € X[Datal,d; € dom(x;)[Datal}, i.e., V[Data] con-
tains a node for every literal in C'SP[Data).

— Ey[Data] = {{x = d;,x = d;}|x € X[Datal],d;,d; € dom(x)[Datal,d; # d;},
i.e., an edge exists for every two nodes that map a variable to different values.
Ec[Data] = U.ccipata{Alvars(A) = vars(c), A is an assignment disallowed
by c}, i.e., a hyper-edge exists for every disallowed assignment A of every
constraint ¢, and connects the nodes associated with all literals in A.

Note that G[Data] is simply a syntactic construct that represents a class of
graphs, much as CSP[Data] represents a class of CSPs.

Ezample 5. The parameterised graph G[N] associated with LatinSquare[N] is
as follows. V[N] is defined as {n;j,|i,j,v € [1..N]} where n;;, denotes literal
square;; = v. Ey[N] is defined as {{nijv,, niju, }|7, j,v1,v2 € [1..N],v1 # va},
while E.[N] is obtained by transforming the two constraints in LatinSquare[V]
into the set of assignments they disallow:
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E.[N] = {{nijv, niro}i, j,v € [1.N],k € [j + L.N]}U
{{njiv, nkiv }i, j,v € [1..N], k € [j + 1..N]}

Note that the nodes in G[N] maintain some of the knowledge about the structure
of LatinSquare[N] thanks to the reuse of the ¢ and j identifiers appearing in
LatinSquare[N]. This is important to automate the construction of the edges in
G[N] and, as we will see later, to parameterise symmetries of a CSP.

We can now give a definition of a parameterised symmetry.

Definition 1. Given a parameterised CSP[Data] and its parameterised graph
G[Datal, a parameterised permutation f[Data] is a bijection of the nodes of
G[Data). That 1is, for all values d given to Data, f[d] permutes the nodes of
G[d]. A parameterised symmetry of CSP[Data) is a parameterised permutation
f[Data] of the nodes in G[Data] s.t. for all values d given to Data, f[d] is a
symmetry (i.e., an automorphism) of G[d].

We denote by S[Data] the group of parameterised symmetries of CSP[Data).
Note that for all values d given to Data, S[d] is a subset of the symmetries
in CSP[d]. The subset is proper if some symmetry in CSP[d] does not apply
to all other instances of the CSP. In other words, parameterised symmetries
must be determined by information explicitly represented in CSP|[Data], without
requiring information only present in a particular d.

4 A Framework for Detecting Parameterised Symmetries

As the main concepts of parameterised CSPs and parameterised symmetries have
been introduced, we can now turn to the problem of detecting parameterised
symmetries for a class of CSPs. Our approach is based on a generic framework
which, given a CSP[Datal, performs the following steps:

1. Detect symmetries of CSP[d] for a number of values d given to Data,

2. Lift them to obtain parameterised permutations of the literals in CSP[Datal,

3. Filter the parameterised permutations to keep only those that are likely to
be parameterised symmetries,

4. Prove that the selected parameterised permutations are indeed parame-
terised symmetries.

Note that while the parameterised CSP is a crucial element of our framework,
the parameterised graph is currently used only as a means to define parame-
terised symmetries. However, as shown later, we plan to use the parameterised
graph to obtain a better method than we currently have for step four.

4.1 Step One: Detecting Symmetries for Some CSP|[d]

The first step of our generic framework can be realised in different ways by the
choice of parameter values and of symmetry detection method. These choices are
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somewhat mutually dependent. For example, using a powerful symmetry detec-
tion method will usually force the parameter values to be small. As mentioned
before, our implementation uses the detection method of Mears et al. which
returns the group of symmetries in a CSP|[d] as a set of group generatordl]. Also,
our implementation assumes that the parameter Data is a tuple of k integers,
(p1,p2, .., k) and chooses parameter values d by increasing each component of
the tuple individually, starting from some user-defined base tuple (typically the
smallest meaningful instance of the class).

Ezample 6. For LatinSquare[N], Data has a single component: the board size N.
If the user provides (3) as the base tuple, we increment the component twice ob-
taining three values for d: (3), (4), and (5). For the social golfers problem (see Sec-
tion [l), Data has three components: the number of weeks, groups per week and
players per group. If (2, 2, 2) is the base tuple, we increment twice each component
to get nine values for d (seven of which are distinct): (2,2,2),(3,2,2),(4,2,2),
(2,2,2),(2,3,2),(2,4,2),(2,2,3), (2,2,2), and (2,2, 4).

4.2 Step Two: Lifting Symmetries to Parameterised Permutations

This step requires taking every symmetry ¢ detected in step one for any of
the CSP[d] considered, and determining one or more parameterised permuta-
tion(s) f[Data] for which f[d] = g. Since computing f[Data] from g alone is
quite a task, our implementation uses a much simpler, although incomplete,
method: it first defines a set of “common” parameterised symmetries Per =
{f1[Datal,- - -, fm[Data]}, and then checks every generator g against them.

The success of our implementation relies on the parameterised CSPs having
literals that can be arranged into an n-dimensional matrix, and having param-
eterised symmetries that permute particular matrix elements, such as rows or
columns. These are the kind of “common” symmetries that we will add to Per.

Counsider a CSP[Data] with an n-dimensional matrix-like structure L[Datal,
whose elements correspond to the literals in CSP[Data] (and, thus to the nodes
in G[Data)). The exact number of elements in each of the n dimensions of L[Data)
depends on the value given to Data and can be obtained by means of a function
Dims[Data) = (dy,da, . ..,d,), where d;,i € [1..n] indicates the exact number of
elements in the 7" dimension.

Ezample 7. The parameterised LatinSquare[N| problem has a matrix like struc-
ture, since its literals can be arranged into a 3-dimensional matrix where each lit-
eral square;; = k is indexed as L[NJ; j . This is clearly visible in Figure[Il where
the only difference between G[3] and G[4] are the exact values of each dimension:
Dims[3] = (3, 3,3) while Dims[4] = (4,4,4).

Parameterised permutations can then be easily expressed as permutations on the
elements of L[Data] without reference to any specific value d given to Data. This

! Since the symmetry detection method chosen is incomplete (i.e., might miss some
symmetries), our implementation of the generic framework is also incomplete.
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allows us to express a parameterised permutation as a single entity, even though
each specific instantiation might involve permuting different nodes. Some com-
mon parameterised permutations for a CSP[Data] with n-dimensional matrix
L[Data] and Dims[Data] = (d1,ds, . ..,d,) are:

— Value swap: interchanges values v and v’ of the £ dimension (e.g., sym-
metry represented by generator D in Figure[Il) and is defined as:
L{Datals,.....ix 1 0i5s1,nsin
L[Da,ta,]il7___7ik71vv/7ik+17___7in Vi]‘ S [ld]},.] S [17?,}

All values swap: interchanges all values of the £ dimension (e.g. symme-
tries represented by generators D, E, and their combinations in Figure [I])
and is defined as: L[Datali, ... i,_1 vinsr,....in < L[Datals, .
Vo, v" € [1.di],v # ', 45 € [1..d;],j € [1.n].

Dimension invert: interchanges every value v of the k" dimension with
value n — v + 1 (e.g., symmetry represented by generator A and by gen-
erator Al in Figure ) and is defined as: L[Datali, .. i, 1 v0,ixs1,....in
L[Data]ih___7ik71vn_v+17ik+17___7in, Yo € [1dk], ij S [1..dj],j € [17?,}
Dimension swap: swaps k™ and &'*" dimensions (e.g., symmetry repre-
sented by generator B in Figure [2]) and is defined as:

L[Datal;, ..
L[Data);, ...

<«

=1,V k41,00

«—

=1y ks Tl 1 se s Tgel —158g s 8g/ 150 s0n

in VZ] S [1d]}7.] c [ln}

R TSENIR PV TN TOO SPEPI TR YRR

Ezample 8. The generators found for LatinSquare[3] in Example 3] can be auto-
matically matched to the following parameterised permutations for L[N|:

A value swap with k = 2,v = 2,0 = 3:
B value swap with &k = 1,v = 2,7’ = 3:
C dimension swap with k = 1,k' = 2:

D value swap with &k = 3,v = 1,0 = 2:

L[NJs21 <> L[NJs31,Vi,1 € [1..N]
251 < L[N]sj1,¥j,1 € [1..N]
ijl < L[N]ju, Vi, 7,1 € [1..N]

ij2 < L[N]ijg,,Vi,j € [1N]
ijl < L[Nk, Vi, j,1 € [1.N]

E value swap with k = 3,v = 2,0’ = 3:

]

N]

N]
N]z‘jl — L[N]ijz,Vi,j < [1N]

N]

F dimension swap with k =2,k =3: L[N]

[
L
L]
L]
L]

[

Consider the graph G[4] associated with LatinSquare[4], shown in the right
hand side of Figure[Il Saucy finds 9 generators for this graph. Six of them are
simple extensions of those found for G[3]. For example, the extension of A is:
A (ni21,n122,n123, N124, N221, N222, - . - ) <

,N3215 .. 5,M421, - .«

(n131,n132, 133, 1134, 1231, 7232, .. .,7331,...,7431, .. >

and similarly for B, C, D, E and F. The other three generators found are:

Al(ni3i,n132,M133, M134, M231, N232, - - . ,N331, - - -, 1431, - . .) <>
(n141,M142, 1143, 144, M241, 242, . . ., 341, . . ., Nddl, . . )
B1(nsi1,n312,M313, N314, N321, 322, - - - ; N331 5 - - s N341, - . .) <
(na11, 412, M413, 10414, 10421, 10422, . - ., TUABL, - - ., 10441, - - )
E1(n113,n123, n133, N143, N213,M223, - . . , N313, - - ., 413, . . ) <
(n114,M124, 134, 144, M214, 224, . . ., N314, . . ., 414, . - )

The generators A, B, C, D, E and F in G[4] match the parameterised
permutations used for G[3], while A1, B1 and E1 match value swap with:
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Al k=2v=31 =4: L[N]3; = L[N, Vi,l € [L..N]

Bl k=1,v=3,v"=4: L[N]3j; <> L[N]4;i,Vj,l € [1..N]

El k=3,0=3 =4: L|N];;3 = L[NJ;js,Vi,j € [L..N]

The generators found by Saucy for LatinSquare[5] are the simple extensions of
A, A1, B, B1, C, D, E, E1 and F (which can be parameterised as before),
plus three more A2, B2, and E2, which can be parameterised as:

A2 k=2,v=4,v =5 L[N]isi < L[N, Vi, € [1..N]

B2 k=1,v=4,v' =5: L[N]3j < L[N]4j;, V4,1 € [1..N]

E2 k=3,v=4, v =5 L[N]ijg, — L[N]z‘jzl,Vi,j S [1N]

Considering a symmetry ¢ in isolation is not always productive. This is because
some parameterised permutation patterns, when instantiated, correspond to a
group of symmetries rather than to a single symmetry. For example, the “all val-
ues swap” pattern (which interchanges all values in a dimension) is a combination
of at least two generator symmetries. Thus, to detect such a parameterised pat-
tern we cannot simply parameterise each symmetry on its own; we must consider
groups of symmetries {g1,- -, gm} such that f[d] = {g1, -, 9m}-

For the “all value swap” case, we group symmetries by keeping track of any
pair of value-swap pattern symmetries which operate on the same dimension and
whose interchanged values overlap. These are combined into a single symmetry
stating that all values involved can be freely interchanged. Our implementation
considers the “all values swap” pattern matched if, by applying this kind of
combination until a fixpoint is reached, we obtain a symmetry that interchanges
all [1..dy], where dj, is the value returned by Dims[d] for dimension k.

Ezample 9. The generators D and E for LatinSquare[3] form an instance of the
“all value swap” pattern L[N, <> L[N]ijo,Vv,v" € [1..N],v # ¢, 4,5 € [1..N].
The generators D, E and E1 for LatinSquare[4] form the same pattern.

4.3 Step Three: Filtering Parameterised Permutations

Step two identifies our candidate parameterised symmetries. However, it is likely
that some of these candidates apply only to a few instances, rather than to the
entire class. We would like to eliminate unlikely permutations before performing
the (possibly expensive) proof step. Our implementation uses a simple (and again
incomplete) heuristic which selects as likely candidates the intersection of the
parameterised permutations present in all tested instances.

Unfortunately, the success of such an intersection relies on Saucy returning
the same (or equivalent) set of generators for each CSP[d]. This is because,
as mentioned before, our implementation only attempts to parameterise the
generators returned by Saucy (as opposed to every symmetry in the group), and
a group can be obtained from many different sets of generators. We can solve this
problem as follows. If a particular parameterised permutation is found in more
than one instance but not in all, we check the group of symmetries of the other
instances to see if the permutation is, in fact, present. This is done via the GAP
system for computational group theory [4]. If the parameterised permutation is
indeed found in all instances, it is marked as a candidate.
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Fig. 2. Graph instances for Queens[4] and Queens[5]

Ezample 10. Consider the social golfers problem with values of d being (2, 2, 2),
(3,2,2), (4,2,2), (2,3,2), (2,4,2), (2,2,3), (2,2,4). Our implementation finds
an instance of the “all value swap” pattern for the third dimension (golfers are
interchangeable) for every value of d. However, the “all value swap” pattern
for the first dimension (the weeks are interchangeable) is found for only 5 out
of the 7 values of d, due to the particular generators given by Saucy. Searching
explicitly for this pattern in the groups found for the other values of d shows that
it is indeed present in all of them and can thus be considered a likely candidate.

4.4 Step Four: Proving Class Symmetries

This last step can be achieved, for example, by first representing both the param-
eterised CSP and the candidate parameterised permutation in the logic formalism
described in [8], and then making use of theorem proving techniques. Of course,
such a technique is in general undecidable. We are currently exploring an alter-
native approach that we hope will be more successful: to use graph techniques to
prove that our likely candidate is an automorphism of the parameterised graph
G[Data]. This is however not straightforward, since G[Data] is not really a graph,
but a syntactic construct that represents a class of graphs.

5 Detailed Examples

We have seen how our current implementation automatically detects as likely
candidates all parameterised symmetries in LatinSquare[N]. This is, however,
not always the case. Here we provide three other examples: Queens, for which it
again detects all parameterised symmetries as likely candidates, Social golfers,
for which it also detects all symmetries (after adding a new pattern), and Golomb
ruler, for which it fails to detect any likely candidate.

Queens: aims at positioning N queens on an N x N chess board without at-

tacking each other. The following parameterised CSP Queens[N] uses N integer
variables (each being the row in which the queen appears) with domains in [1..N].
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X[N] = {qli € [1..N]}
= [1..N]
C[N] = {@ # q;li € [1..N],j € [i + 1..N]}U

{e: +i#q+jlie[l.N],je[j+1.N}U
{¢s —i#q;—jli€[1.N],j € [j +1.N]}

Its parameterised graph G[N| = (V[N], E.[N] U E,[N]) is

VIN] = {gli,v € [1..N]}
Ec[N] = {{qiv, qjo}|i,v € [1..N],j € [i + 1.N])}U

{{giv;> qjv, }i,visv; € [L.N],j € [i + 1.N],vi +i = v; + 5) }U
{{qi’l)i7qjvj}|i7vi7v] [ N] ]6[7’+1 N] Vi — 7’_1}]_.7)}
Ey[N] = {{qivivqﬂj}hvvhvj [1.N], v # v}

where node ¢;, represents literal ¢; = v. Given the initial base tuple (4), our im-
plementation generates G[4], G[5] and G[6]. Figure 2l shows the graph instances
G[4] and G[5], together with the generators found by Saucy. For G[4] it finds:

A (q11, 012,621, G422, @31, G32, a1, Ga2) < (qu4, Q13, G24, G23, 434, G33, G4, G43)
B (q12, q13, q14, G23, 24, G34) < (G21, G31, Ga1, G32, Ga2, Ga3)

which can be parameterised to match:

A dimension invert with k=2: L[N]iy < LIN]i(N—v41), Vv, @ € [1..N]
B dimension swap with k =1 and k" = 2: L[N|;; < L[N];;,Vi,j € [1..N]

and for G[5] Saucy finds:

Al{(q11, q12, G21, G22, G31, G325 Ga1, Gaz, G51, G52) <
<CI15, 414,425,424, 435,434, 445, 444, 455, 454

B (

(

412,413, q14, 415, 423, 24, 925, 434, 435, 454) <

421,431,441, 441, 432, 442, 452, 443, 453, 445

-~

where B is an extension of the generator with the same name found for G[4]
(and matches the same dimension swap pattern), and Al is a new generator
that matches the same dimension invert pattern as A. The generators found for
G[6] are, again, an extension of B that matches the dimension swap pattern,
and a new generator A2 that matches the same pattern as A and Al. The
intersection of the patterns results in both being marked as likely candidates.

Social Golfers: aims at building a schedule of W weeks, with G equally-sized
groups per week, and P golfers per group, such that each pair of golfers may
play in the same group at most once. A parameterised CSP Golf[W, G, P] is:

X[W,G, P] = {playerswg|w € [1.W], g € [1.G]}
DW,G, P] = p({1..P * G})
CW, G, P] = {|playerswy| = Plw € [1.W], g € [1..G]}U
{|playerswg, N playerswg,| = 0lw € [1.W],g1,92 € [1..G], g1 < g2}U
{|playersw, g, N playerswyg,| < 1w, wz € [1.W]wi < w2, g1,92 € [1..G], g1 < g2}

where g is the powerset. The associated parameterised graph G[W, G, P] is:



A Novel Approach For Detecting Symmetries in CSP Models 169

VIW,G, Pl = {nuwgp|lw € [1.W],g € [1..G],p € p([1..P «G])}
E.W, G, P] ={nwgp|w € [1.W],g € [1..G], |p| # P}U
{{nwgrp1s Nwgaps) |0 € [LLW], 91,92 € G, g1 < g2,
p1,p2 € p([1..P * G]), [pr Np2| # 0)}U
{(nwlglplvnw2gzp2>|w1»w2 € [1"W]»w1 <w2,91,92 € G,
91 < g2,p1,p2 € p([L..P = G]), [pr N p2| > 1}
EW[W, G, P] :{<”wgp,p’nwgp2>|w € [1..W],g € [1..G],p1,p2 S @([1"1)* G]),p1 75132}

where node n.,, represents literal players,,, = p. The parameterised versions of
the generators found for G[2,2, 2] are:

A {nija < nipli € [1.W],5 € [1.G],a,b € p([1..P *G]),1 € a;b = (a\ {1}) U{2}}

B {nija < nijpli € [L.W], 7 € [1..G],a,b € p([1..P xG]),2 € a;b = (a \ {2}) U {3}}

C {nija < nijpli € [1.W],j € [1..G],a,b € p([1..P xG]),3 € ;b= (a\ {3}) U{4}}

D {ni1v < nizw|v € p([1..P xG])}

E {no1, < naslv € p([1.P x G])}

F {niju < najulj € [1.G],v € p([1..P x G])}

Generators A, B and C represent symmetries that swap golfers 1 with 2, 2
with 3, and 3 with 4, respectively. Taken together, our implementation detects
the combined all value swap permutation pattern that states that all golfers are
interchangeable. Generator F represents the symmetry that swaps week 1 and
week 2. This trivially matches the all value swap pattern that states that all
weeks are interchangeable, and also the dimension invert pattern that reflects
the weeks. Generators D and E represent symmetries that swap groups 1 and
2 within week 1, and within week 2, respectively. Our implementation did not
consider parameterised patterns that perform a swap on only a subset of the
literals and, thus, failed to detect such pattern as likely candidate. However, once
we extended the set of patterns to include one that represents the interchanging
of values within a particular row or column, this symmetry was captured.

The generators for G[2,3,2], G[2,2,3], G[2,4,2] and G[2,2,4] include the ex-
tended versions of generators A to F in G[2,2,2], plus additional generators
representing the interchangeability of the extra golfers, and of the extra groups.
As before, our implementation detects the combined all value swap pattern that
states that all golfers are interchangeable and that all weeks are interchange-
able. With the inclusion of the pattern mentioned above, the interchangeability
of groups within each week is also marked as likely candidate.

The generators for G[3, 2, 2] include the extended versions of A, B, C, D and
E. However, Saucy produces generators that do not have a simple parameter-
isation. The situation for G[4,2,2] is similar. But since the weeks were found
to be interchangeable in all of the other instances, the implementation consults
GAP to check whether this holds for [3,2,2] and [4, 2, 2], even though the gen-
erators from Saucy don’t directly correspond to it. GAP indicates that it does
and, therefore, the symmetry is marked as a likely candidate.

Golomb ruler: is defined as a set of N integers (marks on the ruler) aq,...,an
such that the N(A;*l) differences a; — a;,1 < i < j < N are distinct. The
problem involves finding a valid set of N marks. The following parameterised
CSP Golomb[N] uses N integer variables (the marks) with domains in [0..N?],
plus N(]\;_l) integer variables (the differences) with domains [1..N?].
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X[N] = {marki;|i € [0..N]} U{diffi;|i € [1..N],j € [i + 1..N]}

DIN] = {[0.N°],[1.N"]}

C[N] = {mark; — mark; =diffi;|i € [1.N],j € [i + 1..N]}U
{diffij #diffirli, j € [1.N], k € [j + 1.N]}

dom(m;) = [0..N?] ; dom(d;;) = [1..N?]

The parameterised graph associated with Golomb[N] is

VIN] = {mili € [1..N],v € [0..N?]}U
{djin|i € [1..N],7 € [(i +1)..N],v € [1..N?]}

EC[N} :{{mwl,mjvz,dijvs}ﬁ € [1NL] S [(’L+ 1)..]\”7 v1,V2,V3 € [1..N2],’U1 — V2 75 U3}U
{{dijv,dijv}ﬁ € [1N],j S [(’L + 1)..N],1) S [1N2]}

Ey[N] H(mivy, Mivy)|i € [1..N],v1,v2 € [1..N2],U1 # v U
{(dijoy, dijus)]i € [1.N],j € [(i + 1)..N],v1,v2 € [L.N?],v1 # vz}

where node m;, represents literal mark; = v and node d;j, literal diffs;; = v.
The generator found by Saucy for G[3] is:

<d1217d1227d1237d1247d1257d1267d1277d1287d129> g
(d231, d232, d2ss, d2sa, d23s, d2se, d237, d2ss, d23e) plus
(mi0, m11, M12, M13, M14, M15, M6, M17, ..., M24) <>
(mag, msg, m37, M3, M35, M34, M33, M32, . . ., M2s)

which swaps the lengths of the spaces between the marks, i.e., turns the ruler
back-to-front. This symmetry involves variables from two separate matrices, d;;
and m;, and our simple implementation cannot yet handle this. Even if we only
consider the search variables m;, our implementation would need to obtain for
G[3], G[4] and G[5] the pattern {m;, < mj|i,j € [l.N],i=N—j+ 10,0 €
[0..N?],v = N2 — v’ +1}. Since our implementation currently does not take this
pattern into account, it cannot recognise the symmetry as likely candidate.

6 Results

Let us evaluate our simple implementation (which includes the patterns de-
scribed in Section plus the additional pattern described for Social Golfers)
over a set of problems that include those discussed earlier, plus the following.

Balanced Incomplete Block Design: with parameters (v, b, k,r, \), where
the task is to arrange v objects into b blocks such that each block has exactly
k objects, each object is in exactly r blocks, and every pair of objects occurs
together in A blocks. The objects are interchangeable and the blocks are inter-
changeable.

Graceful Graph: with parameters (m,n), where the edges (a,b) of the graph
K,, x P, are labeled by |a — b|, and there is no two edges with the same label.
The corresponding vertices in each clique are simultaneously interchangeable,
the order of the cliques is reversible, and the values are reversible.

N x N queens: where an N x N chessboard is coloured with N colours, so that
a pair of queens in any two squares of the same colour do not attack each other.
The symmetries are those of the chessboard, plus the colours are interchangeable.
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Table 1. Symmetry detection results

Problem Tuple Amount Symmetries Time Instance

BIBD (2,2,2,2,2) 43 objects  19.0 20%
blocks

Social Golfers  (2,2,2) +2 rows 3764 96%
groups
players

Golomb Ruler  (3) +3 flip X 6.7  99%

Graceful Graph  (2,2) +3 intra-clique 9.0 44%
path-reverse
value

Latin Square (3) +3 dimensions  13.7  10%
value

N x N queens (4) +3 chessboard 8.0 21%
colours

Queens (int) (8) +3 chessboard 3.6  36%

Queens (bool) (8) +3 chessboard 54  64%

Steiner Triples (3) +3 triples  16.8  32%
value

Queens (bool): which uses a Boolean matrix model for the Queens problem of
Section Bl The symmetries are those of the chessboard.

Steiner Triples: where the task is to find "("6_1) triples of distinct integers

from 1 to n, such that any pair of triples has at most one element in common.
The triples are interchangeable and the values are interchangeable.

Table [ shows the results, where the columns indicate the problem name,
the base tuple, the amount by which each component is increased, the known
symmetries and whether they are found by our implementation, the total running
time in seconds, and the percentage of that time spent in detection (as opposed
to parametrisation). The experiments were run on an dual Intel Core 2 1.86GHz
computer with 1GB of memory. No effort has been made to optimise detection
time; the times are included simply to show the practicality of the approach.

7 Conclusions

The automatic detection of CSP symmetries is currently either restricted to
problem instances, or limited to the class of symmetries that can be inferred
from the global constraints present in the model. This paper provides a radically
new framework that takes advantage of existing (and future) powerful detection
methods defined for problem instances, by generalising their results to models
without requiring them to use any particular syntax. We provide a very simple
(and incomplete) implementation that requires the problem to have matrix-
like structure and only considers a pre-determined number of model symmetries
(those that correspond to permutations of the objects in the matrix). While
this is a very limited implementation of the general framework, it is nonethe-
less capable of detecting symmetries that could previously only be detected for
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instances. Of course, more complete implementations of the framework will be
able to detect even more kinds of symmetries.

We now plan to integrate in our implementation techniques to validate or
reject likely candidates. While theorem proving techniques are an obvious possi-
bility, we are also investigating graph techniques that rely on the parameterised
graph and which we think will be more efficient and complete.
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Amsaa: A Multistep Anticipatory Algorithm
for Online Stochastic Combinatorial Optimization

Luc Mercier and Pascal Van Hentenryck

Brown University, Box 1910, Providence, R1 02912, USA

Abstract. The one-step anticipatory algorithm (/s-AA) is an online algorithm
making decisions under uncertainty by ignoring future non-anticipativity con-
straints. It makes near-optimal decisions on a variety of online stochastic combi-
natorial problems in dynamic fleet management, reservation systems, and more.

Here we consider applications in which /s-AA is not as close to the optimum
and propose Amsaa, an anytime multi-step anticipatory algorithm. Amsaa com-
bines techniques from three different fields to make decisions online. It uses the
sampling average approximation method from stochastic programming to ap-
proximate the problem; solves the resulting problem using a search algorithm
for Markov decision processes from artificial intelligence; and uses a discrete
optimization algorithm for guiding the search.

Amsaa was evaluated on a stochastic project scheduling application from the
pharmaceutical industry featuring endogenous observations of the uncertainty.
The experimental results show that Amsaa significantly outperforms state-of-the-
art algorithms on this application under various time constraints.

1 Introduction

In recent years, progress in telecommunication and in information technologies has gen-
erated a wealth of Online Stochastic Combinatorial Optimization (OSCO) problems.
These applications require to make decisions under time constraints, given stochastic
information about the future. Anticipatory algorithms have been proposed to address
these applications [[18]]. We call an algorithm anticipatory if, at some point, it anticipates
the future, meaning that it makes some use of the value of the clairvoyant. These antic-
ipatory algorithms typically rely on two black-boxes: a conditional sampler to generate
scenarios consistent with past observations and an offline solver for the deterministic
version of the combinatorial optimization problem.

1s-AA is a simple one-step anticipatory algorithm. It works by transforming the
multi-stage stochastic optimization problem into a 2-stage one by ignoring all non-
anticipativity constraints but those of the current decision. This 2-stage problem is ap-
proximated by sampling, and the approximated problem is solved optimally by com-
puting the offline optimal solutions for all pairs (scenario,decision). /s-AA was shown
to be very effective on a variety of OSCO problems in dynamic fleet management [312]],
reservation systems [18]], resource allocation [13], and jobshop scheduling [17]. More-
over, a quantity called the global anticipatory gap (GAG) was introduced by [14] to
measure the stochasticity of the application and that paper showed that /s-AA returns
high-quality solutions when the GAG is small.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 173 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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Here we consider OSCO applications with a significant GAG and propose to address
them with Amsaa, a multi-step anticipatory algorithm which provides an innovative
integration of techniques from stochastic programming, artificial intelligence, and dis-
crete optimization. Like /s-AA, Amsaa samples the distribution to generate scenarios of
the future. Contrary to /s-AA however, Amsaa approximates and solves the multi-stage
problem. The SAA problem is solved by an exact search algorithm [4] using anticipa-
tory relaxations as a heuristic to guide the search.

Amsaa was evaluated on a stochastic resource-constrained project scheduling prob-
lem (S-RCPSP) proposed in [6] to model the design and testing of molecules in a phar-
maceutical company. This problem is highly combinatorial because of precedence and
cumulative resource constraints. It is also stochastic: the durations, costs, and results of
the tasks are all uncertain. The S-RCPSP features what we call endogenous observa-
tions: the uncertainty about a task can only be observed by executing it. This contrasts
with online stochastic combinatorial optimization (OSCO) problems studied earlier, in
which the observations were exogenous, and leads to significant GAGs [§]]. More gen-
erally, Amsaa applies to a class of problems that we call Stoxuno problems (STochastic
Optimization with eXogenous Uncertainty and eNdogenous Observations). The experi-
mental results indicate that Amsaa outperforms a wide variety of existing algorithms on
this application.

The rest of the paper is organized as follows. Sections2JandBldescribe the motivating
problem and introduce Stoxuno problems. Section ] presents the background in Markov
Decision Processes and dynamic programming. Section [3] introduces the concept of
Exogenous MDPs (X-MDPs) to model Stoxuno and exogenous problems. Section
describes Amsaa. Section[7] presents extensive experimental results. Section[8lcompares
Amsaa with a mathematical programming approach. Section[9] concludes the paper and
discusses research opportunities.

2 A Stochastic Project Scheduling Problem

This section describes the stochastic resource-constrained project scheduling problem
(S-RCPSP), a problem from the pharmaceutical industry [6]. A pharmaceutical com-
pany has a number of candidate molecules that can be commercialized if shown suc-
cessful, and a number of laboratories to test them. Each molecule is associated to a
project consisting of a sequence of tasks to be executed in order. A task is not preemp-
tive and cannot be aborted once started. Its duration, cost, and result (failure, which
ends the project, or success, which allows the project to continue) are uncertain. The
realization of a task is a triplet (duration, cost, result). A project is successful if all its
tasks are successful. A successful project generates a revenue which is a given decreas-
ing function of its completion date. The goal is to schedule the tasks in the laboratories,
satisfying the resource constraints (no more running tasks than the number of labs at
any given time), to maximize the expected profit. The profit is the difference between
the total revenues and the total cost. There is no obligation to schedule a task when a
lab is available and there are tasks ready to start. Indeed, it is allowed to drop a project
(never schedule a task ready to start), as well as to wait some time before starting a task.
Waiting is sometimes optimal, like in dynamic fleet management [2]].
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(a) Project Markov chains  (b) Revenue functions (c) Offline optimal schedules
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(c2) when A.2 is long

Project A

Proj. A
104Project B

Fig. 1. An Instance of the Stochastic Project Scheduling Problem

Each project is modeled by its own finite heterogeneous first-order Markov chain.
That is, for each task, the set of possible realizations is known. The Markov chain, which
is given, provides the distribution of the realization of the first task, and the probability
transition matrices that, for any realization of the i-th task, gives the distribution of the
realization of the (i + 1)-th task.

Figure [T depicts a small instance to illustrate these concepts. In this instance, there
are 3 projects and 4 tasks, and all the projects always succeed. In this instance, the
offline optimal schedules for the two possible realizations, which are shown in Figure
[[(c), differ at the first decision when the uncertainty is not yet resolved. Hence the
optimal online policy is necessarily inferior to a perfect clairvoyant decision maker.
The schedule in Figure[I(c2) is the optimal online solution.

3 Exogeneity and Endogeneity: Problem Classification

Traditionally, stochastic optimization problems were separated into two classes accord-
ing to the exogenous or endogenous nature of their uncertainty. To delineate precisely
the scope of Amsaa, we need to refine this classification.

Purely exogenous problems are those in which the uncertainty, and the way it is ob-
served, is independent of the decisions. Customers and suppliers behavior is considered
exogenous [[18], as well as nature (e.g., water inflow in hydroelectric power scheduling),
and prices in perfect markets. In this class, there is a natural concept of scenario (e.g.,
the sequence of customer requests) and, given two scenarios, it is possible to compute
when they become distinguishable.

Purely endogenous problems are those for which there is no natural concept of sce-
narios. Most benchmark problems for Markov Decision Processes are of this nature.
Problems in robotics where the uncertainty comes from the actuators are endogenous.

Stoxuno Problems (STochastic Optimization problems with eXogenous Uncertainty
and eNdogenous Observations ) are applications like the S-RCPSP, for which the un-
derlying uncertainty is exogenous, but observations depend on the decisions. In these
problems, the concept of scenario is natural. However, given two scenarios, it is not pos-
sible to decide when a decision maker will be able to distinguish them. Many scheduling
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problems with uncertainty on tasks should belong to this category. The lot sizing prob-
lem in [10] also falls into that category.
Amsaa applies to both purely exogenous and Stoxuno problems.

4 Background in Stochastic Dynamic Programming

Stochastic Dynamic Programming is a field of research that aims at solving stochastic
optimization problems modelled as Markov Decision Processes (MDPs). MDPs can
model purely endogenous problems, purely exogenous, and Stoxuno problems. We only
consider finite horizon MDPs with no reward discounting and no transition costs.

Markov Decision Processes. An MDP (S,s0,F, X, 1, 2, f, %) consists of:

— a state space S, an initial state so € S, and a set of final states FF C S.

— a decision space X containing a decision L (denoting no action) and a function
Z . § — X returning the set of feasible decisions in a given state such that Vs €
S,0<#2 (s) <eoandthatVs € F, 2 (s) = {L}.

— abounded reward function f : F — R.

— a transition function & : § x X — prob(S), where prob(S) is the set of probability
distributions over S, satisfying Vs € F, 2 (s, L)({s}) = 1.

For convenience, we write Z(-|s,x) instead of Z(s,x)(:). A run of an MDP
(S,s0,F, X, L, 2, f,2?) starts in the initial state so. In a given state s, the decision
maker selects a decision x € 2" (s) which initiates a transition to state s’ € A C § with
probability 2 (Als,x). The resulting sequence of states and decisions, i.e. 5o — s; —
L2 s, = ..., is called a trajectory. This is a Markovian process: conditionally on
s; and x;, the distribution of s, is independent of the past trajectory.
We assume horizon finiteness: there exists an integer 7 such that all trajectories
starting in so are such that sz is final. As a corollary, the state space graph has to be

acyclic. The objective of the decision maker is to maximize E[f(sr)].

Policies, Value functions, and Optimality. A (deterministic) Markovian policy 7 :
S — X is a map from states to feasible decisions, i.e., that satisfies Vs € S, n(s) € Z7(s).
The value vz (s) of policy 7 in state s is the expected value obtained by running policy
7 from state s. A policy 7 is optimal if the value v (sp) is maximal among all policies.

A value function v is a map S — R. The Q-value function canonically associated to
v is the mapping S X X — R defined by Q(s,x) = E% [v(s’)|s,x], which, in the case
of finite state space, becomes Q(s,x) = Ycgv(s') P (s'|s,x). Given a value function v
and a state 5, a decision x € 27(s) is greedy if Q(s,x) = maxyc 5 () Q(s,x'). We assume
that there is a rule to break ties, so we can talk about “the” greedy decision even though
it is not unique. The greedy policy m, associated with a value function v is the policy
defined by taking the greedy decision in every state. A value function is optimal if the
associated greedy policy is optimal. A necessary and sufficient condition for v to be
optimal is that, for all state s reachable under m,, we have v(s) = f(s) if s is final,
and Res,(s) = 0 otherwise, where Res,(s) = v(s) — max Q(s,x) is called the Bellman
residual of v at s. Under our assumptions, there is always an optimal value function v*.
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5 Exogenous Markov Decision Processes

Section[3]discussed the nature of the uncertainty. MDPs can model problems of any na-
ture, but represents the uncertainty endogenously. For exogenous problems, it is better
to use a model that represents the uncertainty exogenously. Stochastic programs are an
example of such models, but they cannot model Stoxuno problems. Therefore we in-
troduce exogenous MDPs (X-MDPs) that allow the modeling of purely exogenous and
of Stoxuno problems. They are neither more nor less expressive than traditional MDPs
[18]], but have computational advantages discussed at length in Section[6l

Model and Definitions. An exogenous Markov decision process (X-MDP)
(8,50, F, X, L, 2, f,&, Ug, T) consists of:

— astate space S, an initial state sg € S, and a set of final states F' C S.

— a decision space X containing a decision L (denoting no action) and a function
Z . § — X returning the set of feasible decisions in a given state such that Vs €
S,0<#2 (s) <eoandthatVs € F, 2 (s) = {L}.

— abounded reward function f : F — R.

— arandom variable &, with values in a scenario space =, and distribution He -

— a (deterministic) transition function 7: S8 x X x & — § satisfying Vs € S, V& €
=, 1(s, L, &) =s.

Running an X-MDP consists of first sampling a realization & of the random variable
£. The decision maker doesn’t know &, but it makes inferences by observing transition
outcomes. Starting in s, it makes a decision, observes of the outcome of the transition,
and repeats the process. For a state s and a decision x, the next state becomes 7(s,x, ).

. . . . Xp—
The alternation of decisions and state updates defines a trajectory s ;—O> sp L

¢
satisfying (i) for all i, x; € 2 (s;) and (ii) for all , s; 11 = T(s;, %, &).

Like for MDPs, we assume finite horizon: there is a T such that s7 is final regardless
of the decisions made and of £. The objective also consists of maximizing E[f(s7)],
which is always defined if f is bounded. We will also restrict attention to Markovian
policies; in this order, we need to introduce a new concept before specifying the prop-
erty that ensures their dominance.

In an X-MDP, scenario & is compatible with a trajectory sg RINPHSI 2, S

. . Xp— . .
if 7(si,x;,&) =541 foralli <r. € (so 0,01 s,) is the set of such scenarios. A

scenario is compatible with a state s if it is compatible with a trajectory from sg to s,
and % (s) is the set of such scenarios.

The Markov property for X-MDPs, which ensures the dominance of Markovian poli-
cies, then reads:

for all trajectory s D, 2 sty € (so D, A2 s,) =% (s1)- (1)

It will be easy to enforce this property in practice: simply include all past observations
into the current state. An elementary but important corollary of this assumption is that
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conditional probabilities on the past trajectory are identical to conditional probabilities
on the current state, i.e.,

Xr—1

VACE, ]P’(EEA’EE%”(SOX—O%..—Wz))ZP(EEA"EG%(&)%

Hence, sampling scenarios conditionally on the current state is equivalent to sampling
scenarios conditionally on the past trajectory.

X-MDPs naturally exhibit an underlying deterministic and offline problem that has
no counterpart in MDPs. The offline value of state s under scenario &, denoted by
O(s,E), is the largest reward of a final state reachable from state s when &€ = &. It
is defined recursively by:

5(s.8) { £(s) if s is final,

max.c 7°(5) O(7(s,x,§),&) otherwise.

Consider the instance shown in Figure[Il If & and & denote the scenarios in which A.2
is short and long respectively, then & (sg, &) = 17 and O'(so,&;) = 15.

Policies and Optimality for X-MDPs. Like for MDPs, it is possible to define the value
of a policy for an X-MDP. Let A be an X-MDP and 7 : § — X be a policy for A. Consider

a past trajectory so D, 02 st, not necessarily generated by 7. Remember that for
any sequence of decisions st is final. Therefore the expected value obtained by follow-

ing 7 after this past trajectory is well defined and is denoted by v, (so o, 2 s,) .

By the Markov property, this quantity only depends on s;, so we denote it 7(s,). A
policy 7 is optimal if the value vz (sg) is maximal among all policies.

Modelling the Stochastic RCPSP as an X-MDP. It is easy to model the S-RCPSP as
an X-MDP. A state contains: (1) the current time, (2) the set of currently running tasks
with their start times (but without lab assignment), and (3) the set of all past observed
task realizations. Thanks to (3) the Markov property for X-MDPs is satisfied.

6 Amsaa: An Algorithm for Decision Making in X-MDPs

Overview of Amsaa. This section presents a high-level overview of Amsaa, the Any-
time Multi-Step Anticipatory Algorithm, which aims at producing high-quality deci-
sions for X-MDPs. Its pseudo-code follows.

Because we want an anytime algorithm, that is, one that can be stopped and return
something at any time, there is an outer loop for which the condition can be anything.
In an operational setting, it will most likely be a time constraint (e.g., “make a decision
within a minute”), and in a prospective setting, it could be a stopping criteria based on
some accuracy measure (for example, the contamination method [9]).

Amsaa’s first step is to approximate the X-MDP to make it more tractable. It then
converts it to an MDP in order to apply standard search algorithm for MDPs. This
search is guided by an upper bound that exploits the existence of offline problems due
to the exogenous nature of the uncertainty. For efficiency, lines 3—4 are incremental, so
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Function. Amsaa (X-MDP A)

1 while some condition do

2 Approximate the X-MDP A by replacing & with a random variable & " whose support is smaller,
or refine the current approximation.

3 Convert the resulting X-MDP to a standard MDP.

4 Solve the resulting MDP with a search algorithm for MDPs, using the offline upper bound

heman(s) = E[0(5,€)) | € € 6(5)].

5 return the greedy decision at the root node of the MDP.

that when the approximation is refined (line 1), the amount of work to be done is small
if the refinement does not change the approximated problem too much.

We will now present the details of the approximation, of the convertion to an MDP,
of the MDP solving, and, finally, of the incrementality.

Approximating the X-MDP by Sampling. The first step of Amsaa is to approximate
the original X-MDP by replacing the distribution of the scenarios by one with a finite
and reasonably small support. The simplest way of doing so is by sampling. For stochas-
tic programs, this idea is called the Sample Average Approximation (SAA) method [16],
and it can be extended to X-MDPs. Suppose we want a distribution whose support has
cardinality at most n: just sample & n times, independently or not, to obtain £',... &"
and define f1, as the empirical distribution induced by this sample, that is, the distribu-
tion that assigns probability 1/n to each of the sampled scenarios. Some results of the
SAA theory translate to X-MDPs. In particular, if = is finite and the sampling iid, then
the SAA technique produces almost surely optimal decisions with enough scenarios.

Benefits of Exterior Sampling for X-MDPs. Sampling can be used either to compute
an optimal policy for an approximated problem (The SAA method, used in Amsaa);
or to compute an approximately optimal policy for the original problem, like in [12]],
who proposed an algorithm to solve approximately an MDP by sampling a number of
outcomes at each visited state (interior sampling). Their algorithm was presented for
discounted rewards but generalizes to finite horizon MDPs. We argue that the SAA
method is superior because sampling internally does not exploit a fundamental advan-
tage of problems with exogenous uncertainty: positive correlations.

Indeed, in a state s, the optimal decision maximizes Q*(s,x), where Q* is the Q-
value function associated to the optimal value function v*. However, estimating this
value precisely is not important. What really matters is to estimate the sign of the dif-
ference Q*(s,x1) — Q*(s,x2) for each pair of decisions xj,x; € 2 (s). Now, consider
two functions g and 4 mapping scenarios to reals, for example the optimal policy value
obtained from a state s after making a first decision. That is, g(&) = v*(7(s0,x1,£)) and
h(E) = v*((s0,x2,&)) for two decisions x|, x; € 2 (so). If ¢! and &2 are iid scenarios:

var (g(&") —h(€?)) = var (g(¢")) +var (n(&?)) .
var (g(€') —h(g")) = var (g(€")) + var (h(£")) —2cov (g(&"),n(€")),
and therefore var(g(¢') —h(¢')) = (1 —acorr (g(£"),h(¢"))) - var (g(¢") —h(gh)),

where acorr(X,Y) = a cov(X,Y)

var(X)Lvar(Y)) is a quantity we call arithmetic correlation. Note
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that acorr(X,Y) = corr(X,Y) when var(X) and var(Y) are close. Now consider an infi-
nite iid sample &', & 1/, £, 52/, ..., and a large integer n. By the central limit theorem, the
distributions of ;Zf’:lg(é'i) —h(&") and of nly > g€ — h(éi/) are almost the same
when 1/y =1 —acorr (g(& 1),h(£1)). Therefore, for some specified accuracy, the num-
ber of required scenarios to estimate the expected difference between g(&) and h(&) is
reduced by this factor y when the same scenarios (exterior sampling) are used instead
of independent scenarios (interior sampling).

This argument is not new, and can be found for example in [[16]. However, no empir-
ical evidence of high correlations were given, which we now report. Consider an SAA
problem approximating the standard instance of the S-RCPSP application with 200 sce-
narios generated by iid sampling, and consider the optimal policy values in the initial
state for the 6 possible initial decisions (the first is to schedule nothing, the others are
to schedule the first task of each project). Associating a column with each decision, the
values for the first five scenarios are:

0 2.110 2.038 1910 1.893 2.170
0 —0.265 —0.275 —0.275 —0.275 —0.225
OptPolicyValue = 1ed4 x | 0 —0.205 —0.230 —0.230 —0.170 —0.170
0 1.375 1.405 1279 1345 1.365
0 1.045 1.070 1.015 1.105 1.160

The correlation is evident. Excluding the first decision (which is uncorrelated to the
others), the arithmetic correlations range from 94% to 99%, computed on the 200 sce-
narios. Moreover, the minimal correlation is 98.7% among the second, third, and fourth
decisions, which are the three good candidates for being selected as the initial decision.

It remains to see whether these correlations are a characteristic of the problem or
even of the instance. In most OSCO problems, some scenarios are more favorable than
others regardless of the decisions, causing these correlations: in the S-RCPSP, scenarios
with many successful projects bring more money than scenarios with many failures, and
this is very visible on the matrix above. As a result we conjecture that, for most OSCO
problems, exterior sampling converges with far fewer scenarios than interior sampling.

Converting the X-MDP into an MDP. This is the second step of Amsaa.

Definition 1. Given an X-MDP A with state-space S and final states set F, the trimmed
X-MDP B induced by A is the X-MDP that is in all equal to A, except:

1. its state space is S' = {s € S|€(s) # T},

2. its set of final states is F' = F U{s € §'|#% (s) = 1}, and the function X" is modified
accordingly;

3. its reward function f' is defined, for states s € F'\ F, by f(s) = O(s,&), where &
is the unique scenario compatible with s.

A trimmed X-MDP is equivalent to the original one, in the sense that an optimal policy
in A induces an optimal policy in B and vice versa.

Definition 2. Let B= (S,s0,F,X, L, 2", f,&, le,T) be the trimmed X-MDP induced by
an X-MDP A. Define & from S x X to the set of probability distributions on S by:

VseSxeX,UCS, ZPU|s,x)=P(1(s,x,§) €U | E€C(s)).
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Then C = (S,s0,F,X, L, 2, f,2?) is the MDP induced by X-MDP A.
The induced MDP is equivalent to the original problem in the following sense.

Theorem 1. Let A be an X-MDP, C the induced MDP, and @ be a policy that is optimal
in A for states in F'\ F. Then, for all states s € S', vA(s) = V5(s).

This theorem is a consequence of the Markov property for X-MDPs, which implies that,
following 7 in B or C, for all ¢ the distribution of s; is the same in B and in C.

Solving MDPs. Once the approximated X-MDP is converted into an MDP, it is possible
to apply existing algorithms for solving the MDP exactly. We use aheuristic search
algorithm, which, despite its name, is an exact algorithms.

Heuristic Search Algorithms for MDPs. Heuristic search algorithms for MDPs perform
a partial exploration of the state space, using a — possibly monotone — upper bound to
guide the search. A value function /1 : § — R is an upper bound if Vs € S, h(s) > v*(s),
and is a monotone upper bound if, in addition, Res;,(s) > 0 for all state s. A monotone
upper bound is an optimistic evaluation of a state that cannot become more optimistic
if a Bellman update is performed.

Function.f indRevise (MDP A)

precondition: / is a upper bound for A, i(s) = f(s) if s is final
1 foreach s € S do v(s) — A(s)

2 repeat

3 Pick a state s reachable from sy and m, with |Res, (s)| > 0
4 v(s) — maxees () Qs )

5 until no such state is found

6 return v

Function findAndRevise, introduced by [4]], captures the general schema of heuris-
tic search algorithm for MDPs and returns an optimal value function upon termination.
At each step, the algorithm selects a state reachable with the current policy 7, whose
Bellman residual is non-zero and performs a Bellman update. When 4 is monotone,
only strictly positive (instead of non-zero) Bellman residuals must be considered. Dif-
ferent instantiations of this generic schema differ in the choice of the state to reconsider.
They include, among others, HDP [4], Learning Depth-First Search (LDFS) [5]], Real-
Time Dynamic Programming (RTDP) [1]], Bounded RTDP [13]], and LAO* [T1]]. These
algorithms only manipulate partial value functions defined only on the states visited so
far, performing the initialization v(s) «<— h(s) on demand. We chose to use the acyclic
version of Learning Depth-First Search (a-LDFS). It applies to acyclic problems (ours
are), and requires a monotone upper bound, which we have.

The Upper Bound hg max. The performance of heuristic search algorithms strongly de-
pends on the heuristic function 4. For MDPs induced by X-MDPs, a good heuristic
function can be derived from the deterministic offline problems. More precisely, for a
state s, the heuristic consists of solving the deterministic offline problems for the scenar-
ios compatible with s in the original X-MDP and taking the resulting expected offline
value, i.e., hg max(s) = Ey [O(s,€) | € € €(s)], where u is &’s distribution. Function
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hE max 1s @ monotone upper bound. It is attractive for guiding the search because it
leverages the combinatorial structure of the application (black-box offline solver) and
can be computed efficiently because the sets ¢ (s) are finite and small. hE max provides
a significant computational advantage to X-MDPs over MDPs.

Incrementality and Anytime Decision Making. Incrementality is the ability to re-
solve the MDP quickly after a small change in the approximated problem. Incremen-
tality enables fine-grained refinement, providing for efficient anytime decision making
and openning the door to sequential sampling [7]. It is based on the following theorem.

Theorem 2. Let o/, B and € be three X-MDPs that differ only by their respective
distributions |1, v, and p and let p = A+ (1 —A4)Vv for some 0 < A < 1. Let hy, and hy,
be monotone upper bounds for o/ and B respectively. Define h: S — R by h(s) = —eo
if p(€(s)) =0, and otherwise by

1
p(%(s))
Then h is a monotone upper bound for the induced MDP of €.

h(s) = (Au(E(6) huls) + (1=A)V(EW)hy(s) )

This theorem is used in the following setting.  is the old sample distribution, and we
have solved &/ optimally with findAndRevise (). The optimal value function it
returned is the monotone upper bound A (s). v is the distribution of the newly added
scenarios, and Ay is the Ay .. the offline upper bound for Z. p is the new sample
distribution, and includes the old sample and the newly added scenarios. A is the weight
of the old sample in the new sample. Our experiments showed adding the scenarios one-

by-one instead of all at once produced only a 20% slowdown on 500-scenario problems.

7 Experimental Results on Anytime Decision Making

Experimental Setting. The benchmarks are based on the collection of 12 instances for
the S-RCPSP from [8]. The reference instance, Reg, is similar to the one in [6]]. It has
2 laboratories, 5 projects, and a total of 17 tasks. The number of realizations for each
tasks range from 3 to 7, giving a total of 10° possible scenarios. The 11 other instances
are variant of Reg, scaling the costs, scaling the time axis of the revenue functions, or
chaning the structure of the Markov chains for each molecule.

For each instance, we generated 1,000 realizations of the uncertainty. A run of an
algorithm on one of these realizations consists of simulating one trajectory in the X-
MDP. At each encountered state, the online algorithm takes a decision with hard time
constraints. If the online algorithm has not enough time to decide, a default decision,
closing the labs, is applied. The algorithms were tested on all the realizations and vari-
ous time limits. With 4 tested algorithms and time limits of 31 ms, 125 ms, 500 ms, 2s,
8s, 32s, this gives a total of 288,000 runs taking more than 8,000 hours of cpu time.

The Four Compared Algorithms. Amsaa was used with iid sampling and sample sizes
growing by increments of 10%. Its performance relies on a fast offline solver. We used
the branch and bound algorithm from [8]] whose upper bound relaxes the resource con-
straints for the remaining tasks. This branch and bound is very fast thanks to a good
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preprocessing step: it takes on average less than 1ms for the reference instance. /s-AA
is the one-step anticipatory algorithm with iid sampling. It uses the same offline solver
than Amsaa. BRTDP is the Bounded Real Time Dynamic Programming algorithm [13].
The lower bound %~ (s) correspond to not scheduling anything after state s. The upper
bound is £ (s) is a very slight relaxation of Nmax,max, using the offline solver on an hy-
pothetical best scenario. Like in RTDP, and as opposed to B-RTDP, decisions are taken
greedily with respect to the upper bound value function v': Indeed experimental results
showed that making decisions with respect to v~ provides very poor decisions. HC-DP
is the Heuristically Confined Dynamic Programming algorithm from [6]] enhanced into
an anytime algorithm. The offline learning phase is removed and performed within the
given time limits. A full Bellman update is performed at increasing larger intervals, so
that the decision can be updated. Less than half the computation time is spent doing
updates, the rest being spent exploring the state-space. Its results outperform those of
the original HC-DP algorithm in [6]).

The Performance of Amsaa. Figure [2] summarizes the results for anytime decision
making. It contains a table for each of the 12 instances. The first line of this table con-
tains the empirical mean value obtained by running Amsaa. The three lines below report
the relative gap between the expected value of the considered algorithm and Amsaa with
the same time constraint. In addition, the background color carries information about
the statistical significance of the results, at the 5% level, as indicated by the legend of
the figure. It indicates whether the considered algorithm is better than Amsaa-32s (no
occurrence here); not worse than Amsaa-32s (e.g., Amsaa-500ms on Cost2); signifi-
cantly worse than Amsaa-32s, but better than Amsaa-31ms (e.g., Is-AA-31 ms on P3);
worse than Amsaa-32s, but not than Amsaa-31ms (e.g., B-RTDP-2s on Agr); or worse
than Amsaa-31ms (e.g., HC-DP-32s on Reg).

Overall Amsaa exhibits excellent performance. The solution quality of Amsaa-32s is
often higher by at least 10% than /5-AA-32s, HC-DP-32s, and B-RTDP-32s and Amsaa
is robust across all instances. With 32s, Amsaa is significantly better than all other
algorithms on 11 instances and as good as any other algorithm on Cost5. Moreover, the
remaining three algorithms lacks robustness with respect to the instances: They all rank
second and last at least once. Note that, on Cost5, the optimal policy is not to schedule
anything. HC-DP is able to realize that quickly, with only 125 ms, because it uses very
fast heuristics. Amsaa-32s and HC-DP with at least 125ms are optimal on this problem.

Amsaa is also robust with respect to the available computation time. On most in-
stances, the rankings of the four algorithms do not vary much with respect to the com-
putation times. One might think that with very strong time constraints, /s-AA is prefer-
able to Amsaa, because 1s-AA can use more scenarios in the same amount of time. Yet,
there are only two instances on which /s-AA-31ms beats Amsaa-31ms (Agr and P3)
and 3 on which they exhibit similar results. Note that B-RTDP-31ms has a zero score
on many instances due to the fact that even a single B-RTDP trial has to go deep in the
state space and compute the bounds 2™ and 4~ for many states. Under such strict time
constraints, B-RTDP cannot even perform one trial before the deadline.

Empirical Complexity of Amsaa. Figure[3(a) shows how the sample size grows with
the available runtime on instance Reg, measured on the making of the initial decision.
Because Amsaa is exponential in the worst case, one might fear that the number of
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scenarios grows logarithmically with the runtime. Yet, a power model for the expected
sample size E [n] as a function of the computation time ¢ fits almost perfectly the empir-
ical data. The fitted model is E [n] = 105 x t°®!, which indicates that Amsaa’s execution
time grows subquadratically in the number of scenarios ( 1/0.61 = 1.64 < 2)

However, one may argue that this behavior may be a consequence of iid sampling and
is not a convincing evidence that Amsaa performs well. Indeed, in the case of a contin-
uous distribution of the uncertainty, all the scenarios would almost surely be dispatched
to different states after the first observation and Amsaa with iid sampling would have a
linear complexity. The stochastic RCPSP has finite distributions but a similar behavior,
i.e., a fast divergence of the scenarios, could explain its good performance.

To test whether this is the case, we measured the number of states in the trimmed ap-
proximated X-MDP that are reachable by an optimal policy, as depicted on figure B(b).
With a continuous distribution, the number of reachable states would almost surely be
n+ 1 for n scenarios: the root node and n leaves. If observations were Bernoulli ran-
dom variables with parameter 1/2, the solution state space would be a roughly balanced
binary tree with 2n — 1 nodes. These two extreme cases suggest to fit a linear model of
the form (nb reachable states) = a+ bn. Such a model fits perfectly the experimental
results with a slope of 1.96, making it much closer to a Bernoulli case than a continuous
distribution. This provides evidence that scenarios do not diverge too quickly with iid
sampling and that the SAA problems become harder with the number of scenarios.

Comparison with Gap Reduction Techniques. The following table reports the rel-
ative gap (in %) between [8]’s best algorithm, called @7gpg, based on gap reduction
techniques, and Amsaa-32s. The background color provides significance information:
on Cost2 and R.6, &rgpg beats Amsaa-32s at the 5% significance level. On Reg, Cost5,
and R1.5, none is better than the other. On D.6 gap reduction is worse than Amsaa-31ms,
and on the others gap reduction is worse than Amsaa-32s but better than Amsaa-31ms.
Reg Agr Cost2 Cost5 D.6 DI5 Pl P2 P4 R.6 RIS

[024] -1.11 [EOIB8) 0.00 -16.8 -0.43 -1.98 -2.80 -057 -0.62 [HSHON 039 |

Gap reduction techniques are an attractive alternative to Amsaa. Nethertheless, Amsaa
outperforms them on most instances here, sometimes with a large gap (17% on D.6),
and converges to the optimal decisions (gap reduction techniques do not).

8 Comparison with Mathematical Programming

Stochastic programming traditionally focuses on purely exogenous problems. However,
[10] proposed an integer programming (IP) formulation for SAA problems of a Stox-
uno lot-sizing problem. We investigated a similar approach for the solving of SAA
problems for S-RCPSP using an IP closely following model (P2) in [[10]. In this model,
the number of binary variables is quadratic in the number of scenarios and linear in
the time horizon. A 20-scenario problem generated by iid sampling had, after CPLEX’s
presolve, 47-10% binary variable and 20-10° non-zeros. On this problem, CPLEX 10.1
runs out of memory before finding the first integer solution, while Amsaa solves it in
0.2s, and solves 1,000-scenario problems within minutes. With 1,000 scenarios, the IP
model would have about 10® binary variables ((10%)? x 100: there are about 100 time
steps), which is outside the scope of today’s IP solvers.
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Fig. 3. Empirical complexity of Amsaa

proposed to solve this IP using a branch-and-bound algorithm based on a La-
grangian relaxations of the non-anticipativity constraints. Yet, with 1,000 scenarios,
their algorithm would relax 10° constraints (10 non-anticipatory constraints for each
binary variable), so there would be a billion Lagrange multipliers to optimize at each
node of the tree, which is not reasonable either.

Why is Amsaa so much more scalable on this problem? The main difference is the
way non-anticipativity constraints are handled in the two approaches. In Grossman’s
approach, these are relaxed by Lagragian duality whereas, in Amsaa, they are enforced
lazily. The lazy approach has two major advantages. First, the presence of Lagrangian
multipliers alter the structure of the problem, precluding the use of a highly optimized
ad-hoc solver like in Amsaa. Second, it makes Amsaa able to exploit the discrete nature
of the decisions, using states and transitions instead of discretizing time.

9 Conclusion and Research Opportunities

We proposed Amsaa, the Anytime Multi-Step Anticipatory Algorithm, designed to
address the limitations of the one-step anticipatory algorithm on very stochastic applica-
tions. Amsaa applies to online combinatorial stochastic optimization problems with ex-
ogenous uncertainty and exogenous or endogenous observations. Experimental results
on stochastic resource-constraint project scheduling indicate that Amsaa significantly
outperforms existing algorithms under a variety of time constraints and of instances.

The essence of Amsaa lies in the integration of three ideas from different fields: the
SAA method from stochastic optimization to exploit positive correlations between de-
cisions, search algorithms from Al to solve MDPs exactly without time discretization,
and the use of black-box offline solvers from online stochastic combinatorial optimiza-
tion to compute good upper bounds quickly.

There are many research avenues to improve Amsaa. They include the use of lower
bounds like in B-RTDP (recall that we are maximizing) and of weaker but faster upper
bounds. Other research questions concern the generation of the approximated prob-
lems. The stochastic programming literature include a few techniques to produce better
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sample than by iid sampling [9]. It is not yet clear which of these techniques could be
applied to Stoxuno problems.
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Abstract. Replication is a fundamental technique for increasing
throughput and achieving fault tolerance in distributed data services.
However, its implementation may induce significant communication costs
to maintain consistency between the replicas. Eventually-Serializable
Data Service (ESDS) has been proposed to reduce these costs and en-
able fast operations on data, while still providing guarantees that the
replicated data will eventually be consistent. This paper reconsiders the
deployment phase of ESDS, in which a particular implementation of com-
municating software components must be mapped onto a physical archi-
tecture. This deployment aims at minimizing the overall communication
costs, while satisfying the constraints imposed by the protocol. Both MIP
and CP models are presented and applied to realistic ESDS instances.
The experimental results indicate that both models can find optimal so-
lutions and prove optimality. The CP model, however, provides orders of
magnitude improvements in efficiency. The limitations of the MIP model
and the critical aspects of the CP model are discussed. Symmetry break-
ing and parallel computing are also shown to bring significant benefits.

1 Introduction

Data replication is a fundamental technique in distributed systems: it im-
proves availability, increases throughput, and eliminates single points of failure.
Data replication however induces a communication cost to maintain consistency
among replicas. This cost can be reduced by the use of Eventually-Serializable
Data Services (ESDS) [6], which allow the users to selectively relax the consis-
tency requirements in exchange for improved performance. Given a definition
of an arbitrary serial data type, ESDS guarantees that the replicated data will
eventually be consistent (i.e., presenting a single-copy centralized view of the
data to the users), although it may not be at a particular point during the
execution.

The design, analysis, and implementation of ESDS is not an easy task how-
ever, and dedicated specification languages have been developed to express these
algorithms and protocols formally. See, for instance, the framework of (timed)
I/O automata [1209] and their associated tools [I3] which allow theorem provers
(e.g., PVS [15]) and model checkers (e.g., UPPAAL [I0M]) to reason about their
correctness. The ESDS algorithm is in fact formally specified with I/O automata
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and proved correct [6]. Once a specification is deemed correct, it must be imple-
mented and deployed. The implementation typically consists of communicating
software modules whose collective behaviors cannot deviate from the set of ac-
ceptable behaviors of the specification; see [5] for a methodic implementation of
the algorithm and a study of its performance. The deployment then focuses on
mapping the software modules on a distributed computer system to maximize
performance or, more precisely, to minimize communication costs between the
software components.

This research focuses on the last step of this process: the deployment of the im-
plementation on a specific architecture. The deployment problem can be viewed
as a resource allocation problem in which the objective is to minimize the net-
work traffic while satisfying the constraints imposed by the distributed algo-
rithms. These constraints include, in particular, the requirements that replicas
cannot be allocated to the same computer since this would weaken fault toler-
ance. The ESDS Deployment Problem (ESDSDP) was considered by [3] and was
modeled as a MIP. Unfortunately, the experimental results were not satisfactory
at the time as even small instances could not be solved optimally [3].

This paper reconsiders the ESDSDP and studies both MIP and CP formu-
lations. It demonstrates that MIP solvers can now solve practical instances in
reasonable times, although the problems remain surprisingly challenging. It also
presents a constraint-programming approach which dramatically improves the
performance of the MIP model. The CP model is a natural encoding of the ES-
DSDP together with a simple search heuristic focusing on the objective function.
The paper also evaluates empirically the strength of the filtering algorithms, the
use of symmetry breaking, and the benefits of parallel computing.

Surveying the current results in more detail, the CP model brings orders of
magnitude improvements in performance over the MIP model; for the examples
considered here, it returns optimal solutions and proves optimality within a
couple of minutes in the worst-case and within 15 seconds in general. The CP
model enforces arc consistency on all different and multi-dimensional element
constraints, which is critical for good performance. Symmetry breaking brings
significant speedups (up to a factor 13), while parallel computing produces linear
speedups on a 4 processor SMP machine.

The results in this paper also open new horizons for on-line optimization of
distributed deployment. Given the observed improvements in obtaining optimal
solutions, it becomes feasible next to consider optimizing deployment of com-
ponents in reconfigurable consistent data services for dynamic systems, such as
RamBo [I1U7]. Here configurations (quorum systems) of processors maintaining
data replicas can be changed dynamically. Any server maintaining a replica can
propose a new configuration and choosing suitable configurations is crucial for
the performance of the service. There exists a trade-off between fast reconfigu-
ration and the choice of suitable configurations. Enabling the servers to propose
optimized configuration based on their local observations and decisions will sub-
stantially benefit such services. It is of note that realistic instance sizes (cf. [IITI6])
are now within the current ability to compute optimal deployment.
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The rest of this paper is organized as follows. Section [ presents an overview
of ESDS and illustrates the deployment problem on a basic instance. Section
introduces the high-level deployment model, while Sections @] and Bl present the
MIP and CP models. Section [0] reports the experimental results and analyzes
the behavior of the models in detail. Section [ concludes the paper.

2 Deployment of Eventually-Serializable Data Services

An Eventually-Serializable Data Service (ESDS) consists of three types of com-
ponents: clients, front-ends, and replicas. Clients issue requests for operations
on shared data and receive responses returning the results of those operations.
Clients do not communicate directly with the replicas; instead they communicate
with front ends which keep track of pending requests and handle the communi-
cation with the replicas. Each replica maintains a complete copy of the shared
data and “gossips” with other replica to stay informed about operations that
have been received and processed by them. Since multiple clients may issue re-
quests concurrently, the responses are not uniquely defined. The service only
guarantees that the responses are consistent with an eventual total order on the
operations. Each replica maintains a set of the requested operations and a partial
ordering on those operations consistent with the responses. Clients may specify
constraints on how the requested operations are ordered. If no constraints are
specified by the clients, the operations may be reordered after a response has
been returned. A request may include a list of previously requested operations
that must be performed before the currently requested operation. Lastly, a re-
quest also may be “strict”, which means that the response must be consistent
with the eventual total order. For any sequences of requests issued by the clients,
the service guarantees eventual consistency of the replicated data [6].

ESDS is well-suited for implementing applications such as a distributed direc-
tory service, cf. Internet’s Domain Name System [8], which needs redundancy
for fault-tolerance and good response time for name lookup but does not require
immediate consistency of naming updates. Indeed, the access patterns of such
applications of ESDS are dominated by queries, with infrequent update requests.

Optimizing the deployment of an ESDS application can be challenging due to
non-uniform communication costs induced by the actual network interconnect,
as well as the various types of software components and their communication
patterns. In addition, for fault tolerance, no more than one replica should reside
on any given node. Finally, there is a tradeoff between the desire to place front-
ends near the clients with whom they communicate the most and the desire
to place the front-ends near replicas. Note also that the client locations may be
further constrained by exogenous factors. Deployment instances typically involve
a handful of front-ends to mitigate between clients and servers, a few replicas,
and a few clients. Instances may not be particularly large as the (potentially
numerous) actual users are external to the system and simply forward their
demands to the internal clients modeled within the ESDS.
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Fig. 1. A Simple ESDS Deployment Problem
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Figure [l depicts a simple ESDP Deployment Problem (ESDSDP). The left
part of the figure shows the hardware architecture, which consists of 10 heavy-
duty servers connected via a switch (full interconnect) and 4 “light” servers
connected via direct links to the first four heavy-duty servers. For simplicity, the
cost of sending a message from one machine to another is the number of network
hops. For instance, a message from PC to PCy requires 3 hops, since a server-
to-server message through the switch requires one hop only. The right part of
Figure [l depicts the software implementation of the ESDS. The ESDS software
modules fall in three categories: (1) client modules that issue queries (c1, -+, ¢q);
(2) front-end modules (feq, fea) that mediate between clients and servers and
are responsible for tracking the sequence of pending queries; and (3) replicas
(s1,- -, 86). Each software module communicates with one or several modules
and the right side of the figure specifies the volume of messages that must flow
between the software components in order to implement the service. The problem
constraints in this problem are as follows: the first 3 client modules must be
hosted on the light servers (PCy,---, PCy) while the remaining components
(ca, fe1, fea, 51, -+, 8¢) must run on the heavy-duty servers. Additionally, the
replicas s1 through s must execute on distinct servers to achieve the fault
tolerance promised by the ESDS. The deployment problem consists of finding
an assignment of software components to servers that satisfies the constraints
stated above and minimizes the overall network traffic expressed as the volume
of messages sent given the host assignments.

3 Modeling Optimal EDSD Deployments

We now present the deployment model originally developed in [23]. The input
data consists of

— The set of software modules C;
— The set of hosts NV;
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— The subset of hosts to which a component can be assigned is denoted by
booleans s., equal to true when component ¢ can be assigned to host n;

— The network cost is directly derived from its topology and expressed with
a matrix h where h;; is the minimum number of hops required to send a
message from host 4 to host j. Note that h; ; = 0 (local messages are free);

— The message volumes. In the following, f,, denotes the average frequency
of messages sent from component a to component b;

— The separation set Sep which specifies that the components in each S € Sep
must be hosted on a different servers;

— The co-location set Col which specifies that the components in each S € Col
must be hosted on the same servers;

The decision variables x. are associated with each module ¢ € C' and x. = n if
component ¢ is deployed on host n. An optimal deployment minimizes

Z Z fa,b : hma,xb

acC beC
subject to the following. Components may only be assigned to supporting hosts
Vee C : x.€{i € N|sq; =1}
For each separation constraint S € Sep, we impose
Vi,j€S 1 i#j =3 #xj.
Finally, for each co-location constraint S € Col, we impose

Vi,j €S8 : x; = xj.

4 The MIP Model

We now present a MIP model for the deployment problem. It is interesting
to observe that the ESDSDP is a generalization of the Quadratic Assignment
Problem (QAP). Indeed, in a QAP, C' = N, the variables x; are required to form
a permutation on N, and there is no separation and co-location constraint. A
QAP is also obtained when the co-location constraints are absent and the model
contains a single separation constraint over the set of components C.

Basic Model. The MIP model uses a four-dimensional matrix y of 0/1-variables
such that y4,:,; = 1 if x4 = 1Az, = j. It also uses a two-dimensional matrix z of
0/1-variables satisfying z,; = 1 < z, = i. The ESDSDP can then be specified

as the minimization of
Z Z Z Z fap i Yayip,j

a€CiEN beC jEN

subject to
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Zai < Sqi Vae C,Vie N (1)
Zza)i:]. Va € C (2)
iEN

Yayihj < Zai Va,be€ C, Vi, jeN (3)
Ya,ibg < 2b; Va,b € C,Vi,je N (4)
Ya,ibj = Zai+ 205 —1 Ya,be C, Vi,j € N (5)
> zai<1 VS€Sep,VieN (6)

a€s
Zai=2pi Vi€ N,VSe Col, Va,be S (7)

Constraints (IJ) require the components to be hosted on supporting hosts and the
constraints (2 that each component be deployed on exactly one host. The con-
straints (BIEA]) enforce the semantic definition of the z variables. The constraints
([@]) encode the separation constraints and () the co-location constraints.

Improving the formulation. In the above formulation, the conjunction z,; =
1A zp; = 1 is represented twice: once with ¥, ;5 ; and once with vy j 4.4 It is
thus possible to use only half the variables in y. In addition, for all components
a € C and nodes i,j5 € N, i # j = Ya,i.a; = 0, since component a cannot
be deployed on nodes ¢ and j simultaneously. Moreover, h; ; = 0 and therefore
all the terms on the diagonal can be removed from the objective function. The
objective function thus only needs to feature variables ¥4, ; such that a < b,

where < is a total ordering relation on C.

5 The CP Model

We now review a COMET program for the ESDSDP shown in Figure 2

The Model. The model is depicted in lines 1-25 in Figure 21 The data dec-
larations are specified in lines 2-8 and should be self-explanatory. The decision
variables are declared in line 9 and are the same as in the model presented
in Section Bl variable z[c] specifies the host of component ¢ and its domain is
computed from the support matrix s.

The objective function is specified in line 10 and eliminates the diagonal el-
ements (since h;; = 0 for every i € N). The CP formulation features a two-
dimensional element constraint since the matrix h is indexed by variables. Lines
12-15 state the co-location constraints: for each set S (line 12), an element ¢; € S
is selected (randomly) and the model imposes the constraint z., = z., for each
other elements cs in S. Lines 16-17 state the separation constraints for every set
in Sep using alldifferent constraints. The onDomains annotations indicate that
arc-consistency must be enforced on the equations and alldifferent constraints.

Consider the pruning performed by the objective function when an upper
bound is available. In COMET, a multi-dimensional element constraint is imple-
mented in terms of a table T' containing all the tuples (a,b, hap) for (a,b € C).
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1 Solver<CP> ¢p();

2 range C = ...; // The Components

srange N = ...; // The Hosts

aint[] s = ...; // The supports matriz

sint[] f = ...; // The frequency matriz

e int[,] h = ...; // The hops matriz

7 set{set{int}} Sep = ...; // The separation sets
s set{set{int}} Col = ...; // The co—location sets

o var<CP>{N} x[c in C](cp,setof(n in N) (s[c,n] == 1));

10 minimize<cp> sum(a in C,b in C: a |=b) f[a,b] * h[x[a],x[b]]
11 subject to {

forall(S in Col)

-
)

13 select(cl in S)

14 forall (c2 in S: cl != ¢2)

15 cp.post(x[cl] == x[c2],onDomains);

16 forall(S in Sep)

17 cp-post(alldifferent(all(c in S) x[c]),onDomains);
15 } using {

19 while (!bound(x)) {
20 selectMax(i in C: Ix[i].bound(), j in C)(f[i,j])

21 tryall<cp>(n in N) by (min(l in N: x[j].memberOf(1)) h[n,1])
22 cp.post(x[i] == n);

23 onFailure cp.post(x[i] != n);

24 }

25 }

Fig. 2. The Constraint-Programming Model in COMET

COMET creates a variable o, for each term h,, », in the objective and imposes
(Tas T, 00p) €T

on which it achieves arc consistency. The objective then becomes

Z Z fa,b *Oa,b-

acC beC

The Search Procedure. The search procedure is depicted in lines 19-24. It is
a variable labeling with dynamic variable and value orderings. Lines 20-23 are
iterated until all variables are bound (line 19) and each iteration nondeterminis-
tically assigns a variable x[i] to a host n (lines 21-23). The variable and value
orderings are motivated by the structure of the objective function

E E fi,j'h-"ﬂn-"ﬂj'
ieC jeC

In the objective, the largest contributions are induced by assignments of compo-
nents ¢ and j that are communicating heavily and are placed on distant hosts.
As a result, the variable and value ordering are based on two ideas:
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Fig. 3. Instance HYPER16: Deploying 18 Components on a 16-Node Hypercube

1. Assign first a component ¢ whose communication frequency f[i,j] with a
component j is maximal (line 20);

2. Try the hosts for component i in increasing number of hops required to
communicate with component j (line 21).

The variable selection thus selects first components with the heaviest (single)
communications, while the value selection tries to minimize the number of hops.

6 Experimental Results

The experimental results on the ESDSDP are reported for both the MIP and
CP model. We first describe the benchmarks and then present the results.

6.1 The Benchmarks

The models are evaluated on a collection of synthetic benchmarks that are rep-
resentative of realistic proprietary instances [I]. The benchmarks cover instances
with different configurations of software components and different hardware ar-
chitectures. All instances, which are available upon request, have from 12 to 18
software modules, and the hardware platforms range from 14 to 16 machines with
2 to 4 front-ends. In particular, Figure Bl depicts instance HYPER16 which deploys
18 components on an hypercube, while Figure [ depicts instance SCSS2SNUFE.

Table[dlgives a more detailed description of the instances. For each benchmark,
it gives the number of hosts and components, the separation and co-location
constraints, the size of the search space and the hardware and software configu-
rations. The specification 3:6S:3FE: 4C indicates that there are three separation
sets, one for the six replicas, one for the 3 front-ends, and one for the 4 clients.
The hardware setups named H; through Hy are specified as follows.

H; is the hardware platform depicted in Figure[Il

H, is a simple 